The 11th International Conference on Next Generation Computing (ICNGC 2025)

Evaluating Proxy-Based Observability Pipelines for
Unmodified Applications

Omar Bin Kasim Bhuian
SysCore Lab,
Sejong University
Seoul, South Korea

Sang-Hoon Choi
SysCore Lab,
Sejong University
Seoul, South Korea

Young-Soo Kim
Electronics and Telecommunications
Research Institute,

Seoul, South Korea

omarbinkasimsefat@gmail.com ¢csh0052@gmail.com blitzkrieg@etri.re.kr
Hongri Liu Ki-Woong Park

Weihai Cyberguard Technologies Co.,
Ltd., Weihai 264209, China
livhr@cyberguard.com.cn

Department of Information Security
and Convergence Engineering for
Intelligent Drone, Sejong University

Seoul 05006, South Korea
woongbak(@sejong.ac.kr

Abstract—Modern cloud applications often operate as
unmodified third-party services or legacy code, where direct
instrumentation for observability is infeasible. This paper
investigates whether a minimal black-box observability pipeline
can still provide actionable insights in such contexts. We
compose a standard stack—Envoy proxy, OpenTelemetry
Collector, Prometheus, Jaeger, and Grafana—to collect metrics
and traces without modifying application code, and we apply it
to two representative workloads: a lightweight demo service and
the OWASP Juice Shop. Our evaluation shows that proxy-only
instrumentation captures meaningful demand and latency
signals, that exported spans faithfully reflect traffic bursts
visible in proxy metrics, and that distributed traces reveal end-
to-end error paths (e.g., 404 failures). These findings indicate
that a carefully orchestrated open-source stack can approximate
the diagnostic value of white-box instrumentation. The
contributions of this work are a reproducible pipeline design
and an empirical assessment demonstrating how such a
configuration can reduce mean-time-to-detect (MTTD) failures
and support service-level objective monitoring under synthetic
load scenarios.

Keywords— Observability, Black-box monitoring,
OpenTelemetry, Distributed tracing, Proxy-based
instrumentation.

L INTRODUCTION

Modern distributed applications depend on observability
to remain reliable under unpredictable workloads.
Conventional wisdom has it that the most effective
observability comes from instrumenting source code directly,
exposing internal metrics and traces[1]. Yet many systems run
as unmodified third-party binaries, legacy code, or services
outside a team’s control. In such settings, the challenge is not
to add instrumentation but to construct a pipeline that can
observe behavior externally, in a “black-box” mode, while
still yielding actionable insights[2], [3].

This study addresses that challenge by evaluating a
minimal black-box observability stack composed of widely
used open-source components—Envoy, the OpenTelemetry
Collector, Prometheus, Jaeger, and Grafana—and applying it
to two test workloads: a lightweight demo application and the
OWASP Juice Shop. The design deliberately avoids code
changes, instead leveraging a proxy for metrics and span
generation, a collector for export, and time-series and tracing

backends for analysis. The central question is not whether
observability is possible in theory, but whether proxy-based
signals and traces provide sufficient fidelity to diagnose
performance bottlenecks and error conditions in practice.

We focus on this particular combination of tools not
because they are new, but because they represent the de facto
standard in modern observability practice. Our goal is to show
how they can be orchestrated into a unified pipeline when
application code cannot be modified, addressing a practical
gap in current deployments. Although each tool is popular in
isolation, it is not obvious that they suffice together to provide
end-to-end visibility in a purely black-box setting. In this
work, we demonstrate the viability of such a composition and
critically assess its limitations.

Guided by this motivation, our study is structured around
three central research questions. First, we ask whether it is
possible to obtain actionable visibility for unmodified services
using only a gateway or sidecar proxy. Second, we explore
whether proxy-level metrics, such as request rate and p95
latency, meaningfully correlate with exported spans and
distributed traces. Finally, we consider what operational
benefits, particularly in terms of reducing mean-time-to-detect
(MTTD) and mean-time-to-recover (MTTR)—can be realized
through this pipeline.

Through these questions, the paper contributes in several
ways. We design and deploy a reproducible, black-box
observability pipeline using widely adopted open-source
tools, demonstrating how they can be combined without
requiring any modifications to application code. We then
examine this pipeline under controlled and realistic
workloads, showing how proxy-based metrics align with
trace-level signals. From this examination, we analyze the
operational impact of such a pipeline, highlighting its ability
to accelerate incident detection and diagnosis in contexts
where white-box instrumentation is unavailable. Finally, we
talk about the limits and future work direction, putting proxy-
based observability as a useful tool that makes it easier to keep
an eye on old or third-party systems.

mailto:omarbinkasimsefat@gmail.com
mailto:liuhr@cyberguard.com.cn
mailto:csh0052@gmail.com
mailto:woongbak@sejong.ac.kr
mailto:blitzkrieg@etri.re.kr

II. BACKGROUND AND RELATED WORK

A. Background

Efforts to manage modern distributed systems have
evolved from monitoring toward richer observability.
Traditional monitoring captures metrics like CPU, memory, or
uptime, but lacks insight into why requests succeed or fail.
Observability is often described as going beyond traditional
monitoring. Rather than only reporting what a system is doing,
it gives engineers the means to ask why a particular behavior
occurs. Li et al. (2022)[4] found that many organizations
maintain tracing and analysis pipelines, but in real-practice
they still balanced detail against system overhead and
visibility.

Another issue comes in distinguishing white-box from
black-box instrumentation. White-box methods assume that
developers can change the application and add telemetry code.
Black-box methods, on the other hand, treat the system as a
black box and use sidecars or proxies instead. Research on
service meshes, like Sidecars on the Central Lane [5] has
shown that proxies improve observability but also add
measurable latency and resource overhead.

At the same time, a number of open-source projects have
become the backbone of observability practice. Prometheus is
widely used for metrics collection, OpenTelemetry provides a
common framework for traces and metrics, Jaeger acts as a
tracing backend, and Grafana is often deployed as the main
visualization layer. These tools frame the practical
environment in which our study is situated.

B. Related Work

Although most deployments assume some level of
application-side instrumentation, research such as Lee et
al.[6], demonstrates the gains from combining multiple
sources like traces, KPIs, and logs for root cause localization.
Additionally, Thalheim et al.[7], shows that even metrics
reduction and dependency extraction can produce actionable
insights for autoscaling and fault diagnosis.

Beyond these contributions, prior research has also
investigated OpenTelemetry in specialized domains. OBK
Bhuian et al[8] systematically evaluated OTel’s strengths and
limitations under resource-constrained conditions. That study
emphasizes both the flexibility of OTel’s collector
architecture, and the configuration challenges encountered in
heterogeneous deployments. Its findings support the broader
claim that OpenTelemetry can adapt across diverse
environments, a perspective directly aligned with the black-
box pipeline explored in this work.

Despite these advances, fewer studies explore whether
proxy-only black-box pipelines—without modifying
application code are good enough for operational goals like
latency anomaly detection or error path tracing. This gap
motivates our research: to rigorously evaluate a minimal
black-box observability pipeline using only gateway/proxy
instrumentation across Envoy, OTel, Prometheus, Jaeger, and
Grafana.

III. DESIGN OF THE PROXY-CENTRIC OBSERVABILITY
PIPELINE

Our pipeline is organized around a single design objective:
obtain actionable visibility for unmodified services using only

The 11th International Conference on Next Generation Computing (ICNGC 2025)

external vantage points. Figure 1 summarizes a proxy-centric
pipeline designed to expose actionable signals without
modifying application code. Envoy is at the traffic boundary
to observe request/response metadata and surface proxy-level
metrics and spans without changing application code. The
OpenTelemetry (OTel) Collector serves as a protocol-
independent hub that normalizes, batches, and routes
telemetry. Prometheus provides queryable, time-series storage
for metrics and alerting semantics, while Jaeger offers
distributed trace storage and search. Grafana combines both
sources to enable rapid pivots between aggregate signals
(rates, latencies, error codes) and causal context (end-to-end
traces).

This composition is deliberate rather than novel. Each
component is widely used in isolation; our contribution is to
evaluate whether their combination yields sufficient fidelity
for black-box diagnosis. In particular, we ask whether proxy-
observed load and latency signals correspond to spans actually
exported through the collector, and whether trace queries
surface error paths quickly enough to affect mean-time-to-
detect/recover. By structuring the architecture around a proxy
and a neutral collector, we reduce assumptions about language
runtimes or SDK availability, which is precisely the constraint
in legacy and third-party services.

Operationally, the data flow is linear and reproducible.
Requests first traverse Envoy, which records counters,
histograms, and lightweight spans. Metrics are scraped via
Prometheus’s pull model, while spans are pushed to the OTel
Collector and exported to Jaeger. Grafana dashboards then
correlate Envoy’s request dynamics (e.g., RPS, p95 latency)
with Jaeger’s trace queries so that spikes or anomalies visible
at the proxy can be traced to concrete error paths.

A. Component Roles and Interactions

Envoy functions as a transparent, language-agnostic
telemetry point at the edge, exposing request volume, latency
distributions, and status codes. The OTel Collector decouples
telemetry generation from storage backends, enabling
consistent batching and retransmission under load.
Prometheus supplies time-series retention and query
semantics suitable for alerting (e.g., on tail latency or error
ratios). Jaeger indexes distributed traces for causal inspection
of failures and slow paths. Grafana provides a unified
analytical surface to pivot from metrics to traces during
incident triage. We emphasize roles instead of configuration
recipes to keep the focus on the evaluation of what this
composition reveals under black-box constraints.

HTTP Requests l

Exported Spans

Jaeger

“frace Dashboards

Fig. 1. System Architecture Diagram

IV. EXPERIMENTAL SETUP AND METHODOLOGY

A. Deployment Environment

We used Docker Compose to set up the observability
pipeline on a local workstation. The test workloads, Envoy,
the OpenTelemetry Collector, Prometheus, Jaeger, Grafana all
ran in their own containers and were connected by a shared
bridge network. This setup kept the services separate while
still allowing them to communicate through defined endpoints
The OTel Collector was a flexible middle layer that made it
easy to export telemetry. Prometheus gave us a mature metrics
engine, and Jaeger gave us a simple tracing backend. Grafana
was connected to both Prometheus and Jaeger so that all data
could be visualized together.

B. Workloads and Traffic

We used two different workloads for testing. The demo
application generated predictable traffic and provided a
baseline, while OWASP Juice Shop produced more irregular
patterns closer to real usage. To trigger error traces, we
intentionally browsed Juice Shop with invalid requests (e.g.,
bad page paths, failed logins). This gave us both steady
background load and bursts of anomalous traffic, which
helped us to test whether proxy metrics and spans matched.

C. Reproducibility

We fixed component versions to ensure the experiments
could be repeated: Envoy v1.30, OTel Collector v0.135,
Prometheus v2.54, Jaeger v1.54, and Grafana v10.4. The
Docker Compose file included explicit image tags, so that the
same versions would always be used. Besides Docker
Desktop, no extra setup was needed.

D. Design Choices

Envoy was chosen because it can observe request and
response metadata without requiring code changes. The OTel
Collector acted as a flexible middle layer for exporting
telemetry. Prometheus provided a mature metrics engine,
while Jaeger gave us a straightforward tracing backend. Using
both the demo app and Juice Shop allowed us to test the
pipeline in controlled and more realistic conditions.

The 11th International Conference on Next Generation Computing (ICNGC 2025)

E. Metrics and Queries

To evaluate the pipeline, we relied on standard PromQL
queries. These included availability (avg by (job) (up)), request
throughput (rate(envoy_cluster_upstream_rq_total[Sm])),
span export and ingestion rates
(rate(otelcol_exporter_sent spans[5]),rate(otelcol receiver a
ccepted_spans[5]) and tail latancy
(histogram_quantile(0.95,...)).Together, these covered
system availability, request dynamics, span fidelity, and
latency distribution. Later show that these signals lined up
well with the traces observed in Jaeger.

F. Overhead Measurement Methodology

To quantify the performance overhead introduced by the
proxy-based pipeline, we measured CPU, memory, and
latency impacts of Envoy and the OpenTelemetry Collector
during controlled load tests. Using a fixed 5-minute steady-
state window at 20, 40, and 80 RPS, we compared end-to-end
response latency with and without Envoy. Resource usage
was collected via Docker metrics (docker stats) and cross-
validated with node-level counters. These measurements
allow us to estimate the operational footprint of the proxy
pipeline in realistic conditions.

V. EXPERIMENTAL RESULTS AND EVALUATION

Our evaluation demonstrates that a proxy-based
observability pipeline can deliver actionable insights even
when application code remains unmodified.

Prometheus confirmed that all components of the
pipeline—Envoy, the OpenTelemetry Collector, and Jaeger—
remained continuously healthy and in the UP state (Fig. 2).
This indicates that the pipeline can be deployed as a drop-in
layer, extending monitoring coverage to services where
instrumentation is otherwise infeasible.

Envoy’s upstream request-per-second metrics revealed
clear traffic patterns across workloads (Fig. 3). For Juice
Shop, baseline throughput averaged around 0.4 RPS, with
bursts rising above 0.8 RPS. Concurrently, the OTLP cluster
exhibited smaller but correlated shifts, climbing from ~0.1 to
~0.3 RPS. These workload fluctuations were reflected in the
OTel Collector’s exported spans (Fig. 3), which peaked near
27 spans/sec during the highest traffic window before
returning to baseline. The alignment between proxy metrics
and trace export rates confirms that the pipeline not only
observes demand but also preserves fidelity when translating
traffic into spans.

Al Unheslthy Collapse All a s (R Luacains] Liscar |
envoy (1/1up) (IS
Serspa
Endpoit stave Labels LastScrape Duration Error
uice-prowy 9001 stats/promethecs [T [ivtoncepice ren s e] 22515 ag 795
jaeger (171 up) EETS
serape
Endpoint state Labels Lastscspe Duration Error
joeger 11268 metiics o v svssage 28s0ms
otel collector internal {1/1 up)
seraps
Endpoint State Labels LastSerape Durstion Error
et potel-collectar BEAE metrics m =TTy 1
Py

Fig. 2. Prometheus scrape targets in UP state.

Envoy Upstream RPS by cluster

0
13:05 1310

== d8MO_3pp = juice_:

Fig. 3. Envoy request by cluster

Fig. 4 shows the OTel Collector’s span export rate to
Jaeger. The shape of the curve mirrors the demand bursts seen
in Figure 3: exported spans climb as RPS rises, peak at nearly
30 spans/sec, then fall back to baseline. In other words, tracing
data faithfully reflects traffic bursts first visible at the proxy.
This correlation is essential for operators who want
confidence that traces cover representative workload slices.

Finally, we tested failure scenarios by issuing invalid
requests to the demo application. Jaeger traces (Fig. 5)
captured these failures immediately: a proxy ingress span
showed the inbound request, and a child span from the demo
app returned a 404 error. This end-to-end trace appeared
within seconds, clearly linking the failure path from ingress to
application. Such visibility shortens both mean-time-to-detect
and mean-time-to-recover, since operators can pinpoint the
failing service without sifting through logs or reproducing the
issue.

A. Latency and Resource Overhead

Across the three load levels (20/40/80 RPS), the proxy
introduced a median latency overhead of 3.1-5.8 ms, which
aligns with published Envoy overhead measurements in
microservice settings. CPU utilization increased by 4—7% for
Envoy and 2-—4% for the OpenTelemetry Collector, while
memory consumption remained below 250 MB for the entire
pipeline. These values indicate that the proxy-based approach
introduces only modest overhead that is acceptable for
operational observability in non—performance-critical
environments.

B. Metric—Trace Correlation Analysis

To quantify how well proxy metrics align with exported
spans, we computed Pearson correlation coefficients between
Envoy’s request-per-second (RPS) series and the OTel
Collector’s span export rate. The correlation during Juice
Shop’s mixed workload phase reached r = 0.92, indicating a
strong linear relationship between observed traffic and
corresponding trace volume. Even during burst periods,
correlation remained high (r = 0.87), confirming that span
generation remained consistent with traffic dynamics.

Taken together, these results show that even a minimal,
proxy-centric observability stack provides more than just
surface-level metrics. It offers correlated signals across
metrics and traces, and it surfaces error paths with sufficient
granularity to guide operational response. While it cannot
match the full depth of white-box instrumentation, it provides
a practical and reproducible foundation for observability in
black-box environments.

The 11th International Conference on Next Generation Computing (ICNGC 2025)

VI. DISCUSSION AND IMPACT

Our results show that even a minimal proxy-based
deployment can produce signals that matter for day-to-day
operations. Although observability is often assumed to require
invasive code instrumentation, we find that carefully
composed open-source tools can provide useful visibility
without touching application code. The pipeline proved
capable of showing service health in real time, correlating
bursts in request traffic with exported spans, and surfacing
error paths through distributed traces. This combination gave
operators enough confidence to detect incidents quickly and
trace them to their source, reducing the time spent diagnosing
failures.

Of course, the setup is not without limits. Our evaluation
used a lightweight demo service and the OWASP Juice Shop,
which are simpler than most production systems. Proxy
signals, while informative, remain indirect and sometimes
conflate network and compute delays. And although Docker
Compose allowed for controlled testing, it does not capture the
challenges of scaling across large, heterogeneous
infrastructures. Still, these caveats do not undermine the
central point: proxy-based observability lowers the barrier for
monitoring legacy or third-party systems, offering actionable
insights where white-box methods are unavailable.

OTel Collector Spans Exported/sec

12:15 12:30 12:35 12:40 12:45 12:50 12:55 13:00 13:05 1310
— debug = otlp,

Fig. 4. OTel spans exported per second.

roxy; ingress

September 18 2025, 125121 1005ms 2 2 2

ingress [r— 1005 o

» Toge: prey IS4 F1eB-bO1S-202BTZ it et - GET
Process:

demorspp i

GET /does-not-exist
» Tage: 1 «
» Process: ol forzpnare - ops

Fig. 5. Jaeger trace of a 404 error path

TABLE L RESEARCH QUESTIONS, SUPPORTING EVIDENCE, AND
OPERATIONAL IMPACT.

Research Evidence (from | Operational Impact

Question Results)
RQLI. Prometheus targets | Deploy observability without
Proxy-only | up; Envoy RPS | code changes; lowers setup
visibility visible friction
RQ2. RPS bursts mirror | Confirms trace
Metric- span exports representativeness; supports SLO
trace monitoring
correlation
RQ3. Jaeger trace | Faster MTTD (errors visible
Operational | surfaces 404 error immediately); shorter MTTR
benefits (failure component identified)

VII. CONCLUSION AND FUTURE WORK

This study set out to address a recurring challenge in cloud
operations: how to obtain actionable observability when
applications run as unmodified third-party binaries or legacy
code. We proposed and evaluated a proxy-centric pipeline
built from Envoy, the OpenTelemetry Collector, Prometheus,
Jaeger, and Grafana. Our results demonstrate that this
configuration captures workload dynamics, correlates proxy-
level metrics with exported spans, and surfaces end-to-end
error traces. These contributions show that even without
source-code instrumentation, operators can shorten mean-
time-to-detect and mean-time-to-recover failures.

The pipeline is not a full replacement for white-box
telemetry, but it represents a practical baseline. Future work
will extend this study by testing the approach under fault
injection and scaling scenarios, and by exploring hybrid
models that blend proxy-level data with selective in-process
instrumentation.

Overall, our findings suggest that proxy-centric
observability is not only viable but also operationally valuable
for environments where code modification is impossible,
offering a lightweight yet effective alternative to white-box
telemetry.

ACKNOWLEDGMENT

This work was partly supported by the Institute of
Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Ministry of Science and
ICT (Project No. RS-2024-00438551, 40%);

The National Research Foundation of Korea (NRF) grant
funded by the Korean government (Project No. RS-2023-
00208460, 30%); and the Korea Creative Content Agency
(KOCCA) under the Copyright Technology Global Talent
Development Program (Project No. RS-2025-02221620,
30%).

(1

[2]

[3]

(4]

[3]

[6]

[7]

(8]

The 11th International Conference on Next Generation Computing (ICNGC 2025)

REFERENCES

B. B. R. Ewaschuk, “Google SRE monitoring distributed
system—SRE golden signals,” Google SRE Book. [Online].
Available: https://sre.google/sre-book/monitoring-distributed-
systems/. Accessed: Sep. 18, 2025.

K. Rogers, “Black box vs. white box monitoring: What you
need to know,” DevOps.com. [Online]. Available:
https://devops.com/black-box-vs-white-box-monitoring-what-
you-need-to-know/. Accessed: Sep. 18, 2025.

FAUN.dev, “Monitoring vs observability: What’s the
difference?,” FAUN.dev. [Online]. Available:
http://faun.dev/c/stories/eon01/monitoring-vs-observability-
whats-the-difference/. Accessed: Sep. 18, 2025.

B. Li, et al., “Enjoy your observability: An industrial survey of
microservice tracing and analysis,” Empirical Software
Engineering, vol. 27, no. 1, pp. 1-28, Jan. 2022, doi:
10.1007/s10664-021-10063-9.

P. Sahu, L. Zheng, M. Bueso, S. Wei, N. J. Yadwadkar, and M.
Tiwari, “Sidecars on the central lane: Impact of network
proxies on microservices,” arXiv preprint
arXiv:2306.15792v2. [Online]. Available:
https://arxiv.org/abs/2306.15792v2. Accessed: Sep. 18, 2025.

C. Lee, T. Yang, Z. Chen, Y. Su, and M. R. Lyu, “Eadro: An
end-to-end troubleshooting framework for microservices on
multi-source data,” arXiv preprint arXiv:2302.05092v1.
[Online]. Available: https://arxiv.org/abs/2302.05092v1.
Accessed: Sep. 18, 2025.

“Sieve,” in Proc. 18th ACM/IFIP/USENIX Middleware Conf.,
2017. [Online]. Available:
https://dl.acm.org/doi/10.1145/3135974.3135977. Accessed:
Sep. 18, 2025.

O. B. K. Bhuian and K.-W. Park, “Deep dive into
OpenTelemetry for evaluation of their observability in edge
computing environment,” in Proc. 10th Int. Conf. Next
Generation Computing (ICNGC 2024), 2024, pp. 161-164.
[Online]. Available:
http://syscore.sejong.ac.kr/~woongbak/publications/C92.pdf.
Accessed: Sep. 18, 2025.

