
2 J. Choi Author et al.

devices and the scalability of development tools to deploy malicious apps that
are undetectable by traditional security technologies.

In March 2025, attackers used a C#-based Android and iOS app development
tool Microsoft ‘.NET MAUI’ to deploy malicious apps that bypassed detection
that focuses on analyzing and detecting existing DEXs (Dalvik Executable) and
native libraries [2]. In addition, another malicious app family called ‘Crocodilus’
appeared in March 2025, which used a dynamic code loading method through
an external .dex file to bypass security devices [3]. In June 2024, a malicious
app called ‘DroidBot’ appeared [4]. This malicious app operated as a MaaS
(Malware-as-a-Service), similar to RaaS (Ransomware-as-a-Service).

Malicious apps or malicious code distributed as XaaS (X-as-a-Service), tend
to have similar code logic, attack methods, and penetration methods, and can be
detected and blocked by similar detection and blocking technologies. Attackers
are becoming more advanced and sophisticated in their attacks on mobile devices
and deploying malicious apps.

Several static, dynamic, and hybrid analytics are being studied to detect and
classify mobile malicious apps [5–7]. The above studies use ‘monkey’ tools to
simulate user interactions to maximise the code coverage of malicious apps and
collect system call logs for detection and classification. However, in the case of
Trojan-type malicious apps, the focus is on taking user information. Therefore,
Trojans usually have an input box that takes user input.

However, the ‘monkey’ tool has difficulty handling such inputs because it
relies on random-based events (unless you write your own code). Also, collect-
ing all system call logs for detection and classification is not enough to detect
and classify actual malicious behavior, but if you use all of them as features,
the resources used for Analysis will be considerable because all behaviors are
recorded, including evasion logic intentionally planed by the attacker, internal
storage for normal app activities, and access to external storage. In this research,
we identify a number of those issues and present them as follows.

- C01: Handling the attacker’s intended victim’s behavior: In the case of
Trojan Type, the purpose is to take the user’s information. Therefore, in order
for the user’s input value to be sent to the C2 (Command & Control) server, the
input value must be filled in according to the acttacker’s intention.

- C02: Handling screen transitions from malicious apps: Some malicious apps
use automated tools like ‘monkey’ to perform screen transitions to evade analysis.
In such cases, it is not possible to extract system calls correctly.

- C03: Handling user behavior for maximum coverage: Some malicious apps
have malicious behavior that does not start immediately up on app launch, but
rather after a specific button is touched.

- C04: Handling non-malicious behavior logs from system calls: If an attacker
is intentionally planting evasion logic or collecting all legitimate app activity, the
resources used for analysis will be very large.

To solve the above problem, we propose a framework that extracts system
calls in changed sequence logs through preprocessing and filtering of user inter-
actions and logs for more accurate classification.

Interaction-Aware System Call Sequence Analysis
for Android Malware Classification

Jae-Min Choi1[0009−0008−9459−3535], Sang-Hoon Choi2[0000−0002−9549−0887], and
Ki-Woong Park3[0000−0002−3377−223X]

1 SysCore Lab, Department of Information Security, and Convergence Engineering
for Intelligent Drone, Sejong University, Seoul 05006, South Korea

c.jaem7532@gmail.com
2 SysCore Lab, Sejong University, Seoul 05006, South Korea

csh0052@gmail.com
3 Department of Information Security, and Convergence Engineering for Intelligent

Drone, Sejong University, Seoul 05006, South Korea
woongbak@sejong.ac.kr

Abstract. The increasing number of mobile devices and the expansion
of IoT (Internet of Things) and digital systems have made them targets
for more sophisticated Android malicious apps. Existing detection tech-
niques often use randomly generated events using ‘monkey’ tools, but this
has limitations for apps that rely on user input for malicious behavior.
In this paper, we extracted system calls and changed them to sequences
to classify families of malicious apps by type with the DTW(Dynamic
Time Warping) Algorithm. We evaluated using the AndroZoo dataset
and found that family classification is possible for types of Trojan, Ad-
ware, and Exploit. In this study, we used view tree-based interaction for
classification without using the ‘monkey’ tool to extract system call logs.
We also extracted all logs through system call filtering to extract more
malware behavior-focused system call logs. In the future, we plan to use
more sophisticated interaction tools and ML and DL for classification
and detection.

Keywords: Android Malware · Malware Family Classification · Mal-
ware Analysis

1 Introduction

The increasing of mobile devices and expansion IoT and digital systems, the in-
formation stored in mobile devices has become information that can cause direct
or indirect damage to the user’s life or company beyond personal information. To
take this information, attackers are building and distributing more sophisticated
and insidious malicious apps than ever before.

Attackers are not only distributing malicious apps through phishing and
scams, but also by registering legitimate apps in official stores (such as Play-
store and Apple Store) and adding malicious behavior through subsequent up-
dates [1]. Attackers are also taking advantage of the wide compatibility of mobile

WISA 2025

-162-



2 J. Choi Author et al.

devices and the scalability of development tools to deploy malicious apps that
are undetectable by traditional security technologies.

In March 2025, attackers used a C#-based Android and iOS app development
tool Microsoft ‘.NET MAUI’ to deploy malicious apps that bypassed detection
that focuses on analyzing and detecting existing DEXs (Dalvik Executable) and
native libraries [2]. In addition, another malicious app family called ‘Crocodilus’
appeared in March 2025, which used a dynamic code loading method through
an external .dex file to bypass security devices [3]. In June 2024, a malicious
app called ‘DroidBot’ appeared [4]. This malicious app operated as a MaaS
(Malware-as-a-Service), similar to RaaS (Ransomware-as-a-Service).

Malicious apps or malicious code distributed as XaaS (X-as-a-Service), tend
to have similar code logic, attack methods, and penetration methods, and can be
detected and blocked by similar detection and blocking technologies. Attackers
are becoming more advanced and sophisticated in their attacks on mobile devices
and deploying malicious apps.

Several static, dynamic, and hybrid analytics are being studied to detect and
classify mobile malicious apps [5–7]. The above studies use ‘monkey’ tools to
simulate user interactions to maximise the code coverage of malicious apps and
collect system call logs for detection and classification. However, in the case of
Trojan-type malicious apps, the focus is on taking user information. Therefore,
Trojans usually have an input box that takes user input.

However, the ‘monkey’ tool has difficulty handling such inputs because it
relies on random-based events (unless you write your own code). Also, collect-
ing all system call logs for detection and classification is not enough to detect
and classify actual malicious behavior, but if you use all of them as features,
the resources used for Analysis will be considerable because all behaviors are
recorded, including evasion logic intentionally planed by the attacker, internal
storage for normal app activities, and access to external storage. In this research,
we identify a number of those issues and present them as follows.

- C01: Handling the attacker’s intended victim’s behavior: In the case of
Trojan Type, the purpose is to take the user’s information. Therefore, in order
for the user’s input value to be sent to the C2 (Command & Control) server, the
input value must be filled in according to the acttacker’s intention.

- C02: Handling screen transitions from malicious apps: Some malicious apps
use automated tools like ‘monkey’ to perform screen transitions to evade analysis.
In such cases, it is not possible to extract system calls correctly.

- C03: Handling user behavior for maximum coverage: Some malicious apps
have malicious behavior that does not start immediately up on app launch, but
rather after a specific button is touched.

- C04: Handling non-malicious behavior logs from system calls: If an attacker
is intentionally planting evasion logic or collecting all legitimate app activity, the
resources used for analysis will be very large.

To solve the above problem, we propose a framework that extracts system
calls in changed sequence logs through preprocessing and filtering of user inter-
actions and logs for more accurate classification.

The 26th World Conference on Information Security Applications

-163-



4 J. Choi Author et al.

3 Proposed Framework

This section describes the proposed framework and each module within the
framework in detail. The structure of the proposed framework is shown in Fig. 1

Fig. 1. Proposed Framework

3.1 System Call Extractor

Install the malicious app using ADB on an Android virtual machine created with
QEMU (Quick Emulator)+KVM (Kernel-based Virtual Machine). Then, extract
the XML using the Android ‘aapt’ tool. Extract the ‘android.intent.action.MAIN’
value in the extracted XML to launch the Android app. If there is a loading
splash in the form of ‘android.intent.category.LAUN-CHER’, use that value. If
the PID is extracted for the analysis app that is finally executed, it is impossible
to extract the correct system call because it has already been executed.

To solve this problem, attach the ‘strace’ command to the ‘zygote’ or ‘zy-
gote64’ process used by Android, including all child processes. This will allow
to extract all system call logs from the moment the malicious app is executed.
However, if we extract all system call functions, we will get a lot of noise. For ex-
ample, functions such as ‘ioctl’ and ‘get_clocktime’ are not related to the actual

Title Suppressed Due to Excessive Length 3

This thesis is organized as follows. Section 2 describes related work on system
calls and describes the libraries used for our analysis. Section 3 describes the
design of the framework proposed in this thesis and details its internal modules.
Section 4 describes the results of classification using the framework. Section 5
presents conclusions, limitations, and future work.

2 Related Work

2.1 Android Malware Detection Based on System Call

Ahmed R. Nasser et al. proposed a DL-AMDet architecture for Android mali-
cious apps based on static and dynamic features [5]. The study extracted per-
mission request in the Manifest.XML file and API (Application Programming
Interface) Calls through reverse engineering of the .dex file from static analysis,
ran the malicious app for 15 minutes at 1-minute intervals to extract system calls
generated by the malicious app, and conducted dynamic analysis by generating
events using ‘monkey’. Based on the above three features, the CNN-BiLSTM
method was used for training, and finally, 99.935% accuracy was achieved. In
this study, the hybrid method effectively detected malicious apps.

Xiaojian Liu et al. extracted system calls for Android malicious apps and
converted them into sequences to detect malicious apps using a CNN-LSTM
model [6]. In this study, the system call is extracted and the frequency of occur-
rence is calculated to create a data dictionary. Then, based on the dictionary, it
is converted into numerical information and trained with the CNN-LSTM model.
At this time, 1000 random events were generated using ‘monkey’ to conduct dy-
namic analysis. In the end, 87.92% accuracy was achieved. In this study, system
call was used to effectively detect malicious apps.

Christopher Jun Wen Chew et al. proposed a behavior-based ransomware
detection technique based on extracting system calls generated by crypto ran-
somware [7]. The system calls generated by crypto ransomware are extracted,
and the system calls are patterned to create behavior patterns. Then, based on
regular expressions, we created an implementation that can detect encrypted
ransomware behavior in real time through FSM (Finite State Machine). In this
study, presented the possibility of using it as part of a self-protection system on
Android devices is explored.

2.2 Android View Client

The AndroidViewClient library by dtmilano is a Python library that helps au-
tomate and test the UI of Android apps [8]. The library extracts the UI (User
Interface) structure based on the ADB (Android Debug Bridge) provided by
Android and supports touch, text input, screen capture, structure analysis, etc.,
for each View. In this study, we used this library to identify touchable views and
input boxes. Then, we utilized the identified views by touching them and typing
text into the input box.

WISA 2025

-164-



4 J. Choi Author et al.

3 Proposed Framework

This section describes the proposed framework and each module within the
framework in detail. The structure of the proposed framework is shown in Fig. 1

Fig. 1. Proposed Framework

3.1 System Call Extractor

Install the malicious app using ADB on an Android virtual machine created with
QEMU (Quick Emulator)+KVM (Kernel-based Virtual Machine). Then, extract
the XML using the Android ‘aapt’ tool. Extract the ‘android.intent.action.MAIN’
value in the extracted XML to launch the Android app. If there is a loading
splash in the form of ‘android.intent.category.LAUN-CHER’, use that value. If
the PID is extracted for the analysis app that is finally executed, it is impossible
to extract the correct system call because it has already been executed.

To solve this problem, attach the ‘strace’ command to the ‘zygote’ or ‘zy-
gote64’ process used by Android, including all child processes. This will allow
to extract all system call logs from the moment the malicious app is executed.
However, if we extract all system call functions, we will get a lot of noise. For ex-
ample, functions such as ‘ioctl’ and ‘get_clocktime’ are not related to the actual

The 26th World Conference on Information Security Applications

-165-



6 J. Choi Author et al.

foreground activity, app, and compare it with the package name that was exe-
cuted through it, and if the screen was switched, we solved it by using the ‘back’
command to return to the screen of the existing malicious app.

All of the above processes are recursive, meaning that we navigate from
the parent view tree to the child view trees of the analysis app, and when the
navigation is complete, we kill the process to end the analysis.

3.3 System Call Processor

The extracted system call logs contain all system calls made by ‘zygote’ and the
malicious app. If all of these logs are used, the resources for analyzing them are
considerable, as mentioned in C04 above, and there are difficulties in classifying
them correctly. To solve this problem, the system call processor goes through
the following steps.

From the extracted system call logs, we extract the system call logs of the
app PID to be analysed and the child process that occurred in the app. Then, to
extract the system call of the actual malicious behavior, we defined the parameter
according to the system call function as shown in Table 2 and extracted the
system call containing the parameter.

Table 2. Filtering System Call Parameter List

Functions System Call Parameters
openat() base.apk, /storage/emulated/0, /data/user/0, /sdcard

Version 7 wrtiev()
onCreate, onDestroy, onResume, LAUNCH_ACTIVITY, han-
dlePauseActivity, destroy, handleRelaunchActivity, perform-
Pause

Version 9 wrtiev()
MAIN_ACTIVITY, performCreate, performPause, perform-
RestartActivity, performDestroy, handleStartActivity, RE-
SUME_ACITIVTY, apache

write() <?XML, getaddrinfo, Timeout, http, telnet
clone() !zygote
mkdirat() /storage/emulated/0, /data/user/0, /sdcard
renameat() /storage/emulated/0, /data/user/0, /sdcard
connect() AF_INET, AF_INET6
pread64() table
socket() !PF_LOCAL
recvmsg() !-1
recvfrom() !72, !232

To apply the extracted system call logs to the DTW algorithm, we mapped
each function to an integer as shown in Table 3

Based on the above process, the final extracted system call log is much smaller
in size than the full system call log, including ‘zygote’, and contains only mali-
cious behavior due to noise removal. The data was reduced from a maximum of
140 MB to a minimum of 41 KB.

Title Suppressed Due to Excessive Length 5

malicious behavior. Excluding these functions, we extracted only the functions
listed in Table 1 to extract only the functions listed in Table 1.

Table 1. Filtering System Call Functions List

Category System Call Functions
Process Control clone, execve, fork, getuid, getuid32, geteuid, geteuid32

File I/O and Socket
Connection

accept, bind, connect, getsockopt, mkdir, mkdirat, open, ope-
nat, pread64, read, readlinkat, recv, recvfrom, recvmsg, re-
name, renameat, rmdir, send, sendto, sendmsg, setsockopt,
socket, stat, unlink, unlinkat, vfork, write, writev

Android requires the ‘minsdk’ and ‘maxsdk’ versions to be specified when de-
veloping an app. Therefore, if the app to be analyzed does not match the current
virtual machine and SDK (Software Development kit), it cannot be executed.
Therefore, we saved the app with the error and extracted the Android SDK ver-
sion 11. Through the above process, we extracted ‘zygote’ and all system calls
generated by the malicious app.

3.2 Automated User Interaction Module

Some malicious app types may start malicious behavior depending on the user’s
input. As mentioned in C01 and C03, Trojan-type malicious apps require user
input to send the value to the C2 server, and the user must press the final send
button, not just fill in the input box. In addition, there are cases where the
screen is switched when a specific button is touched to prevent an evade analysis
by automated tools such as C02.

To solve C01, C02, and C03, we used the ‘AndroidViewClient’ library to
extract the view tree for the current screen. Then, we extracted all the view IDs
based on the view tree, and used a recursive function to navigate through the
view tree. At this time, we categorized touch and input box types based on the
view type.

The touch-type view simulates the user’s input through the touch event, and
the input box type view is divided into various cases.

For input boxes, you may want to validate input values when accepting cer-
tain forms, such as email. Also, there are cases where only numeric values, such
as age, card number, and zip code, are accepted. To solve this problem, we cre-
ated a set of input values in the form of a dictionary, extracted the screen using
the ADB ‘screencap’ command, and entered a different type of input if the input
values were not entered correctly. This way, we can simulate the user interaction
correctly.

There are cases where the screen switches when the above touch event oc-
curs. To prevent this, we used the ‘dumpsys’ command to extract the activity
of the current foreground state. Using this command, we can find the current

WISA 2025

-166-



6 J. Choi Author et al.

foreground activity, app, and compare it with the package name that was exe-
cuted through it, and if the screen was switched, we solved it by using the ‘back’
command to return to the screen of the existing malicious app.

All of the above processes are recursive, meaning that we navigate from
the parent view tree to the child view trees of the analysis app, and when the
navigation is complete, we kill the process to end the analysis.

3.3 System Call Processor

The extracted system call logs contain all system calls made by ‘zygote’ and the
malicious app. If all of these logs are used, the resources for analyzing them are
considerable, as mentioned in C04 above, and there are difficulties in classifying
them correctly. To solve this problem, the system call processor goes through
the following steps.

From the extracted system call logs, we extract the system call logs of the
app PID to be analysed and the child process that occurred in the app. Then, to
extract the system call of the actual malicious behavior, we defined the parameter
according to the system call function as shown in Table 2 and extracted the
system call containing the parameter.

Table 2. Filtering System Call Parameter List

Functions System Call Parameters
openat() base.apk, /storage/emulated/0, /data/user/0, /sdcard

Version 7 wrtiev()
onCreate, onDestroy, onResume, LAUNCH_ACTIVITY, han-
dlePauseActivity, destroy, handleRelaunchActivity, perform-
Pause

Version 9 wrtiev()
MAIN_ACTIVITY, performCreate, performPause, perform-
RestartActivity, performDestroy, handleStartActivity, RE-
SUME_ACITIVTY, apache

write() <?XML, getaddrinfo, Timeout, http, telnet
clone() !zygote
mkdirat() /storage/emulated/0, /data/user/0, /sdcard
renameat() /storage/emulated/0, /data/user/0, /sdcard
connect() AF_INET, AF_INET6
pread64() table
socket() !PF_LOCAL
recvmsg() !-1
recvfrom() !72, !232

To apply the extracted system call logs to the DTW algorithm, we mapped
each function to an integer as shown in Table 3

Based on the above process, the final extracted system call log is much smaller
in size than the full system call log, including ‘zygote’, and contains only mali-
cious behavior due to noise removal. The data was reduced from a maximum of
140 MB to a minimum of 41 KB.

The 26th World Conference on Information Security Applications

-167-



8 J. Choi Author et al.

Table 4. An Environment for Framework

Environment Environment Spec
Host OS Ubuntu 64bit 22.04
Guest OS Android-x86-11.0, Android-x86-9.0, Android-x86-7.1
CPU Intel(R) Core i7-13700KF
Memory DDR5 32GB

Table 5. Adware DTW with Sample1-5

Family sample1 sample2 sample3 sample4 sample5
droidkungfu-1 999.0 157.8 999.0 999.0 406.1
droidkungfu-2 999.0 999.0 999.0 999.0 999.0
fakerun 156.2 999.0 999.0 999.0 999.0
gappusin 999.0 999.0 67.3 72.7 999.0
gingermaster 999.0 377.3 999.0 999.0 0.0
ginmaster 999.0 999.0 8.3 19.1 999.0
iadpush 999.0 999.0 55.3 56.4 999.0
ksapp 999.0 999.0 46.0 50.4 999.0
morepaks 999.0 999.0 38.1 41.0 999.0
nandrobox 999.0 999.0 999.0 999.0 999.0
plankton 999.0 101.4 999.0 999.0 383.5
utchi 999.0 999.0 21.9 10.6 999.0
wapsx 999.0 999.0 999.0 999.0 999.0
waps 999.0 125.5 999.0 999.0 392.6
youmi 999.0 999.0 32.3 35.7 999.0

Table 6. Exploit DTW with Sample6

Family sample7
gingerbreak 0.0
lotoor 999.0

Title Suppressed Due to Excessive Length 7

Table 3. System Call Functions to Integer for DTW Algorithm

System Call Function Integer System Call Function Integer
clone() 1 recv() 19
execve() 2 recvfrom() 20
fork() 3 recvmsg() 21
getuid() 4 rename() 22
getuid32() 5 renameat() 23
accept() 6 rmdir() 24
geteuid() 7 send() 25
geteuid32() 8 sendto() 26
accept() 9 sendmsg() 27
connect() 10 setsockopt() 28
getsockopt() 11 socket() 29
mkdir() 12 stat() 30
mkdirat() 13 unlink() 31
open() 14 unlinkat() 32
openat() 15 vfork() 33
pread64() 16 write() 34
read() 17 writev() 35
readlinkat() 18

3.4 Similarity Calculator

To evaluate the similarity using the final extracted data, we used the DTW
algorithm to evaluate the similarity. DTW algorithm is useful for evaluating the
similarity of time series data regardless of the difference in data length through
time base correction. In addition to the DTW algorithm, we also used Cosine
Vector distance similarity and the SBD (Shape-based distance) algorithm, but
the classification was not correct, so we finally evaluated the similarity with the
DTW algorithm.

Before applying the DTW algorithm, the converted sequence logs extracted
the maximum and minimum lengths within each type to select the maximum
and max ratio values according to the distance difference. Even within the same
family, we added a correction for the absolute length difference by calculating
the case where the code changed according to the production time and adopted
a new attack method.

Finally, the DTW algorithm was used to measure the distance value of each
family within each type and normalise it to extract it.

4 Classification and Evaluation

This section details the classification results for the AndroZoo dataset [9] using
our framework. We analyzed 282 samples with a VirusTotal Score over 30, di-
vided into Adware (14 families), Exploit (2 families), and Trojan (39 families).
The experimental setup is described in Table 4.

WISA 2025

-168-



8 J. Choi Author et al.

Table 4. An Environment for Framework

Environment Environment Spec
Host OS Ubuntu 64bit 22.04
Guest OS Android-x86-11.0, Android-x86-9.0, Android-x86-7.1
CPU Intel(R) Core i7-13700KF
Memory DDR5 32GB

Table 5. Adware DTW with Sample1-5

Family sample1 sample2 sample3 sample4 sample5
droidkungfu-1 999.0 157.8 999.0 999.0 406.1
droidkungfu-2 999.0 999.0 999.0 999.0 999.0
fakerun 156.2 999.0 999.0 999.0 999.0
gappusin 999.0 999.0 67.3 72.7 999.0
gingermaster 999.0 377.3 999.0 999.0 0.0
ginmaster 999.0 999.0 8.3 19.1 999.0
iadpush 999.0 999.0 55.3 56.4 999.0
ksapp 999.0 999.0 46.0 50.4 999.0
morepaks 999.0 999.0 38.1 41.0 999.0
nandrobox 999.0 999.0 999.0 999.0 999.0
plankton 999.0 101.4 999.0 999.0 383.5
utchi 999.0 999.0 21.9 10.6 999.0
wapsx 999.0 999.0 999.0 999.0 999.0
waps 999.0 125.5 999.0 999.0 392.6
youmi 999.0 999.0 32.3 35.7 999.0

Table 6. Exploit DTW with Sample6

Family sample7
gingerbreak 0.0
lotoor 999.0

The 26th World Conference on Information Security Applications

-169-



10 J. Choi Author et al.

Table 7. Trojan DTW with Sample7-10

Family sample7 sample8 sample9 sample10
adrd 0.0 999.0 999.0 42.6
andcom 65.6 999.0 999.0 56.2
andup 999.0 69.7 61.0 999.0
artemis 999.0 65.9 62.5 999.0
ddlight 999.0 43.7 55.8 999.0
dougalek 63.9 999.0 999.0 6.4
fakedoc 999.0 72.2 57.2 999.0
fakelogo 42.5 999.0 999.0 22.0
fakerun 999.0 110.5 999.0 999.0
gamex 999.0 74.0 65.2 999.0
geinimi 33.0 999.0 999.0 34.7
gingermaster 999.0 999.0 999.0 999.0
ginmaster 999.0 77.7 76.5 999.0
golddream 999.0 109.1 91.3 999.0
gopf 50.1 999.0 999.0 999.0
iconosys 999.0 55.1 61.7 999.0
jifake 33.0 999.0 999.0 22.0
jsmshider 64.4 999.0 999.0 999.0
kmin 42.6 999.0 999.0 0.0
ksapp 999.0 78.4 63.7 999.0
lovetrap 999.0 96.1 89.5 999.0
morepaks 41.7 999.0 999.0 23.4
nandrobox 999.0 61.2 31.3 999.0
opfake 50.8 999.0 999.0 39.2
pjapps-1 999.0 999.0 80.1 999.0
pjapps-2 54.7 999.0 999.0 44.2
placms 32.5 999.0 999.0 21.1
ramnit 999.0 80.1 999.0 999.0
roguesppush 85.1 999.0 999.0 999.0
rufraud 59.8 999.0 999.0 17.4
smcc 999.0 82.9 60.9 999.0
smszombie 81.3 999.0 113.7 999.0
stiniter 26.9 999.0 999.0 33.5
uuserv-1 999.0 54.3 59.9 999.0
uuserv-2 77.1 999.0 82.6 999.0
vdloader 999.0 99.9 999.0 999.0
waps 50.9 999.0 999.0 28.0
winge 48.3 999.0 999.0 20.8
yzhc 33.0 999.0 999.0 22.0
zitmo 46.2 999.0 999.0 21.1
zsone 47.3 999.0 999.0 20.6

Title Suppressed Due to Excessive Length 9

4.1 DTW Distance by Type

Proceed to extract the DTW Distance by malicious app type. At this time, rep-
resentative values were extracted to create data within the same family. This
process took about 20 times more time compared to the unfiltered data. The
process of calculating DTW distance values using the filtered data in this ex-
periment took about an hour. After extraction, the data that was labelled as
‘family-n’ was above to distinguish the different sequence patterns by version
within the same family.

For example, in the case of the ‘droidkungfu-1’, ‘droidkungfu-2’ family of
adware, depending on the version, the way of showing advertisements is divided
into advertisement output through WebView and advertisement output through
video output. In the case of Trojan type, it is divided into the case of sending
user value (such as Gmail ID, phone number, phone model) to the C2 server
after executing the malicious app and the case of send user input value to the
C2 server by touching the button after receiving all user input value.

The above distinction was made to recognise cases where malicious behavior
within the same family is different.

4.2 Classification Result

For evaluation, we randomly extracted 10 sequence logs from all data sets and
compared the distance using DTW algorithm with the sequence logs of each
family. We assumed that the same family within the same type would show the
same sequence behavior across versions. We conducted the experiment based on
the hypothesis that ‘malicious app families can be classified by comparing their
similarity’, and the final results are shown in Tables 5, 6, and 7.

At the data in Tables 5, 6, 7, for each family, there is a family that has the
minimum number of distance. This means that sequence log belongs to that
family. we compare the classified result with the labelled result to confirm that
it belongs to the actual family. The data is different from the reference sequence
logs, and we verified that the correct sequence logs can be classified into families.

4.3 Limitation

In our proposed study, the sequence logs generated by the framework were finally
evaluated for similarity using the DTW algorithm. The dataset is relatively small
to train ML (Machine Learning) and DL (Deep Learning) models, so we did not
extend it to ML and DL. In addition, in the case of the interaction module,
the process of verifying whether each data is entered correctly is based on the
screencap, and if the data is entered, it is considered to be entered correctly.
However, if the attacker did not write logic for input value validation in the
input box, incorrect values may be recognized as correct values. As such, we
think that interaction processing requires more accurate interaction processing
than just view tree, screencap verification, and image comparison.

WISA 2025

-170-



10 J. Choi Author et al.

Table 7. Trojan DTW with Sample7-10

Family sample7 sample8 sample9 sample10
adrd 0.0 999.0 999.0 42.6
andcom 65.6 999.0 999.0 56.2
andup 999.0 69.7 61.0 999.0
artemis 999.0 65.9 62.5 999.0
ddlight 999.0 43.7 55.8 999.0
dougalek 63.9 999.0 999.0 6.4
fakedoc 999.0 72.2 57.2 999.0
fakelogo 42.5 999.0 999.0 22.0
fakerun 999.0 110.5 999.0 999.0
gamex 999.0 74.0 65.2 999.0
geinimi 33.0 999.0 999.0 34.7
gingermaster 999.0 999.0 999.0 999.0
ginmaster 999.0 77.7 76.5 999.0
golddream 999.0 109.1 91.3 999.0
gopf 50.1 999.0 999.0 999.0
iconosys 999.0 55.1 61.7 999.0
jifake 33.0 999.0 999.0 22.0
jsmshider 64.4 999.0 999.0 999.0
kmin 42.6 999.0 999.0 0.0
ksapp 999.0 78.4 63.7 999.0
lovetrap 999.0 96.1 89.5 999.0
morepaks 41.7 999.0 999.0 23.4
nandrobox 999.0 61.2 31.3 999.0
opfake 50.8 999.0 999.0 39.2
pjapps-1 999.0 999.0 80.1 999.0
pjapps-2 54.7 999.0 999.0 44.2
placms 32.5 999.0 999.0 21.1
ramnit 999.0 80.1 999.0 999.0
roguesppush 85.1 999.0 999.0 999.0
rufraud 59.8 999.0 999.0 17.4
smcc 999.0 82.9 60.9 999.0
smszombie 81.3 999.0 113.7 999.0
stiniter 26.9 999.0 999.0 33.5
uuserv-1 999.0 54.3 59.9 999.0
uuserv-2 77.1 999.0 82.6 999.0
vdloader 999.0 99.9 999.0 999.0
waps 50.9 999.0 999.0 28.0
winge 48.3 999.0 999.0 20.8
yzhc 33.0 999.0 999.0 22.0
zitmo 46.2 999.0 999.0 21.1
zsone 47.3 999.0 999.0 20.6

The 26th World Conference on Information Security Applications

-171-



12 J. Choi Author et al.

8. dtmilano, https://github.com/dtmilano/AndroidViewClient, last accessed 2025/06
/27

9. Allix, K., Bissyandé, T.F., Klein, J., Traon, Y.L.: AndroZoo: Collecting millions of
Android apps for the research community. In: 2016 IEEE/ACM 13th Working Con-
ference on Mining Software Repositories (MSR), pp. 468–471. IEEE, May (2016).
https://doi.org/10.1109/MSR.2016.061

Title Suppressed Due to Excessive Length 11

5 Conclusion

In this paper, we propose a framework to extract more accurate system calls by
performing the attacker’s intended interaction with malicious apps, pre-process
and convert the system calls to generate sequence logs, and classify malicious
app families based on them. Using the proposed framework, we verified that 14,
2, and 39 families of adware, exploit, and trojan types show the same sequence
patterns. We also tested the DTW algorithm on 10 malicious apps based on the
sequence logs to show that it is possible to classify them correctly. This shows
that it is possible to classify malicious app families through system calls extracted
through an accurate interaction process rather than interaction processing based
on random events.

To date, system call logs have been proposed as a key feature in malicious
app detection and classification research using various dynamic and hybrid ana-
lytics. Most of the proposed methods for extracting system calls in these studies
use ‘monkey’ tools, which simulate interactions by generating events based on
randomness. This makes it difficult for the attacker to perform their intended be-
havior. If a system call is extracted based on the interaction simulation method
used in this framework, it is expected that it can be utilized as a better feature.

Acknowledgments. This work was supported by the Institute of Information & Com-
munications Technology Planning & Evaluation (IITP) (2022-11220701, 40%), and the
National Research Foundation of Korea (NRF) grant funded by the Korean Govern-
ment (Project No. RS2023-00208460, 60%).

References

1. Kaspersky, https://securelist.com/it-threat-evolution-q1-2024-mobile-statistics/112
750/, last accessed 2025/06/27

2. McAfee, https://www.mcafee.com/blogs/other-blogs/mcafee-labs/new-android-ma
lware-campaigns-evading-detection-using-cross-platform-framework-net-maui/, last
accessed 2025/06/27

3. Threatfabric, https://www.threatfabric.com/blogs/exposing-crocodilus-new-device
-takeover-malware-targeting-android-devices, last accessed 2025/06/27

4. SecurityWeek, https://www.securityweek.com/droidbot-android-trojan-targets-ban
king-cryptocurrency-applications/, last accessed 2025/06/27

5. Liu, X., Zhang, Y., Duan, Y., Hou, B.: Android Dynamic Malware Detection Method
Based on System Call Sequences. In: 2024 9th International Conference on Intel-
ligent Computing and Signal Processing (ICSP), pp. 275-279. IEEE, Xian, China
(2024). https://doi.org/10.1109/ICSP62122.2024.10744001

6. Chew, C.J.W., Kumar, V., Patros, P., et al.: Real-time system call-based ran-
somware detection. International Journal of Information Security 23, 1839–1858
(2024). https://doi.org/10.1007/s10207-024-00819-x

7. Nasser, A.R., Hasan, A.M., Humaidi, A.J.: DL-AMDet: Deep learning-based mal-
ware detector for Android. Intelligent Systems with Applications 21, 200318 (2024).
https://doi.org/10.1016/j.iswa.2023.200318

WISA 2025

-172-



12 J. Choi Author et al.

8. dtmilano, https://github.com/dtmilano/AndroidViewClient, last accessed 2025/06
/27

9. Allix, K., Bissyandé, T.F., Klein, J., Traon, Y.L.: AndroZoo: Collecting millions of
Android apps for the research community. In: 2016 IEEE/ACM 13th Working Con-
ference on Mining Software Repositories (MSR), pp. 468–471. IEEE, May (2016).
https://doi.org/10.1109/MSR.2016.061

The 26th World Conference on Information Security Applications

-173-




