
Computer Modeling in
Engineering & Sciences

echT PressScience

Doi:10.32604/cmes.2025.063819

ARTICLE

DriveMe: Towards Lightweight and Practical Driver Authentication System
Using Single-Sensor Pressure Data

Mohsen Ali Alawami1 , Dahyun Jung2 , Yewon Park2 , Yoonseo Ku2 , Gyeonghwan Choi2 and
Ki-Woong Park2,*

1Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin-si, 17035, Republic of Korea
2Department of Information Security, Sejong University, Seoul, 05006, Republic of Korea
*Corresponding Author: Ki-Woong Park. Email: woongbak@sejong.ac.kr
Received: 24 January 2025; Accepted: 25 March 2025

ABSTRACT: To date, many previous studies have been proposed for driver authentication; however, these solutions
have many shortcomings and are still far from practical for real-world applications. In this paper, we tackle the
shortcomings of the existing solutions and reach toward proposing a lightweight and practical authentication system,
dubbed DriveMe, for identifying drivers on cars. Our novelty aspects are 1© Lightweight scheme that depends only on
a single sensor data (i.e., pressure readings) attached to the driver’s seat and belt. 2© Practical evaluation in which one-
class authentication models are trained from only the owner users and tested using data collected from both owners and
attackers. 3© Rapid Authentication to quickly identify drivers’ identities using a few pressure samples collected within
short durations (1, 2, 3, 5, or 10 s). 4© Realistic experiments where the sensory data is collected from real experiments
rather than computer simulation tools. We conducted real experiments and collected about 13,200 samples and 22,800
samples of belt-only and seat-only datasets from all 12 users under different settings. To evaluate system effectiveness,
we implemented extensive evaluation scenarios using four one-class detectors One-Class Support Vector Machine
(OCSVM), Local Outlier Factor (LOF), Isolation Forest (IF), and Elliptic Envelope (EE), three dataset types (belt-only,
seat-only, and fusion), and four different dataset sizes. Our average experimental results show that the system can
authenticate the driver with an F1 score of 93.1% for seat-based data using OCSVM classifier, an F1 score of 98.53% for
fusion-based data using LOF classifier, an F1 score of 91.65% for fusion-based data using IF classifier, and an F1 score of
95.79% for fusion-based data using EE classifier.

KEYWORDS: Driver authentication; pressure data; sensor; car; machine learning

1 Introduction
To identify the identity of drivers, many driver-based authentication solutions are proposed by moni-

toring behavioral attributes and fingerprinting driving habits of drivers using collecting sensory data from
various devices in cars such as controller area network (CAN) bus as well as exploiting smartphones [1–3].
We have gone through many of these studies and found that there are many security issues and limitations
that keep them away from practicality and generality and need to be addressed to provide more secure
vehicles. First, we found that many studies rely on various controllers (e.g., brake pedal, steering wheel,
engine speed, on-board diagnostics-II OBD-II, accelerator, and vehicle speed) [4–6] to collect large amounts
of data on the CAN bus and share it through networks for authenticating drivers. These systems seem slow
in response (i.e., needs a long time about 8 to 15 min) [7–9] and vulnerable to cyber-attacks [10]. Second,
the camera was used for many face and eye-based recognition systems by recording the driver’s face and

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Published Online: 23 April 2025

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2025.063819
https://www.techscience.com/doi/10.32604/cmes.2025.063819
mailto:woongbak@sejong.ac.kr

2 Comput Model Eng Sci. 2025

building in-car face fingerprints for authenticating drivers with the aid of deep learning [11,12]. However, this
kind of solution has many limitations that restrict authentication performance such as extreme illumination
change, different head poses, covering the face, wearing glasses, and multiple face appearances. Third, other
proposals focused on collecting location, time, and accelerometer measurements from GPS devices to extract
users’ daily driving information such as speed, routes, and destinations [13,14]. Besides that, these studies are
vulnerable to location and time spoofing attacks, they suffer from severe privacy violations in which GPS
data includes time synchronization and private location data. Fourth, rather than collecting actual data from
drivers on cars, many previous studies generated computer-based data from various simulators and used it
for evaluating driver authentication [3,5,15–17]—which limits its performance in real-world usage. Finally,
wireless signals such as 5G-assisted vehicular authentication schemes [18,19], channel state information
(CSI), and Radio Frequency (RF) signals (e.g., Wi-Fi or Bluetooth) collected from portable devices (e.g.,
smartphones and laptops) are also used in many existing studies [20–23]. However, it is difficult to extract
constant driving patterns from the characteristics of wireless signals because of multi-path propagation issues
in cars and various specifications of antennas which increase the system cost and add security threats.

Therefore, to bridge the gap, we tackle the shortcomings of the existing solutions and propose novel
design goals for our driver authentication systems as follows. First (Lightweight) in which our system relies
only on data collected from a single-pressure sensor instead of involving data from many sensors on the
CAN bus, GPS, camera, or smartphones. Second, our system is costless in that no CAN bus, CSI cards,
or smartphones are required as external devices for identifying drivers –which makes the system widely
applicable. Third, rapid authentication, we target to authenticate the driver’s identity using a few samples of
pressure data that are collected within a few seconds (sample amounts are collected in 1, 2, 3, 5, or 10 s). Fourth,
realistic experiments, in which the datasets are collected from real experiments and implementations rather
than conducting simulation data using tools on computers. Finally, our system does not rely on any privacy-
violation data such as GPS collecting time and location information nor camera recording faces, instead it
supports privacy-preserving since it depends only on pressure data which has no privacy violation.

Authenticating the driver’s identity using only a single sensor of pressure data is a challenging task
because various factors related to users (e.g., body weight, width, height, clothes, seating position, etc.) affect
the system performance of authentication. The work in this paper focuses on investigating the feasibility of
whether a few samples of pressure data that should be collected in some seconds are enough to authenticate a
driver’s identity or not. To verify this, we proposed to use the driver’s belt and seat as suitable locations to
install pressure sensors in the car. Then, we asked a group of 12 volunteers who have diverse characteristics
to conduct real experiments and collect pressure datasets under various settings and many iterations of
evaluations. We also implemented practical evaluation by creating one-class machine-learning models that
trained only on the car owner’s pressure data and tested using unseen data from other users considered
attackers. Therefore, the main goal of this work is to investigate the feasibility of achieving good authentica-
tion performance and fast authentication time in which a driver can be correctly identified using only a few
samples of data that are collected within a few seconds.

Here, we summarize our work’s contributions as follows.

1. We propose a novel, lightweight, practical, and fast driver authentication system using data acquired
from only pressure sensors equipped in the driver’s belt and seat.

2. We conducted real experiments, rather than using computer simulators, by installing 60 pressure
sensors on the driver’s seat (30 on the belt and 30 on the seat) and collected real-world datasets from 12
users, each of them repeated for 10 iterations under different settings.

Comput Model Eng Sci. 2025 3

3. We constructed four one-class machine-learning models and evaluated the system using three dataset
types (Belt-based, Seat-based, fusion: Belt+Seat) and several different sample sizes collected in (1, 2, 3,
5, and 10 s).

4. Our experimental results show the effectiveness of the proposed system by achieving the best average
performance of an F1 score of 93.1% for seat-based data using One-Class Support Vector Machine
(OCSVM) classifier, an F1 score of 98.53% for fusion-based data using Local Outlier Factor (LOF)
classifier, an F1 score of 91.65% for fusion-based data using Isolation Forest (IF) classifier, and an F1
score of 95.79% for fusion-based data using Elliptic Envelope (EE) classifier.

The remainder of this paper is structured as follows. In Section 2, we review related works. In Section 3,
we present the design overview of DriveMe and demonstrate the dataset collection details of our work.
In Section 4, we explain models’ learning algorithms and different settings of evaluations. Section 5 shows
system performance and experiments’ results from various evaluation approaches. We explain a discussion
and limitations of the work in Section 6. We finally provide our conclusion and directions for future work
in Section 7.

2 Related Work
In this section, we provide a comprehensive review of the related works from the perspective of driver

authentication. Many previous studies have focused on collecting sensory data from the controller area
network (CAN) from various devices and circuits in the car. Xun et al. [24] proposed an automobile
fingerprinting scheme by studying the behavioral characteristics of the drivers using data collected from the
CAN bus in two vehicles. Banerjee et al. [13] presented an approach to authenticating drivers using features
extracted from GPS-only data, and achieved an overall mean area under the receiver operating characteristic
curve (ROC) of 0.9. Regani et al. [20] exploited the unique radio-based biometric signals in the channel
state information (CSI) for recognizing driver identity. Kwak et al. [23] investigated the auto theft of cars
caused by the increasing number of computerized electric circuits. Burton et al. [15] addressed the problem of
carjacking that may occur in the middle of a driving session. Recently, Xun et al. [25] addressed the problem
of a fixed number of drivers based on their biometrics behaviors and proposed a growable scheme for adding
a new authorized driver to the system. Xun et al. [26] established a multi-task learning network for driver
authentication by extracting behavioral characteristics from the CAN bus data to conduct three tasks which
are illegal driver detection, legal driver identification, and driving behavior evaluation.

Another direction of driver authentication research is to exploit the face fingerprinting and eye
movements of the driver by using camera recording. Taha et al. [11] proposed a biometric-based continuous
authentication by developing end-to-end learning of eye movement profiles and producing embeddings for
identifying drivers. Borghi et al. [27] investigated that monitoring the upper body and head pose of the driver
is the key task for driver authentication. Derman et al. [12] introduced a continuous driver authentication
using face recognition and its features extracted from pre-trained convolution neural networks of 52 different
subjects. Gupta et al. [28] addressed the problem of the reliability of drivers for on-demand rides and ride-
sharing services such as Uber and Lyft companies. Also, many other proposals utilize facial features and use
face recognition technology for developing solutions for detecting several issues of drivers while driving the
cars such as driver fatigue detection, Distracted driving detection, and Driver drowsiness detection [29–31].

On the basis of previous research, we explore their shortcomings such as involving sensory data from
many devices on the CAN bus in the car which are prone to cyber-threats and need a long time (a couple
of minutes) to produce outputs and authenticate drivers, requiring sensitive data that disclose the privacy
of driver’s locations and time such as GPS, or exploiting wireless sensing of the radio signal that suffer
from severe multipath propagation [20,21,32]. Also, we found that most of the previous studies were based

4 Comput Model Eng Sci. 2025

on simulation datasets collected from simulation tools on computers. All the above issues may limit the
practical employment of these schemes for real-world applications. In contrast, our work uses a realistic
dataset collected from a single pressure sensor that can be attached to the driver’s seat and belt, authenticate
the driver in a few seconds with high accuracy, and preserve the privacy aspects of users.

Our work contributes to the literature as follows. (1) We provided a comprehensive view of the main
shortcomings that are in the existing studies and focused on tackling the key constraints for developing a
practical driver authentication system. (2) Most of the existing studies focused on improving authentication
accuracy and neglected the other requirements and aspects that are required for practical deployment such
as developing a lightweight system, way of evaluation, privacy concerns, and rapid authentication. (3) We
extensively analyze how much each requirement can affect the accuracy of authentication and investigate
usability measurements (e.g., authentication time and memory usage) for deploying a lightweight and
practical authentication system. Note that since there is no directly related work conducted as DriveMe (i.e.,
with the same practical requirements that we addressed in this work), we could not directly compare DriveMe
with previous studies. However, we list most related studies with comparable items in Table 1 to show the
differences and advantages of our work compared to others.

Table 1: Summary of driver authentication’s related works

Study Modalities
(Data)

Methods Lightweight Practical
evalua-

tion

Rapid
auth.

Experiments Privacy
preserv-

ing
[1] Steering wheel

angle, brake
pedal, throttle

pedal

Bionic intelligent
algorithms

✗ ✗ ✗ Simulation
(PanoSim

RT)

✗

[3] Channel state
information

(CSI)

Backpropagation
neural network

✓ ✗ ✗ Simulation ✗

[33] Facial images Neural networks ✗ ✓ ✗ Real
experiments

✓

[7] Controller Area
Networks (CAN)

Machine learning
models (Extra
Tree, Random
Forest, KNN,

SVM)

✗ ✓ ✗ Real
experiments

✗

[8] CAN bus
(OBD-II) and
smartphone

sensors

SVM ✗ ✗ ✗ Real
experiments

✗

[9] CAN bus
(OBD-II)

KNN and Naive
Bayes

✗ ✗ ✗ Real
experiments

✗

[11] Camera, Eye
movement (EM)

profiles

Long Short-Term
Memory (LSTM)

✗ ✓ ✗ Real
experiments+

simulations

✗

[12] In-car face
detection

Deep Neural
Network (DNN)

✗ ✗ ✗ Real
experiments

✗

(Continued)

Comput Model Eng Sci. 2025 5

Table 1 (continued)

Study Modalities
(Data)

Methods Lightweight Practical
evalua-

tion

Rapid
auth.

Experiments Privacy
preserv-

ing
[27] Facial images

(head
localization and
pose estimation)

Convolutional
Neural Network

(CNN)

✗ ✗ ✗ Real
experiments

✗

[24] CAN bus
(OBD-II)

CNN+SVM ✗ ✗ ✗ Real
experiments

✗

[25] CAN bus
(OBD-II)

An incremental
learning model

✗ ✗ ✗ Real
experiments

✗

[26] CAN bus
(OBD-II)

KNN+ SVM+
Neural Network

(NN)

✗ ✗ ✗ Real
experiments

✗

[28] Multi-modal
biometric (swipe,
text-independent

voice, face)

Ensemble Bagged
Tree (EBT)

✗ ✗ ✗ Real
experiments

✗

[30] Face recognition CNN + Percent
Eye Closure
(PERCLOS)
algorithm

✗ ✗ ✗ Real
experiments

✗

[13] GPS data only Random Forest ✓ ✗ ✗ Real
experiments

✗

[20] Channel state
information

(CSI)

KNN + SVM +
NN

✓ ✗ ✗ Real
experiments

✗

[34] Accelerator
pedal, brake

pedal, vehicle
velocity, and

distance

Gaussian Mixture
Model (GMM)

✗ ✗ ✗ Simulation ✗

[15] Steering wheel
position and

pedal pressure

SVM ✗ ✗ ✗ Simulation ✗

[16] Inertial sensors
from the CAN

bus

SVM and k-mean
clustering

✗ ✗ ✗ Real
experiments

✗

This
work

Pressure data OCSVM, LOF, IF,
EE

✓ ✓ ✓ Real
experiments

✓

3 System Design and Methodology
Here, we explain the system overview design and experiments that we conducted for the dataset

collection process.

3.1 System Overview
In this research, we were inspired by the shortcomings of the existing studies of driver authentication

mentioned in the previous section to initiate the work’s idea. Therefore, the objective of this research is

6 Comput Model Eng Sci. 2025

to investigate whether we can develop a lightweight (only using one sensor), fast (using a few seconds of
pressure data collection), and accurate driver authentication system. Additionally, our system supports privacy-
preserving and costless properties in which pressure data has no privacy violation, and no external devices are
required.

Fig. 1 shows the overview of the main stages of the DriveMe system as follows. Stage 1: Data collection
in which pressure measurements are collected from the sensors installed on the driver’s seat and built. Then,
the data are continuously and automatically sent through the Arduino kit to the database in the server that is
under our control. Stage 2: Learning and building models in which offline learning is executed on the server
including preprocessing, building one-class machine-learning models for each user, and then saving them
(.pickle) in the user’s directory for further processing such as online predictions. This stage is only conducted
once for the legitimate users who are authorized to drive the car to build their pressure-based templates or
profiles in the database. Stage 3: Driver authentication in which online classification takes place whenever
legitimate or attacker users sit and drive the car. This happens when the sensors collect his/her pressure data
for a few seconds and then send it to the server for authentication based on the models’ predictions and
outputs. Stage 4: Warning the owner where a warning message can be sent to the owner’s smartphone in case
the models predict that the tested sensory data does not belong to the legitimate user’s template. Note that, in
this work, we only focus on investigating the feasibility of whether pressure-based authentication for drivers
is effective enough and promising. We leave the development of sending warning messages to the owner’s
smartphone for future work.

Figure 1: The pipeline of pressure data collection, preprocessing, model training, and authentication

3.2 Experiments of Dataset Collection Process
Here, we explain in detail the experiments that we conducted for the dataset collection process and

its demography.
Fig. 2 shows the general description of how the development environment of our system was built

for conducting real-world experiments and collecting real pressure datasets from persons who drive cars
precisely. The development environment has three cascaded stages: (1) Sensors are installed on the car’s seat
and belt, (2) a sensor shield is used to connect pressure sensors to an Arduino, and (3) an Arduino promicro
type. The process works as follows. In the beginning, when a user sits on the car’s seat and wears the belt,
the pressure sensors start generating reading values continuously (every 0.1 s), send the generated data via
sensor shield to the Arduino Pro micro, and send it to our database. For conducting this scenario, we used
two development languages which are C and Python, several libraries such as TensorFlow, Pandas, Numpy,
etc., and some development tools such as Visual Studio Code for data visualization. We asked 12 volunteers

Comput Model Eng Sci. 2025 7

to participate in the experiments of data collection. They are all undergraduate students (males and females),
who have a background in computer science and applications, and they are informed about the experiment’s
purpose. We collected pressure datasets from the belt (top and bottom) and the seat. Fig. 3a shows the way
we installed the pressure sensors in three positions of the driver seat: (1) the top of the belt (15 sensors),
(2) the bottom of the belt (15 sensors), and (3) the base of the seat (30 sensors). So, the fusion data is collected
from both belt and seat positions (i.e., 60 sensors). Specifically, we intentionally asked participants to wear
different heavy and light clothes as well as different setting postures as shown in Fig. 3b–d. These settings are
important for studying many impacts that may directly affect the pressure measurements and then change
the authentication performance.

Figure 2: Steps show how the development environment of our system was built (sensor-shield-Arduino)

Furthermore, to make sure that all readings are collected correctly, we have implemented data distri-
bution visualizations using visual studio code in which sensory data are shown and plotted live whenever
a user sits in the driver’s seat and wears the belt. Fig. 4 shows an example of how pressure data distribution
visualizations of all seat sensors are plotted providing values vary from 0 (dark blue) to 140 (yellow). The
value of the pressure measured through the sensor for a certain period of time is shown in color. The bar
representing 0 to 140 on the right is the color spectrum that matches the magnitude of the pressure. The
participant’s data consists of the pressure measurements from the belt that were collected every t = 5, 3, 2, 1
seconds immediately after the belt was worn. Also, the participant’s data consists of the pressure readings
from the seat that were collected for every t = 10, 5, 3, 1 seconds immediately after seating. The sensor values
were measured at 0.1-second intervals. This means that for each experiment of the belt-only pressure data,
we collected 50, 30, 20, and 10 samples (i.e., 50, 30, 20, and 10 rows) where each sample has 30 sensory values
(i.e., 30 columns). Similarly, for each experiment of the seat-only pressure data, we collected 100, 50, 30, and
10 samples (i.e., 100, 50, 30, and 10 rows) where each sample has 30 sensory values (i.e., 30 columns). In short,
we collected four sizes of the two types of datasets as follows. For the belt-only pressure data, we collected
size A (5 s), size B (3 s), size C (2 s), and size D (1 s), while for the seat-only pressure data, we collected size
A (10 s), size B (5 s), size C (3 s), and size D (1 s).

8 Comput Model Eng Sci. 2025

(a) (b)

(c) (d)

Figure 3: Illustrations show the testbed of data collection experiments: (a) Driver seat attached with belt and seat
pressure sensors. (b), (c), and (d) show participants under different postures, clothes, and gender settings

Figure 4: (Continued)

Comput Model Eng Sci. 2025 9

Figure 4: Pressure data distribution visualization

Therefore, for each experiment, we create two matrices of pressure dataset for each participant. The first
matrix is called “belt-only” and has dimensions of m rows × n columns. The second matrix is called “seat-
only” and has dimensions of m rows × n columns. The values of m rows and n columns change according to
the size type (A, B, C, or D) and data type (Belt or Seat). Note that, we intentionally repeated each experiment
for ten iterations for each participant to make sure that the pressure values were consistent under different
settings and through all iterations. The data of each case is saved in a separate (.csv) file. In total, our pressure
dataset contains 960 (.csv) files: 12 users × four sizes type (A, B, C, and D) × two data types (Belt, Seat) ×
ten iterations. That’s mean 12 × 4 × 2 × 10 = 960 (.csv) files. Table 2 shows the details of dataset collection
demography in terms of the number of samples. We collected about 6000, 3600, 2400, and 1200 samples for
the four dataset sizes of the belt-only pressure data, respectively. Similarly, we collected 12000, 6000, 3600,
and 1200 samples for the four dataset sizes of the seat-only pressure data. Therefore, we collected about 13,200
samples and 22,800 samples of belt-only and seat-only datasets from all 12 users. Each sample has 30 values
width (i.e., 30 columns) representing the 30 attached sensors for either belt or seat. All dataset files are then
saved into a database on our server for later learning processes.

Table 2: Dataset collection demography of our DriveMe work

Data type One exp.
time

of sample
(rows)

of sensors
(columns)

of
iterations

of
users

Total # of
exps.

Total data size
(samples)

Belt-based

5 s (size A) 50 per exp. 30 10 12 120 50 × 12 × 10 = 6000
3 s (size B) 30 per exp. 30 10 12 120 30 × 12 × 10 = 3600
2 s (size C) 20 per exp. 30 10 12 120 20 × 12 × 10 = 2400
1 s (size D) 10 per exp. 30 10 12 120 10 × 12 × 10 = 1200

Seat-based

10 s (size A) 100 per exp. 30 10 12 120 100 × 12 × 10 = 12,000
5 s (size B) 50 per exp. 30 10 12 120 50 × 12 × 10 = 6000
3 s (size C) 30 per exp. 30 10 12 120 30 × 12 × 10 = 3600
1 s (size D) 10 per exp. 30 10 12 120 10 × 12 × 10 = 1200

4 Implementation and Evaluation Settings
Here, we explain the preprocessing steps applied to the dataset, one-class driver-pressure detectors, and

the evaluation algorithm that we used for assessing the performance of our system.

10 Comput Model Eng Sci. 2025

4.1 Preprocessing
We first explored the whole dataset and found some missing values in some data samples (i.e., values of

some sensors are missed from the rows) for both belt and seat data frames. For example, some samples that
were collected during the 5 s of belt-only or 10 s of seat-only data frames have less than 30 values (ranging
from 20 to less than 30 data points). Since we found that these incomplete samples are very few (usually
less than 5 samples per user), we decided to remove them from the data frames. To input the data into the
one-class model, we vertically contacted data frames from the ten iterations for each user so that models
are sufficiently trained with enough samples to better understand the user’s behaviors and create an offline
template that will be used later for online predictions. Then, we applied the “max-min” normalization method
for the whole dataset to re-scale the pressure measurements to be within 0 and 1 values.

4.2 One-Class Driver-Pressure Learning Detectors
Several machine-learning-based techniques are used for one-class classification that involves fitting a

model on the normal data and predicting whether new data is normal or an outlier/anomaly. In our work,
we selected four common ML algorithms for performing a one-class detection as follows.

4.2.1 One-Class SVM (OCSVM)
One-class SVM is an unsupervised algorithm that learns a decision function for novelty detection

by classifying new data as similar or different to the training set. OCSVM is one of the most convenient
methods to approach one-class problem statements, including anomaly detection. It works on the basic idea
of minimizing the hypersphere of the single class of examples in training data and considers all the other
samples outside the hypersphere to be outliers or out of training data distribution. We implemented OCSVM
from SK-learn using the “OneClassSVM” library. The most hyperparameters of one-class SVM algorithm are
kernel, gamma, and nu. In this work, we used the Kernel coefficient for “rbf ’, gamma for (scale, auto, 0.001,
0.01, and 0.1), and nu for (0.001, 0.01, 0.1, 0.3, 0.5, 0.7).

4.2.2 Local Outlier Factor (LOF)
LOF is an unsupervised outlier detection focused on the locality given by k-nearest neighbors. Specif-

ically, LOF measures the local deviation of the density of a given sample concerning its neighbors. By
comparing a sample’s local density to its neighbors’ local densities, outliers are considered for those samples
with a substantially lower density than their neighbors. We implemented LOF through SK-learn from class
“sklearn.neighbors” class and the most hyperparameter of the one-class LOF algorithm are n-neighbors. In
this work, we used n-neighbors = (10, 20, 50, 100, 1000, 10000).

4.2.3 Isolation Forest (IF)
Isolation Forest is a tree-based structure algorithm in which observations are isolated after randomly

selecting a feature and then a split value between the maximum and minimum values of the selected feature.
LOF represents a recursive partitioning to determine the number of splittings required to isolate a sample,
ultimately equal to the path length between root and terminating nodes. This path length is a measure of
decision function and the samples’ normality. Often, shorter path lengths for particular samples indicate they
are anomalies. We implemented the IF detector through SK-learn from the “sklearn.ensemble” class and the
most hyperparameter of the one-class IF algorithm is n-estimators. In this work, we used n-estimators = (10,
20, 50, 100, 500, 1000, 10000).

Comput Model Eng Sci. 2025 11

4.2.4 Elliptic Envelope (EE)
The Elliptic Envelope can be used as a supervised or unsupervised algorithm to model the data. EE is

mostly used for detecting outliers in a Gaussian-distributed dataset. In detail, it represents the dataset as
a high dimensional data Gaussian distribution with possible covariance between features. Then, EE finds
Elliptical boundaries containing most data points and considers data that lies outside the elliptical boundary
as outliers. We implemented the EE detector through SK-learn from the “sklearn.covariance” class and the
most hyperparameter of the one-class EE algorithm is contamination. In this work, we used n-estimators =
(0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5).

Finally, in Section 5, we provide experimental details about finding optimal hyperparameters of the four
machine learning algorithms for accurate and practical driver authentication on cars.

4.3 Evaluation Algorithm
During the training phase, we only used normal driver data collected from the owner user for creating

models (one-class models). However, for the need to compute evaluation metrics of the performance of the
DriveMe system, we need other users’ data as attackers. Therefore, we decided to loop across the 12 users in
which each user’s data is considered one-time training to create a training model and then test it over all the
remaining 11 users’ data one by one.

In each testing time, we calculate the F1 score, precision, recall, training time, and testing time. Fig. 5
describes the workflow of our evaluation process for the whole driver authentication system in which we
started by collecting the raw pressure datasets, progressing them to remove missing readings of sensors,
concatenating them, and normalizing all the measurement ranges to be within 0 and 1, and applying four
one-class classifiers learning them with different train/test ratios, three dataset types, and four dataset sizes.
To accurately evaluate our system, we selected five train/test split ratios which are 50/50, 60/40, 70/30, 80/20,
and 90/10 for the three data types (belt-base, seat-based, and the fusion of them, and using four dataset sizes
(A, B, C, and D) as shown in the Table 2. Since we have multiple arguments such as Data-Type, Data-Size,
Model-Type, and Users in the work, we developed Algorithm 1 to explain the detailed evaluation process of
our system as follows. First of all, we loop over each user so that we create one training model (OCSVM,
LOF, IF, or EE), using one Data-Type (Belt, Seat, or Fusion), and using one Data-Size (Size A, Size B, Size C,
and Size D). Then we tested that trained model using datasets from the other 11 users as attackers.

Algorithm 1: An algorithm illustrates the evaluation process for the driver authentication system
Input :

Data-Type: [Belt-based, Seat-based, Fusion-based],
Data-Size: [Size A, Size B, Size C, Size D],
AI Model-Type: [OCSVM, IF, LOF, EE],
Users: [0,1,2,3,4,5,6,7,8,9,10,11]

Output: [F1-score, Precision, Recall, Tr_time, Ts_time]
1 Process:
2 foreach DT in Data-Type do
3 foreach DS in Data-Size do
4 foreach MT in Model-Type do
5 foreach user in Users do
6 - set values of each model hyperparameter;
7 - train one user model and test it using the other 11 users’ data;

(Continued)

12 Comput Model Eng Sci. 2025

Algorithm 1 (continued)
8 - loop over all values of each hyperparameter;
9 - collect F1 score results for each iteration;
10 - append user’s results using combinations of all hyperparameters;
11 end
12 - average per user results and get mean_F1 and Max_F1;
13 - sort results descending based on mean_F1 scores;
14 - select the best hyperparameters to give the highest mean F1 scores;
15 - collect results over each Model-Type;
16 end
17 - collect results over each Data-Size;
18 end
19 - collect results over each Data-Type;
20 end

Driver learning process

Figure 5: Describing the workflow of the evaluation process for the driver authentication system

In each of those training processes, we set the pre-determined values of each model hyperparameter
and apply brute-force training iterations, collect all F1 scores for each iteration, and append all results for
all combinations of hyperparameters. After that, we average all collected results per user and get the overall
mean_F1 and Max_F1 scores under all combinations of hyperparameters. We calculated both mean_F1 and
Max_F1 scores because we found that a user-trained model can produce different F1 scores when tested
using the other 11 users’ datasets. For example, the model that is trained using the dataset of user 0 gives an
F1 score when tested using user 1 data different than when tested using data from users 2, 3, . . . , etc. So,
we computed the mean_F1 and max_F1 scores over all 11 users that were tested using the trained model of
user 0. Then, we sorted the results in descending order based on the mean_F1 factor and selected the best
hyperparameters corresponding to the highest F1 scores for each user’s trained model separately. Similarly,
the process is repeated when the trained model is created from the remaining users in a round-roop manner
(e.g., train model of user 1, user 2, . . . , user 11).

The above process has been repeated for the remaining model types, dataset sizes, and data types. Finally,
we collected the results of all evaluation stages and showed them in detail in Section 5.

Comput Model Eng Sci. 2025 13

5 Performance and Evaluation Results
In this section, we demonstrate in detail the performance results under the aforementioned evaluation

scenario and using the above variety of three input givens such as Data-Model (OCSVM, LOF, IF, or EE),
Data-Type (Belt, Seat, or Fusion), and Data-Size (Size A, Size B, Size C, and Size D) to show the feasibility
and effectiveness of our work.

Note that since we do not know what are the best hyperparameters of each model type that highly
affect the performance of the system as well as what are the most effective train/test ratios, we used the brute
force approach which a guaranteed way to find the best solutions by listing all possible candidate values of
hyperparameters under each case of the three input givens Data-Model (OCSVM, LOF, IF, or EE), Data-
Type (Belt, Seat, or Fusion), and Data-Size (A, B, C, and D). The brute force approach is a generic method
and is not limited to any specific domain of problems. We know about the time complexity of brute force,
however, we argue that this evaluation manner using the brute force approach is conducted only once to set
up the best hyperparameters that support the best performance of our driver authentication system. After
that, the selected hyperparameters will be automatically used for the designed system without executing the
brute force approach. We provide below all the details about evaluation results collected using four different
one-class classifiers (OCSVM, LOF, IF, and EE) under various settings such as data types, dataset sizes, and
train/test split ratios.

5.1 Evaluation Method 1: Using OCSVM
Here, we demonstrate experiments conducted to choose the best optimal hyperparameters of one-class

SVM and show the evaluation results for validating driver authentication.
The purpose of this experiment is to take into consideration the effect of several factors on the

performance of driver authentication such as model hyperparameters (i.e., gamma and nu), train/test split
ratios, data types, and data sizes. To do that, we ran the brute force approach over all possible candidates
of these factors. Without loss of generality, in this evaluation method, we ran the Python code of OCSVM
model for the 12 users and each user’s models should be trained with the following factors: five train/test
split ratios (0.5, 0.6, 0.7, 0.8, 0.9), five gamma values (scale, auto, 0.001, 0.01, 0.1), six nu values (0.001, 0.01,
0.1, 0.3, 0.5, 0.7), three data types (Belt, Seat, Fusion), and four data sizes (Size A, Size B, Size C, Size D). By
calculating the above factors, the total number of brute force evaluation iterations is equal to 12 × 5 × 5 × 6
× 3 × 4 = 21600.

For example, for Belt-based pressure data of Size A, we trained 12 OCSVM models (i.e., 12 users) and run
the brute force approach using the hyperparameters: five train/test split ratios (50/50, 60/40, 70/30, 80/20,
and 90/10), five gamma values (scale, auto, 0.001, 0.01, and 0.1), and six nu values (0.001, 0.01, 0.1, 0.3, 0.5,
0.7). So, we have checked 150 combinations of OCSVM hyperparameters (i.e., 5 × 5 × 6 = 150) for each user
and got 1800 results .csv files (i.e., 150 × 12 = 1800). In detail, each file listed the evaluation result when the
model was trained using the data of one user (e.g., user 0), but tested using the other 11 users’ data (e.g., users
1, 2, . . . , 11) as attackers.

After that, we averaged the 11 results of the trained user and computed his Mean_F1 and Max_F1 metrics.
This is one result row when using one combination of hyperparameters for the trained user. We repeated
over all 150 hyperparameters combinations (i.e., we got 150 result rows). After that, we sorted the 150 rows
of results descending based on Mean_F1 values to choose the best hyperparameters combination for that
trained user (i.e., user 0). This gives the first row of results in Table 3 where the trained model of user 0
showed Max_F1 = 94.91% and Mean_F1 = 92.75% values when using the best hyperparameters (gamma =

14 Comput Model Eng Sci. 2025

0.1, nu = 0.1, and Train/test ratio = 0.6). The same process was repeated when training the other 11 users (i.e.,
users 1, 2, . . . , 11) to show the results row from 1 to 11 in Table 3.

Table 3: Evaluation results of hyperparameters brute-force method for the 12 users’ pressure datasets using driver’s belt
and OCSVM model

Data type Data size Train user Gamma nu Ratio Max-F1 Mean-F1
Belt Size A 0 0.1 0.1 0.6 0.9491 0.9275

1 auto 0.1 0.9 0.9896 0.9791
2 0.01 0.1 0.9 0.9320 0.9073
3 0.1 0.3 0.6 0.9727 0.7967
4 scale 0.001 0.6 0.8615 0.8525
5 auto 0.1 0.5 0.9297 0.8884
6 0.1 0.1 0.9 0.9600 0.9598
7 scale 0.01 0.9 0.9795 0.9377
8 0.001 0.3 0.6 0.8032 0.7767
9 0.1 0.1 0.7 0.8424 0.7927
10 scale 0.5 0.9 0.9504 0.9504
11 0.1 0.1 0.6 0.8634 0.7814

Note that, all results shown in Table 3 are only using Belt-based pressure data type with dataset Size
A. Similarly, we have repeated the evaluation process but using seat-based data type with dataset size A as
shown in Table 4 and using fusion-based data type with dataset size A as shown in Table 5. By looking at
these three tables, we can see that Max_F1 and Mean_F1 scores vary based on dataset types (i.e., Belt, Seat,
and Fusion) as well as vary among users (0, 1, . . . , 11) within the same dataset type. These variations in the
results are expected since the positions where the sensors are located (i.e., Belt and Seat) are different as well
as the weights of users’ bodies are different too. Table 3 shows that the best Max_F1 and Mean_F1 scores were
achieved by user 1 which are 98.96% and 97.91%, respectively. When we used a seat-based dataset with the
same Size A dataset, the best Max_F1 and Mean_F1 scores in Table 4 were achieved by user 11 and user 1
which are 98.50% and 94.70%, respectively. Moreover, when we fused belt and seat datasets, we got the best
Max_F1 score equal to 99.66% achieved by user 9, while the best Mean_F1 of 96.25% as shown in Table 5.
Although the performance was improved when we fused the belt and seat datasets, evaluations of separate
seat-based and belt-based datasets are necessary to show the system performance when only one type of data
is used. This is because a driver (normal or attacker) may not wear a belt while driving.

Table 4: Evaluation results of hyperparameters brute-force method for the 12 users’ pressure datasets using driver’s seat
and OCSVM model

Data type Data size Train user Gamma nu ratio Max-F1 Mean-F1

Seat Size A

0 0.001 0.3 0.6 0.8695 0.8069
1 scale 0.01 0.9 0.9753 0.9470
2 scale 0.001 0.7 0.8428 0.7659
3 0.1 0.5 0.9 0.9705 0.9028
4 0.01 0.1 0.9 0.9252 0.797
5 scale 0.1 0.7 0.9371 0.9061
6 auto 0.001 0.5 0.9157 0.8334

(Continued)

Comput Model Eng Sci. 2025 15

Table 4 (continued)

Data type Data size Train user Gamma nu ratio Max-F1 Mean-F1
7 scale 0.5 0.9 0.9252 0.9252
8 scale 0.1 0.8 0.9707 0.9086
9 0.1 0.3 0.9 0.9252 0.9138
10 scale 0.3 0.9 0.9252 0.8859
11 scale 0.1 0.9 0.9850 0.8659

Table 5: Evaluation results of hyperparameters brute-force method for the 12 users’ pressure datasets using driver’s
fusion and OCSVM model

Data type Data size Train user Gamma nu Ratio Max-F1 Mean-F1

Fusion Size A

0 scale 0.3 0.9 0.8915 0.8648
1 0.001 0.3 0.7 0.9312 0.8823
2 scale 0.01 0.9 0.7893 0.7101
3 0.1 0.5 0.9 0.9801 0.8711
4 scale 0.1 0.9 0.9932 0.8765
5 0.1 0.3 0.9 0.9079 0.8217
6 scale 0.1 0.9 0.9487 0.8793
7 scale 0.3 0.9 0.8604 0.8123
8 scale 0.5 0.8 0.7734 0.7527
9 auto 0.3 0.9 0.9966 0.9625
10 auto 0.3 0.9 0.9367 0.8026
11 scale 0.3 0.9 0.8579 0.8185

Note that, in the same manner, we have created another nine evaluation tables of results using the same
OCSVM model but under different settings such as size B, size C, and size D for the three dataset types (Belt,
Seat, and Fusion). We did not add the nine tables because of page length limitation.

Instead, we plotted their overall driver authentication performance using the OCSVM algorithm under
all possible settings. Fig. 6 shows Max_F1 and Mean_F1 scores using OCSVM under four different dataset
sizes (A, B, C, and D) for three dataset types (Belt, Seat, and Fusion). This is important to compare what
dataset type and dataset size provide the best driver authentication results. We can see in Fig. 6a that the
seat-based dataset type with the size C provides the highest performance in terms of Max_F1 score of 93.1%.
However, in terms of Mean_F1 scores (Fig. 6b), the best performance results were from the dataset of size
A and size C using the belt-based dataset type of Mean_F1 scores equal to 88% and 88.1%, respectively. For
OCSVM, we can see that the fusion dataset type does not work well and provides a bit lower performance
for most cases of dataset sizes.

16 Comput Model Eng Sci. 2025

Figure 6: Illustrations show overall driver authentication performance using the OCSVM algorithm when considering
different sizes (A, B, C, and D) of belt, seat, and fusion datasets with two settings. (a) Measuring maximum F1 scores.
(b) Measuring mean F1 scores

5.2 Evaluation Method 2: Using LOF
Here, we demonstrate experiments conducted to choose the optimal hyperparameters of one-class LOF

and show the evaluation results for validating driver authentication. The most important hyperparameter of
the LOF classifier is considering the number of neighbors (parameter n_neighbors) where it is values should
be greater than the minimum number of samples a cluster has to contain and smaller than the maximum
number of close by samples that can potentially be local outliers. During the experiments of the LOF classifier,
we followed the same training and evaluating process as explained for the OCSVM classifier. In detail, we
considered the effect of the following factors: model hyperparameters (i.e., n_neighbors), train/test split
ratios, data types, and data sizes. To do that, we ran the brute force approach over all possible candidates
of these factors. Without loss of generality, in this evaluation method, we ran the Python code of the LOF
model for the 12 users and each user’s models should be trained with the following factors: five train/test split
ratios (0.5, 0.6, 0.7, 0.8, 0.9), six n_neighbors values (10, 20, 50, 100, 1000, 10000), three data types (Belt, Seat,
Fusion), and four data sizes (Size A, Size B, Size C, Size D). By calculating the above factors, the total number
of brute force evaluation iterations is equal to 12 × 5 × 6 × 3 × 4 = 4320.

For example, for Belt-based pressure data of Size A, we trained 12 LOF models (i.e., 12 users) and run the
brute force approach using the above hyperparameters. Then, we averaged and sorted Max_F1 and Mean_F1
scores for each user to find the best hyperparameters that give best driver authentication performance. As
shown in Table 6, we found that only n_neighbors = 50 is the required selection to get the highest Max_F1
score of 99.74% for user 0, while n_neighbors = 100 is needed to get the highest Mean_F1 score of 87.01%
for user 5. Similarly, using seat_based dataset and size A, Table 7 shows user 2 provides the highest Max_F1
of 96.13% when n_neighbors = 100 and user 1 provides the highest Mean_F1 of 93.65% when n_neighbors
= 50. Finally, using fusion_based dataset and size A, Table 8 shows user 11 provides the highest Max_F1 of
99.83% when n_neighbors = 50 and user 3 provides the highest Mean_F1 of 95.3% when n_neighbors = 50.

Comput Model Eng Sci. 2025 17

Table 6: Evaluation results of hyperparameters brute-force method for the 12 users’ pressure datasets using driver’s belt
and LOF model

Data type Data size Train user Neighbors Ratio Max-F1 Mean-F1

Belt Size A

0 50 0.6 0.9974 0.7703
1 20 0.8 0.7003 0.7003
2 50 0.9 0.9504 0.8089
3 20 0.7 0.6666 0.6666
4 20 0.7 0.7313 0.7303
5 100 0.6 0.9491 0.8701
6 50 0.9 0.9896 0.8519
7 20 0.6 0.6805 0.6805
8 10 0.5 0.6940 0.6877
9 10 0.7 0.6681 0.6681
10 50 0.9 0.9896 0.7660
11 20 0.6 0.8340 0.8191

Table 7: Evaluation results of hyperparameters brute-force method for the 12 users’ pressure datasets using driver’s seat
and LOF model

Data type Data size Train user Neighbors Ratio Max-F1 Mean-F1

Seat Size A

0 100 0.6 0.8988 0.8232
1 50 0.6 0.9546 0.9365
2 100 0.8 0.9613 0.8153
3 20 0.5 0.8116 0.8032
4 10 0.5 0.7199 0.7049
5 100 0.6 0.9313 0.7981
6 100 0.5 0.8250 0.7504
7 50 0.8 0.8956 0.6552
8 50 0.9 0.8048 0.8036
9 50 0.5 0.938 0.8355
10 10 0.5 0.6993 0.6859
11 100 0.5 0.9049 0.7090

Table 8: Evaluation results of hyperparameters brute-force method for the 12 users’ pressure datasets using driver’s
fusion and LOF model

Data type Data size Train user Neighbors Ratio Max-F1 Mean-F1
0 50 0.8 0.9983 0.9314
1 50 0.7 0.9664 0.9473
2 100 0.9 0.9932 0.9112
3 50 0.9 0.9801 0.9533
4 50 0.9 0.8530 0.8090
5 100 0.7 0.9623 0.8483

(Continued)

18 Comput Model Eng Sci. 2025

Table 8 (continued)

Data type Data size Train user Neighbors Ratio Max-F1 Mean-F1
Fusion Size A 6 50 0.8 0.9565 0.9422

7 50 0.8 0.9270 0.7114
8 50 0.8 0.8272 0.8272
9 50 0.8 0.9829 0.7917
10 50 0.9 0.9932 0.8981
11 50 0.8 0.9983 0.9378

We plotted the overall driver authentication performance using the LOF algorithm under all possible
settings. Fig. 7 shows Max_F1 and Mean_F1 scores using LOF under four different dataset sizes (A, B, C,
and D) for three dataset types (Belt, Seat, and Fusion). We can compare different types and dataset sizes to
provide the best driver authentication results. In opposite to the OCSVM model, we can see in Fig. 7a that
the LOF model works using fusion_based dataset type with size B and size C providing the highest overall
Max_F1 scores of 98.53% and 98.01%, respectively. Also, in terms of the Mean_F1 (Fig. 7b) scores, the LOF
model still provides the best performance results using the same dataset of size B and size C with fusion-
based dataset type of Mean_F1 scores equal to 93.66% and 95.96.1%, respectively. Finally, for the LOF model,
we conclude two points: 1) Fusion_based dataset is the best choice with size B and C for the best performance
of the system; 2) a few set of neighbors hyperparameter n_neighbors = 50 or 100 are enough to run our
driver authentication system correctly.

Figure 7: Illustrations show overall driver authentication performance using the LOF algorithm when considering
different sizes (A, B, C, and D) of belt, seat, and fusion datasets with two settings. (a) Measuring maximum F1 scores.
(b) Measuring mean F1 scores

5.3 Evaluation Method 3: Using IF
Here, we demonstrate experiments conducted to choose the optimal hyperparameters of one-class IF

and show the evaluation results for validating driver authentication. The Isolation Forest algorithm returns

Comput Model Eng Sci. 2025 19

the anomaly score of each sample. It “isolates” observations by randomly selecting a feature and then
randomly selecting a split value between the maximum and minimum values of the selected feature. The most
important hyperparameter of the IF classifier is considering the number of base estimators in the ensemble
n_estimators. Also, we put the “max_samples = auto” which means the number of samples to draw from
the dataset to train each base estimator. If “auto”, then max_samples =min(256, n_samples).

During the experiments of the IF classifier, we followed the same training and evaluating process as
explained for OCSVM and LOF classifiers. In detail, we considered the effect of the following factors: model
hyperparameters (i.e., n_estimators), train/test split ratios, data types, and data sizes. To do that, we ran the
brute force approach over all possible candidates of these factors. Without loss of generality, in this evaluation
method, we ran the Python code of the IF model for the 12 users and each user’s models should be trained
with the following factors: five train/test split ratios (0.5, 0.6, 0.7, 0.8, 0.9), seven n_estimators values (10,
20, 50, 100, 500, 1000, 10000), three data types (Belt, Seat, Fusion), and four data sizes (Size A, Size B, Size C,
Size D). By calculating the above factors, the total number of brute force evaluation iterations is equal to 12
× 5 × 7 × 3 × 4 = 5040. As shown in Table 9, we found that only n_estimators = 500 is the required selection
to get the highest MaxF1 score of 98.96% for user 1 and user 11, while n_estimators = 1000 is needed to get
the highest Mean_F1 score of 97.34% for user 10. Additionally, using seat_based dataset and size A, Table 10
shows user 3 provides the highest MaxF1 of 98.01% when n_estimators = 10 and user 8 provides the highest
Mean_F1 of 94.35% when n_estimators = 100. Finally, using fusion_based dataset and size A, Table 11 shows
user 11 provides the highest Max_F1 of 99.66% when n_estimators = 10000 and the same user 11 provides
the highest Mean_F1 of 92.23% when n_estimators = 10000. It is clear that with a fusion-based dataset type,
we need to increase the number of n_estimators to get good performance of driver authentication.

Table 9: Evaluation results of hyperparameters brute-force method for the 12 users’ pressure datasets using driver’s belt
and IF model

Data type Data size Train user Estimators Ratio Max-F1 Mean-F1

Belt Size A

0 10000 0.8 0.8546 0.8468
1 500 0.9 0.9896 0.9413
2 10 0.6 0.7012 0.6752
3 10 0.5 0.936 0.7447
4 10 0.6 0.8115 0.725
5 10000 0.8 0.7950 0.7940
6 10000 0.8 0.7950 0.7680
7 100 0.8 0.9326 0.9103
8 500 0.8 0.7578 0.746
9 10 0.7 0.7882 0.7038
10 10000 0.8 0.9748 0.9734
11 1000 0.9 0.9896 0.8832

Table 10: Evaluation results of hyperparameters brute-force method for the 12 users’ pressure datasets using driver’s seat
and IF model

Data type Data size Train user Estimators Ratio Max-F1 Mean-F1
0 500 0.6 0.8683 0.8315
1 20 0.6 0.9433 0.8739

(Continued)

20 Comput Model Eng Sci. 2025

Table 10 (continued)

Data type Data size Train user Estimators Ratio Max-F1 Mean-F1
2 20 0.8 0.9045 0.804
3 10 0.9 0.9801 0.7488
4 10 0.9 0.8534 0.7301
5 10000 0.7 0.8910 0.8579

Seat Size A 6 10000 0.8 0.7773 0.7765
7 100 0.9 0.9565 0.9333
8 100 0.9 0.9611 0.9435
9 10000 0.5 0.9107 0.8572
10 50 0.8 0.9613 0.9004
11 10 0.9 0.7252 0.6750

Table 11: Evaluation results of hyperparameters brute-force method for the 12 users’ pressure datasets using driver’s
fusion and IF model

Data type Data size Train user Estimators Ratio Max-F1 Mean-F1

Fusion Size A

0 20 0.9 0.9932 0.8870
1 10000 0.9 0.9966 0.9223
2 50 0.5 0.7153 0.6529
3 100 0.9 0.9350 0.7913
4 10000 0.9 0.9833 0.8962
5 50 0.9 0.8654 0.7357
6 10 0.9 0.9477 0.7563
7 1000 0.9 0.9107 0.8280
8 1000 0.5 0.7201 0.709
9 10000 0.9 0.9956 0.9174
10 10000 0.9 0.9833 0.9193
11 50 0.9 0.9396 0.8848

We plotted the overall driver authentication performance using the IF algorithm under all possible
settings. Fig. 8 shows Max_F1 and Mean_F1 scores using IF under four different dataset sizes (A, B, C, and D)
for three dataset types (Belt, Seat, and Fusion). We can compare different types and dataset sizes to provide
the best driver authentication results. Similar to the LOF model, we can see in Fig. 8a that the IF model
works well using a fusion-based dataset type with size A and provides the highest overall Max_F1 score of
91.56%. Also, in terms of the Mean_F1 (Fig. 8b) scores, IF model still provides the best performance results
using the dataset type fusion_based with dataset size B of Mean_F1 score equal to 82.78%. Finally, for the
IF model, we conclude two points: 1) Fusion_based dataset is the best choice with sizes A and B for the best
performance of the system; 2) the overall F1 scores performance seems lower than those provided by OCSVM
and LOF classifiers.

Comput Model Eng Sci. 2025 21

Figure 8: Illustrations show overall driver authentication performance using the IF algorithm when considering
different sizes (A, B, C, and D) of belt, seat, and fusion datasets with two settings. (a) Measuring maximum F1 scores.
(b) Measuring mean F1 scores

5.4 Evaluation Method 4: Using EE
Here, we demonstrate experiments conducted to choose the optimal hyperparameters of one-class

EE and show the evaluation results for validating driver authentication. Basically, the Elliptical Envelope
classifier is a statistical-based method for detecting anomalies and outliers in a dataset.

In our work, EE is particularly useful because we have multivariate data (sensory data with multiple
dimensions). EE can identify sensory observations that deviate significantly from the normal readings.
Technically, EE detects the outliers in Gaussian-distributed data. The most important hyperparameter of the
EE classifier is considering the amount of contamination of the data set (contamination) (i.e., the proportion
of outliers in the data set). Contamination should have a range between 0 and 0.5.

During the experiments of the EE classifier, we followed the same training and evaluating process as
explained for the previous three OCSVM, LOF, and IF classifiers. In detail, we considered the effect of the
following factors: model hyperparameters (i.e., contamination), train/test split ratios, data types, and data
sizes. To do that, we ran the brute force approach over all possible candidates of these factors. Without loss
of generality, in this evaluation method, we ran the Python code of the EE model for the 12 users and each
user’s models should be trained with the following factors: five train/test split ratios (0.5, 0.6, 0.7, 0.8, 0.9),
nine contamination values (0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5), three data types (Belt, Seat,
Fusion), and four data sizes (Size A, Size B, Size C, Size D). By calculating the above factors, the total number
of brute force evaluation iterations is equal to 12 × 5 × 9 × 3 × 4 = 6480.

As shown in Table 12, we found that only contamination = 0.01 is the required selection to get the
highest MaxF1 and Mean_F1 scores of 98.27% and 98.24% for user 2 and user 4, respectively. Additionally,
using seat_based dataset and size A, Table 13 shows user 10 provides the highest MaxF1 of 96.83% and user
8 provides the highest Mean_F1 of 89.81% when contaminations = 0.2. Finally, using fusion_based dataset
and size A, Table 14 shows user 9 provides the highest Max_F1 of 99.83% when contamination = 0.2 and
the same user 1 provides the highest Mean_F1 of 93.65% when contamination = 0.3. It is clear that for the

22 Comput Model Eng Sci. 2025

three dataset types (Belt, Seat, and Fusion), the range of contamination is between 0.1 and 0.3 to get good
performance of driver authentication.

Table 12: Evaluation results of hyperparameters brute-force method for the 12 users’ pressure datasets using driver’s
belt and EE model

Data type Data size Train user Contamination Ratio Max-F1 Mean-F1

Belt Size A

0 0.1 0.5 0.6987 0.6909
1 0.1 0.5 0.9477 0.9398
2 0.01 0.8 0.9827 0.9618
3 0.3 0.5 0.7651 0.7432
4 0.01 0.9 0.9824 0.9824
5 0.001 0.8 0.8636 0.7241
6 0.1 0.6 0.7682 0.7682
7 0.1 0.7 0.7044 0.6925
8 0.1 0.9 0.9180 0.8301
9 0.001 0.9 0.9032 0.7062
10 0.2 0.7 0.8169 0.7785
11 0.3 0.9 0.9032 0.8875

Table 13: Evaluation results of hyperparameters brute-force method for the 12 users’ pressure datasets using driver’s
seat and EE model

Data type Data size Train user Contamination Ratio Max-F1 Mean-F1
0 0.1 0.5 0.9293 0.8627
1 0.2 0.9 0.9166 0.8677
2 0.2 0.5 0.8385 0.7750
3 0.1 0.7 0.9448 0.8249
4 0.2 0.9 0.9473 0.8749

Seat Size A 5 0.2 0.6 0.9060 0.8447
6 0.01 0.5 0.8474 0.8307
7 0.2 0.9 0.9611 0.8981
8 0.1 0.9 0.9473 0.8817
9 0.2 0.8 0.9016 0.8350
10 0.2 0.8 0.9683 0.8978
11 0.1 0.5 0.7358 0.7358

Table 14: Evaluation results of hyperparameters brute-force method for the 12 users’ pressure datasets using driver’s
fusion and EE model

Data type Data size Train user Contamination Ratio Max-F1 Mean-F1
0 0.3 0.9 0.9673 0.8877
1 0.3 0.8 0.9883 0.9365
2 0.1 0.9 0.7326 0.6609

(Continued)

Comput Model Eng Sci. 2025 23

Table 14 (continued)

Data type Data size Train user Contamination Ratio Max-F1 Mean-F1
3 0.1 0.6 0.7263 0.6665
4 0.1 0.9 0.9966 0.8757
5 0.1 0.9 0.9426 0.8242

Fusion Size A 6 0.1 0.8 0.9096 0.8999
7 0.2 0.9 0.9899 0.9000
8 0.1 0.8 0.9041 0.8216
9 0.2 0.8 0.9983 0.9276
10 0.3 0.9 0.9768 0.9149
11 0.2 0.9 0.9704 0.8743

We plotted the overall driver authentication performance using the EE algorithm under all possible
settings. Fig. 9 shows Max_F1 and Mean_F1 scores using EE under four different dataset sizes (A, B, C, and D)
for three dataset types (Belt, Seat, and Fusion). We can compare different types and dataset sizes to provide
the best driver authentication results. Similar to the LOF and IF models, we can see in Fig. 9a that the EE
model works well using a fusion-based dataset type with size D and provides the highest overall Max_F1
score of 95.79%. Also, in terms of the Mean_F1 (Fig. 9b) scores, the EE model provides the best performance
results using the same dataset type fusion-based with dataset size D of Mean_F1 score equal to 94.51%. Finally,
for the EE model, we conclude two points: 1) Fusion_based dataset is the best choice with size D for the best
performance of the system; 2) the overall F1 scores performance is almost similar to those provided by LOF
and IF classifiers.

Figure 9: Illustrations show overall driver authentication performance using the EE algorithm when considering
different sizes (A, B, C, and D) of belt, seat, and fusion datasets with two settings. (a) Measuring maximum F1 scores.
(b) Measuring mean F1 scores

24 Comput Model Eng Sci. 2025

5.5 Computational Efficiency Analysis
In this section, we provide a detailed assessment of the computational cost and real-time processing fea-

sibility of the authentication system. We understand that it is important to evaluate factors such as processing
speed and Memory usage for the machine-learning models used in our work. This is crucial because of the
system application in embedded systems in vehicles, which often have limited computational resources.

5.5.1 Processing Time Computation
Here, we computed the train and test processing times for the three data types of our datasets (Belt,

Seat, and Fusion). Note that, since our work has applied four models (OCSVM, LOF, IF, EE), we just plot
the processing time for OCSVM with size (A) and 90/10 train/test split ratio as the case study to verify the
computational efficiency of the system. The computational evaluations for other models are the same, so we
omitted them due to the page-length limitation.

Figs. 10a and 10b show the train and test processing times for each of the 12 users separately, where it
is clear that the train time is higher than the test time under all settings and for all users, but still within a
few milliseconds. After that, we computed the overall and averaged computational results for all users using
the OCSVM model with three data types (Belt, Seat, Fusion), and four dataset sizes (A, B, C, D) as shown
in Table 15.

Figure 10: Illustrations show the computational processing time for the 12 users using the OCSVM model when
considering the size (A) of belt, seat, and fusion datasets. (a) Train time. (b) Test time

Note that, since the training and testing model of each user provides different time values (in millisec-
onds), we listed the minimum, maximum, and average statistics of the 12 users together (using one setting)
as one row in the table. Looking at Table 15, it is clear that all train/test processing results are in milliseconds
using various settings that reflect computational efficiency. Also, this proves that the proposed approach can
operate in real-time without any delays and shows the practical deployment feasibility of the system.

Comput Model Eng Sci. 2025 25

Table 15: Computational results of train and test processing time for all users’ pressure datasets

Data type Data per exp. per user Total samples Processing time (in Milli-seconds) using OCSVM

Train processing time Test processing time

Min. Max. Mean Min. Max. Mean

Belt-based

Size A (50 samples) Size A (6000 samples) 1.49 4.57 2.31 1.14 4.60 2.59
Size B (30 samples) Size B (3600 samples) 1.18 2.59 1.66 0.69 3.03 1.53
Size C (20 samples) Size C (2400 samples) 1.11 2.09 1.43 0.60 1.69 0.92
Size D (10 samples) Size D (1200 samples) 1.18 1.44 1.28 0.60 1.03 0.74

Seat-based

Size A (100 samples) Size A (12,000 samples) 1.29 14.26 6.48 1.46 14.50 4.81
Size B (50 samples) Size B (6000 samples) 1.31 4.20 2.55 0.77 4.43 2.19
Size C (30 samples) Size C (3600 samples) 1.27 2.08 1.63 0.73 1.76 1.15
Size D (10 samples) Size D (1200 samples) 1.15 1.54 1.27 0.59 1.08 0.76

Fusion-based

Size A (150 samples) Size A (18,000 samples) 2.62 28.25 16.85 1.66 21.84 9.28
Size B (80 samples) Size B (9600 samples) 1.67 7.44 3.41 1.09 11.82 2.62
Size C (50 samples) Size C (6000 samples) 1.18 2.62 1.59 0.76 1.47 1.09
Size D (20 samples) Size D (2400 samples) 1.157 1.73 1.35 0.61 1.08 0.81

5.5.2 Memory Usage
To develop a practical driver authentication system that holds trained machine-learning models, it is

necessary to ensure that the proposed approach can operate without problems in real-world on embedded
systems. Specifically, when deploying driver authentication models, it is important to monitor the memory
usage of the size of the models on vehicles. Therefore, we calculated the sizes of four types of trained models
(OCSVM, LOF, IF, EE) under various settings such as different data types (Belt, Seat, Fusion) and different
data sizes and reported the results in Table 16. Our memory usage calculations are conducted using each
user’s pressure dataset and ran using all possible hyperparameters for each trained model to check all possible
memory sizes for models. Note that the results shown in Table 16 are the maximum memory sizes that we
got from the calculations under some hyperparameters. This means these are the upper limits of sizes that
the models can use on the memory.

Table 16 clearly shows that the memory sizes for the four machine-learning models are noticeably
increased as the data size (A, B, C, D) increases, as well as depending on the datatype (Belt, Seat, Fusion).
As the number of samples increases, the memory size of the model increases regardless of the model type.
Also, EE models provide the lowest memory size (up to 27 KB) while IF models the highest memory
size (up to 15 MB) for 18,000 fusion samples data. However, the best option is the OCSVM models that
provide lightweight memory sizes (ranges from 16 to 234 KB), while giving the second-best authentication
performance. Another good option is LOF models that provide memory sizes (up to 10 MB) while giving the
highest authentication performance. Finally, we conclude that the report of memory sizes shows clearly the
feasibility of the practical deployment of the system in embedded systems such as vehicles.

26 Comput Model Eng Sci. 2025

Table 16: Memory usage results of four models (OCSVM, LOF, IF, EE) using all users’ pressure datasets

Data type Data per exp. per user Total samples Memory usage (Model size)

OCSVM LOF IF EE

Belt-based

Size A (50 samples) Size A (6000 samples) 78 KB 1627 KB 13,900 KB 27 KB
Size B (30 samples) Size B (3600 samples) 48 KB 597 KB 13,730 KB 25 KB
Size C (20 samples) Size C (2400 samples) 32 KB 271 KB 12,767 KB 24 KB
Size D (10 samples) Size D (1200 samples) 16 KB 72 KB 8026 KB 23 KB

Seat-based

Size A (100 samples) Size A (12,000 samples) 158 KB 6547 KB 14,721 KB 32 KB
Size B (50 samples) Size B (6000 samples) 80 KB 1692 KB 14,444 KB 27 KB
Size C (30 samples) Size C (3600 samples) 49 KB 636 KB 13,077 KB 25 KB
Size D (10 samples) Size D (1200 samples) 19 KB 86 KB 8560 KB 24 KB

Fusion-based

Size A (150 samples) Size A (18,000 samples) 234 KB 10,813 KB 15,257 KB 36 KB
Size B (80 samples) Size B (9600 samples) 125 KB 4123 KB 14,629 KB 30 KB
Size C (50 samples) Size C (6000 samples) 79 KB 1627 KB 13,482 KB 27 KB
Size D (20 samples) Size D (2400 samples) 32 KB 271 KB 12,064 KB 24 KB

6 Discussion and Limitations
In this section, we provide a detailed explanation of the limitations and shortcomings of this study that

may concern readers and reviewers. First of all, the goal of this paper is only to investigate the feasibility
behind the idea of exploiting pressure-based sensory data for driver authentication. In future work, we will
cover and address all following limitations and directions which are currently out of the scope of this paper.

• Collected dataset: We know that the dataset used consists of only 12 users seems not enough for the
system to generalize well for a larger or more varied population. However, we explain that the complexity
of driving data collection from users and the hardness of car-based experiments was a barrier to a
recruiting large number of users in this paper. Therefore, we tried our best to convince 12 users to conduct
the experiments using different clothes, postures, and ten iterations. Also, our dataset was collected
using real experiments compared with many published studies that used generated computer-based data
from various simulators to evaluate the performance of their driver authentication solutions [3,5,15,16].
Therefore, we believe the current dataset is enough to support the goal of the paper which is showing the
feasibility of using pressure data for driver authentication. Additionally, we explored number of recruited
users in previous studies of driver authentication and found that several studies have done their work
with a few users (e.g., [33] (4 users), [3] (5 users), [7] (6 users), [20] (7 users), [15] (10 users), [25] (15
users)).

• Uncontrolled conditions experiments: Although our experiments in this paper have been conducted
in controlled conditions, they are still real experiments compared with many existing studies in driver
authentication conducted using just simulators [1,3,15,16,34]. The dataset was collected from sensors
equipped on the “off-car” seat and belt as shown in Fig. 3. We know that other external factors can be
included in the experiments such as real-world driving conditions, vibrations from rough roads, and
varying driving speeds. Although these factors are out of the scope of the current paper’s work, we
argue that performance results show that our system can identify the driver rapidly in a very short time
(1 to 5 s) once he sits in the driver’s seat. This means there is no need for on-driving detection since

Comput Model Eng Sci. 2025 27

the driver’s identity can be detected before the vehicle moves. However, we plan to discuss the system’s
adaptability with these factors in the extended version of the work in the future.

• Comparison with existing studies: While the paper highlights its novelty by providing a new approach
to authenticating drivers using pressure data, the existing authentication schemes use different methods
(e.g., CAN-based, camera-based, biometric, Wi-Fi-based, or multimodal systems). Therefore, we could
not provide a direct and in-depth comparison, instead, we provided an indirect comparison in Section 2
to show the validation of our performance against the accuracy results of the existing driver authen-
tication works. As far as we know, there is no prior study that used pressure data to address practical
shortcomings as we did in this work, therefore, we could not conduct a direct and in-depth comparison.
We surveyed most related works of driver authentication and provided a detailed Table 1 comparing
our work with them in the key terms addressed in this work: (1) Lightweight, (2) Practical evaluation
approach, (3) Rapid Authentication, (4) Type of experiments, (5) Privacy-preserving. We believe that
such a comparison could be enough to show the differences and advantages of our work compared with
the literature.

• Integrating multi-modal authentication: This study focuses on a single-modality authentication
system that relies solely on pressure data from seat and belt. However, we believe that applying multi-
factor authentication (MFA), which is commonly used in security-critical applications is necessary to
enhance the robustness of the system. Our intention in this work is to just show whether the pressure
data only is feasible to detect the driver identity or not as a baseline module. We emphasize that this work
is not aimed to be used as a comprehensive system or a standalone approach for authenticating drivers.
Instead, DriveMe can be integrated with additional biometric data (e.g., fingerprint, facial recognition),
behavioral patterns (e.g., steering behavior, pedal pressure), or physiological signals (e.g., heart rate) for
developing multi-modal authentication to improve security and reduce false positives or negatives.

7 Conclusion and Future Work
We designed a novel driver authentication scheme that achieves practical requirements using pressure

data attached to the driver’s seat and belt. We conducted real experiments and collected real pressure datasets
(rather than simulation data) of 12 users and built up a database in our server for later learning process.
We conducted extensive evaluation implementations using four one-class detectors, three dataset types, and
four dataset sizes to prove the validity of our work under various evaluation settings. Our results show the
promising aspects of the pressure-based system practically and accurately.

For future work, we plan to extend the work to continue addressing the limitations provided in the
previous section such as gathering pressure datasets from a larger and more diverse pool of users, conducting
uncontrolled conditions experiments in real-world driving, and integrating our system with more feature
for robust multi-modal authentication system. Also, we plan to conduct a full application design of a
client-server architecture to send warning alarms to the owner’s smartphone in case of detecting a car’s
unauthorized access.

Acknowledgement: We are thankful for the insightful comments from anonymous reviewers, which have greatly
improved this manuscript.

Funding Statement: This work was supported by the Institute of Information & Communications Technology Planning
& Evaluation (IITP) (Project Nos. RS-2024-00438551, 30%; 2022-11220701, 30%; 2021-0-01816, 30%), and the National
Research Foundation of Korea (NRF) grant funded by the Korean Government (Project No. RS2023-00208460, 10%).

Author Contributions: The authors confirm their contribution to the paper as follows: study conception, design,
performance evaluation, producing results, and writing the manuscript: Mohsen Ali Alawami; all experiments design,

28 Comput Model Eng Sci. 2025

hardware implementations, and datasets collection process: Dahyun Jung, Yewon Park, Yoonseo Ku, Gyeonghwan
Choi; supervision and funding: Ki-Woong Park. All authors reviewed the results and approved the final version of
the manuscript.

Availability of Data and Materials: The dataset used in the manuscript will be available upon request.

Ethics Approval: The authors confirm that this research study was conducted ethically and following established
guidelines. All participants involved in the experiment were fully informed before their participation about the purpose
of the study, their right to withdraw at any time, and the confidentiality of their responses. Also, any external sources
used have been properly cited.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Zhu B, Liu Z, Zhao J, Chen Y, Deng W. Driver behavior characteristics identification strategies based on bionic

intelligent algorithms. IEEE Trans Human-Mach Syst. 2018;48(6):572–81. doi:10.1109/THMS.2018.2861225.
2. Alawami MA, Abuhmed T, Abuhamad M, Kim H. MotionID: towards practical behavioral biometrics-based

implicit user authentication on smartphones. Pervasive Mob Comput. 2024;101:101922. doi:10.1016/j.pmcj.2024.
101922.

3. Duan S, Yu T, WiDriver He J. Driver activity recognition system based on WiFi CSI. Int J Wireless Inform Netw.
2018;25:146–56. doi:10.1007/s10776-018-0389-0.

4. Enev M, Takakuwa A, Koscher K, Kohno T. Automobile driver fingerprinting. Proc Priv Enhancing Technol.
2016;2016(1):34–50. doi:10.1515/popets-2015-0029.

5. Miyajima C, Nishiwaki Y, Ozawa K, Wakita T, Itou K, Takeda K, et al. Driver modeling based on driving behavior
and its evaluation in driver identification. Proc IEEE. 2007;95(2):427–37. doi:10.1109/JPROC.2006.888405.

6. Garg S, Kaur K, Kumar N, Rodrigues JJ. Hybrid deep-learning-based anomaly detection scheme for suspicious flow
detection in SDN: a social multimedia perspective. IEEE Trans Multimed. 2019;21(3):566–78. doi:10.1109/TMM.
2019.2893549.

7. Ezzini S, Berrada I, Ghogho M. Who is behind the wheel? Driver identification and fingerprinting. J Big Data.
2018;5(1):1–15. doi:10.1186/s40537-018-0118-7.

8. Zhang C, Patel M, Buthpitiya S, Lyons K, Harrison B, Abowd GD. Driver classification based on driving behaviors.
In: Proceedings of the 21st International Conference on Intelligent User Interfaces; 2016; Sonoma, CA, USA. p.
80–4.

9. Xun Y, Sun Y, Liu J. An experimental study towards driver identification for intelligent and connected vehicles. In:
ICC 2019-2019 IEEE International Conference on Communications (ICC); 2019; Shanghai, China: IEEE. p. 1–6.

10. Liu J, Zhang S, Sun W, Shi Y. In-vehicle network attacks and countermeasures: challenges and future directions.
IEEE Network. 2017;31(5):50–8. doi:10.1109/MNET.2017.1600257.

11. Taha B, Seha SNA, Hwang DY, Hatzinakos D. EyeDrive: a deep learning model for continuous driver authentica-
tion. IEEE J Sel Top Signal Process. 2023. doi:10.1109/JSTSP.2023.3235302.

12. Derman E, Salah AA. Continuous real-time vehicle driver authentication using convolutional neural network
based face recognition. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition
(FG 2018); 2018; Xi’an, China: IEEE. p. 577–84.

13. Banerjee T, Chowdhury A, Chakravarty T, Ghose A. Driver authentication by quantifying driving style using GPS
only. In: 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops); 2020; Austin, TX, USA: IEEE. p. 1–6.

14. Bittl S, Gonzalez AA, Myrtus M, Beckmann H, Sailer S, Eissfeller B. Emerging attacks on VANET security based on
GPS time spoofing. In: 2015 IEEE Conference on Communications and Network Security (CNS); 2015; Florence,
Italy: IEEE. p. 344–52.

https://doi.org/10.1109/THMS.2018.2861225
https://doi.org/10.1016/j.pmcj.2024.101922
https://doi.org/10.1016/j.pmcj.2024.101922
https://doi.org/10.1007/s10776-018-0389-0
https://doi.org/10.1515/popets-2015-0029
https://doi.org/10.1109/JPROC.2006.888405
https://doi.org/10.1109/TMM.2019.2893549
https://doi.org/10.1109/TMM.2019.2893549
https://doi.org/10.1186/s40537-018-0118-7
https://doi.org/10.1109/MNET.2017.1600257
https://doi.org/10.1109/JSTSP.2023.3235302

Comput Model Eng Sci. 2025 29

15. Burton A, Parikh T, Mascarenhas S, Zhang J, Voris J, Artan NS, et al. Driver identification and authentication with
active behavior modeling. In: 2016 12th International Conference on Network and Service Management (CNSM);
2016 Oct 31–Nov 04; Montreal, QC, Canada: IEEE; 2016. p. 388–93.

16. Van Ly M, Martin S, Trivedi MM. Driver classification and driving style recognition using inertial sensors. In: 2013
IEEE Intelligent Vehicles Symposium (IV); 2013; Gold Coast, QLD, Australia: IEEE. p. 1040–5.

17. Meng X, Lee KK, Xu Y. Human driving behavior recognition based on hidden markov models. In: 2006 IEEE
International Conference on Robotics and Biomimetics; 2006; Kunming, China: IEEE. p. 274–9.

18. Almazroi AA, Aldhahri EA, Al-Shareeda MA, Manickam S. ECA-VFog: an efficient certificateless authentica-
tion scheme for 5G-assisted vehicular fog computing. PLoS One. 2023;18(6):e0287291. doi:10.1371/journal.pone.
0287291.

19. Al-Shareeda MA, Manickam S, Mohammed BA, Al-Mekhlafi ZG, Qtaish A, Alzahrani AJ, et al. CM-CPPA: chaotic
map-based conditional privacy-preserving authentication scheme in 5G-enabled vehicular networks. Sensors.
2022;22(13):5026. doi:10.3390/s22135026.

20. Regani SD, Xu Q, Wang B, Wu M, Liu KR. Driver authentication for smart car using wireless sensing. IEEE Internet
Things J. 2019;7(3):2235–46. doi:10.1109/JIOT.2019.2958692.

21. Alawami MA, Kim H. LocAuth: a fine-grained indoor location-based authentication system using wireless
networks characteristics. Comput Secur. 2020;89:101683. doi:10.1016/j.cose.2019.101683.

22. Alawami MA, Vinay AR, Kim H. LocID: a secure and usable location-based smartphone unlocking scheme using
Wi-Fi signals and light intensity. IEEE Internet Things J. 2022;9(23):24357–72. doi:10.1109/JIOT.2022.3189358.

23. Kwak BI, Woo J, Kim HK. Know your master: driver profiling-based anti-theft method. In: 2016 14th Annual
Conference on Privacy, Security and Trust (PST); 2016; Auckland, New Zealand: IEEE. p. 211–8.

24. Xun Y, Liu J, Kato N, Fang Y, Zhang Y. Automobile driver fingerprinting: a new machine learning based
authentication scheme. IEEE Trans Ind Inform. 2019;16(2):1417–26. doi:10.1109/TII.2019.2946626.

25. Xun Y, Guo W, Liu J. G-DriverAUT: a growable driver authentication scheme based on incremental learning. IEEE
Trans Vehicular Technol. 2023. doi:10.1109/TVT.2022.3233739.

26. Xun Y, Liu J, Shi Z. Multitask learning assisted driver identity authentication and driving behavior evaluation. IEEE
Trans Ind Inform. 2020;17(10):7093–102. doi:10.1109/TII.2020.3034276.

27. Borghi G, Venturelli M, Vezzani R, Cucchiara R. Poseidon: face-from-depth for driver pose estimation. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2017; Honolulu, HI, USA. p.
4661–70.

28. Gupta S, Buriro A, Crispo B. DriverAuth: a risk-based multi-modal biometric-based driver authentication scheme
for ride-sharing platforms. Comput Secur. 2019;83:122–39. doi:10.1016/j.cose.2019.01.007.

29. Junaedi S, Akbar H. Driver drowsiness detection based on face feature and PERCLOS. In: Journal of Physics:
Conference Series; IOP Publishing; 2018. Vol. 1090.

30. Xing J, Fang G, Zhong J, Li J. Application of face recognition based on CNN in fatigue driving detection. In:
Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing; 2019;
Dublin Ireland. p. 1–5.

31. Akrout B, Mahdi W. A novel approach for driver fatigue detection based on visual characteristics analysis. J
Ambient Intell Humaniz Comput. 2023;14(1):527–52. doi:10.1007/s12652-021-03311-9.

32. Ma Y, Zhou G, Wang S. WiFi sensing with channel state information: a survey. ACM Comput Surv. 2019
Jun;52(3):1–36. doi:10.1145/3310194.

33. Ma Y, Wu J, Long C, Lin YB. Mobidiv: a privacy-aware real-time driver identity verification on mobile phone. IEEE
Internet Things J. 2021;9(4):2802–16. doi:10.1109/JIOT.2021.3093480.

34. Wakita T, Ozawa K, Miyajima C, Igarashi K, Itou K, Takeda K, et al. Driver identification using driving behavior
signals. IEICE Trans Inform Syst. 2006;89(3):1188–94. doi:10.1093/ietisy/e89-d.3.1188.

https://doi.org/10.1371/journal.pone.0287291
https://doi.org/10.1371/journal.pone.0287291
https://doi.org/10.3390/s22135026
https://doi.org/10.1109/JIOT.2019.2958692
https://doi.org/10.1016/j.cose.2019.101683
https://doi.org/10.1109/JIOT.2022.3189358
https://doi.org/10.1109/TII.2019.2946626
https://doi.org/10.1109/TVT.2022.3233739
https://doi.org/10.1109/TII.2020.3034276
https://doi.org/10.1016/j.cose.2019.01.007
https://doi.org/10.1007/s12652-021-03311-9
https://doi.org/10.1145/3310194
https://doi.org/10.1109/JIOT.2021.3093480
https://doi.org/10.1093/ietisy/e89-d.3.1188

	DriveMe: Towards Lightweight and Practical Driver Authentication System Using Single-Sensor Pressure Data
	1 Introduction
	2 Related Work
	3 System Design and Methodology
	4 Implementation and Evaluation Settings
	5 Performance and Evaluation Results
	6 Discussion and Limitations
	7 Conclusion and Future Work
	References

