The 11th International Conference on Next Generation Computing (ICNGC 2025)

Scaling OpenTelemetry on GKE Autopilot:
Throughput, Backpressure, and Latency 1n a Real
Cloud Deployment

Omar Bin Kasim Bhuian
SysCore Lab,
Sejong University
Seoul, South Korea

omarbinkasimsefat@gmail.com

Hongri Liu
Weihai Cyberguard Technologies Co.,
Ltd., Weihai 264209, China
liuhr@cyberguard.com.cn

Sang-Hoon Choi
SysCore Lab,
Sejong University
Seoul, South Korea

csh0052@gmail.com

Young-Soo Kim
Electronics and Telecommunications
Research Institute,

Seoul, South Korea
blitzkrieg@etri.re.kr

Ki-Woong Park
Department of Information Security
and Convergence Engineering for
Intelligent Drone, Sejong University

Seoul 05006, South Korea
woongbak@sejong.ac.kr

Abstract— In this study we evaluate a production-style
OpenTelemetry (OTel) pipeline on Google Kubernetes Engine
(GKE) Autopilot under a sustained trace workload,
instrumenting end-to-end ingestion—processing—export and
scraping Collector self-telemetry and spanmetrics with
Prometheus over a 30-minute run. The Collector averaged 573
spans/s accepted and 561 spans/s exported, yielding 97.84%
within-window export efficiency and peaking near 924 spans/s.
A brief saturation interval (150 s) produced a queue peak of
6.38, short drops (peak 3.49 spans/s, ~358 total), and p95
inflation to 116 ms; median latency remained low (p50 = 12.9
ms) and recovered after pressure subsided. Resource footprint
was modest (<0.36 CPU cores, 0.21 GiB memory, sub-Mbps
network), indicating headroom. We document integration
pitfalls (OTLP endpoint/protocol) and show that queue growth
and exporter errors anticipate p95 tails. The study contributes
reproducible methodology, quantitative evidence of cloud-scale
OTel scalability, and operator guidance for capacity planning
and alert design.

Keywords— OpenTelemetry (OTel), Distributed tracing,
Cloud observability, Kubernetes (GKE Autopilot)

1. INTRODUCTION AND BACKGROUND

Modern microservice platforms require high-fidelity
observability to localize latency regressions and make
defensible capacity decisions. OpenTelemetry (OTel) has
become the vendor-neutral standard for generating and
transporting traces, metrics, and logs via stable APIs/SDKs
and the OpenTelemetry Protocol (OTLP). The OTel Collector
implements configurable “receive — process — export”
pipelines that decouple application instrumentation from the
export path, enabling multi-backend delivery without per-
agent lock-in[1].

Operational metrics in this study are scraped with
Prometheus, who’s dimensional, label-rich time-series model
and PromQL make it a de-facto substrate for aggregation and
alerting in cloud-native systems[2]. We deploy in Google

Kubernetes Engine (GKE) Autopilot, a managed mode in
which Google provisions and scales the node layer and applies
opinionated hardening—an environment representative of
production clusters where teams focus on workload
configuration rather than infrastructure plumbing[3].

At scale, tail latency rather than the mean governs user
experience: delays that are rare at small scale can dominate
perceived performance as fan-out grows. Dean and Barroso
formalized this “tail at scale” effect and argued for tail-tolerant
techniques that manage variability before it breaches service
SLOs. This motivates our emphasis on p50/p95 behavior
alongside throughput and backpressure signals[4].

Beyond foundational systems, a growing body of work
studies how to extract actionable insights or reduce the cost of
telemetry at scale. Thalheim et al.[S] propose Sieve, a
framework that reduces monitored metrics by 10-100x and
infers dependencies between microservices using Granger
causality, enabling autoscaling and root-cause analysis while
significantly lowering CPU, storage, and network overhead.
Zhang et al. introduce Hindsight, a retroactive sampling
system that records detailed trace data locally and only persists
it when symptomatic edge cases (e.g., high tail latency, errors,
bottlenecked queues) are detected, thereby scaling to millions
of requests per second with nanosecond-level overhead[6].

Building on this context, Omar examined OTel in
edge/hybrid environments and reported integration
sensitivities that affect end-to-end observability (e.g.,
protocol/endpoint configuration and resource constraints).
The present study complements that line of inquiry by
profiling a cloud-hosted OTel pipeline on GKE Autopilot
under sustained load, with a focus on how Collector telemetry
(throughput, queues, drops, exporter errors) relates to tail
latency in practice[7].

Finally, our framing aligns with upstream guidance: the
OTel specification and Collector architecture describe stable

mailto:omarbinkasimsefat@gmail.com
mailto:liuhr@cyberguard.com.cn
mailto:csh0052@gmail.com
mailto:woongbak@sejong.ac.kr
mailto:blitzkrieg@etri.re.kr

signals (traces/metrics/logs), pipeline components, and OTLP
transport semantics that we rely on to structure measurements
and interpret backpressure. Using Prometheus’ scrape model
keeps the analysis reproducible and independent of any
proprietary backend[8].

Beyond evaluating raw scalability, this study contributes
to a broader research agenda on cloud observability: whether
managed Kubernetes environments introduce unique
constraints on telemetry pipelines, and how Collector-level
signals (queue growth, exporter errors) can be used to
anticipate tail latency before it breaches SLO thresholds. By
situating our work within prior research on tracing system
scalability and “tail at scale” effects, we show how OTel
behaves in a real-cloud environment and how our findings
complement and extend previous approaches.

II. SYSTEM AND METHODOLOGY

We deploy a production-style OpenTelemetry (OTel)
pipeline on Google Kubernetes Engine (GKE) Autopilot in the
asia-northeast3 region. The system consists of an OTel
Collector configured for OTLP over HTTP on port 4318,
Prometheus scraping the Collector’s self-telemetry and
spanmetrics, and a sustained trace generator
(telemetrygen/tracegen). The observation window is 30
minutes sampled every 15 seconds, with timestamps in UTC.

Prometheus scrapes a fixed set of signals: accepted and
exported spans per second, p5S0 and p95 latency (seconds), the
Collector’s internal queue size, dropped spans per second,
exporter errors per second, and resource metrics (CPU cores,
memory bytes, and network RX/TX bytes per second). Raw
time series (CSV) and figures (PNG/PDF) are exported for
offline analysis and reproducibility.

The analysis focuses on throughput, tail latency, and
backpressure using simple, auditable computations from the
time series. For throughput, we summarize means, peaks, and
totals over the window and define export efficiency over the
same window T as the ratio of exported to accepted trace
volume, computed directly from the sampled rates:

n — ZtET /‘{exp (t)
P ZtET Aacc (t) '

where A,c.(t) and ey, (t) denote accepted and exported
spans per second at time t (15-second cadence). To
characterize backpressure, we use the Collector’s queue size
Q(t) and mark saturation when Q(t) > 3; the corresponding
duration and temporal co-movement with p95 latency are
reported in the Results section. We also examine short lead—
lag relationships between Q(t) and p95 to assess whether
queue growth precedes tail inflation. Endpoint/protocol
configuration (OTLP/HTTP on :4318) and the scrape
cadence are fixed for all runs to ensure comparability and
reproducibility.

M

III. RESULTS

A. Throughput and Export Efficiency

Over the 30-minute window (UTC 09:25:48-09:55:48;
At=15 s, N=121), the Collector admitted a mean of 573.2
spans/s and exported 560.8 spans/s; both streams reached a
common peak of 923.7 spans/s during the step load. The

The 11th International Conference on Next Generation Computing (ICNGC 2025)

Trace Throughput

900 | —— Accepted spans/sec
800 4 Exported spans/sec

MW./M ﬂ'

spans/sec
w o

(=3

o

=3
=]

400 4 Vi
300 /\,’\N\/AN

v

29 09:25 29 09:30 29 09:35 29 09:40

Time (UTC)

29 09:45 29 09:50 29 09:55

Fig. 1. Trace Throughput (Accepted vs, Exported)

within-window export efficiency defined in Eq. (1) is
97.84%, and a five-minute moving average of pointwise
efficiency maintained a high level (mean 97.53%) with a brief
minimum of 90.63% during the ramp. Volume accounting
shows a small accepted—exported gap consistent with window
boundary and scrape alignment effects; explicit drop counters
indicate only short-lived loss. Exported throughput tracks
accepted throughput closely outside the short saturation
interval and return to baseline without drift.

Accepted and exported spans per second for the
OpenTelemetry Collector on GKE Autopilot over the 30-
minute window (UTC; 15-s cadence). Exported throughput
closely tracks accepted throughput except during a brief
saturation interval, within-window export efficiency is
computed by Eq. (1).

B. Latency and Tail Behavior

The latency profile derived from spanmetrics shows stable
central tendency and transient tails. Median latency p50
averages 0.0129 s (peak 0.0255 s), while p95 averages 0.0513
s with a short excursion to 0.1157 s during the load ramp, after
which it returns to baseline. Tail dynamics co-vary with
backpressure: the Pearson correlation between queue size and
p95 at the same timestamp is r = 0.554; allowing a +15 s shift
(queue leading p95 by one step) increases the correlation to r
=0.575. A descriptive linear model fitted to the samples,

95 = a + B Q¢ + Y eppopo, + 8 Agyy e + €t

yields R2~ 0.31 with B = 5.65x1073 s per queue unit (=5.7
ms higher p95 per additional unit of @), summarizing the
association between backpressure and tail inflation (not a
causal claim).

End-to-end latency percentiles from spanmetrics across
the same window. Median latency (p50) remains stable,
while p95 exhibits a short excursion coincident with
backpressure; tails recover once the queue drains.

C. Ackpressure and Drops

The Collector’s internal queue remains low for most of the
run (median 0.28) but peaks at 6.38 during a short saturated
period. Using the threshold Q(t) > 3, the detected saturation
interval spans 150 s (09:39:33-09:42:03 UTC). During this
interval, explicit dropped spans/s reach 3.49, and integrating
dropped_spans_per_sec over the full window yields ~358
spans. Exporter errors occur at a low background rate (mean
0.021/s, peak 0.8/s) and align temporally with the saturation
window. Outside this period, queue size returns to baseline
and drops cease, indicating rapid recovery of the pipeline.

Latency Profile

0.12
11 — p50 latency (s)
0.10 1 I p95 latency (s)
"
0.08 1 1

seconds
o
o
>

o
o
s

0021 \/V\/VJ\/\/\N/V\/\A/VV\M/\/V\/\,\WAI\I\/\W

2909:25 2909:30 2909:35 2909:40 2909:45 2909:50 29 09:55
Time (UTC)

Fig. 2. Latency Profile (p50 and p95).

Backpressure Indicators

— Queue size
Dropped spans/sec

Wi ad A s

2909:25 2909:30 2909:35 2909:40 290945 2909:50 29 09:55
Time (UTC)

Fig. 3. Backpressure Indicators (Queue Size and Dropped Spans)

Collector internal queue size and dropped spans per
second. A short saturation period (Q(t) > 3) produces a queue
peak and brief drops that align temporally with the p95 spike
in Figure 2; exporter errors (not shown) co-occur in the same

interval.

TABLE L Environment and Headline KPls
Category Value
Cluster / Region GKE Autopilot / asia-northeast3
Window 09:25:48-09:55:48
(UTC) (At=15s; 121 samples)
Accepted / Exported 573.2/560.8 spans/s
(mean)
Accepted / Exported (peak) 923.7/923.7 spans/s
Export efficiency n_exp
— 97.84%
(Eq. (1)) ’
Totals over window 1,031,493 accepted / 1,008,983
(summary CSV) exported spans
Drops (integrated / peak) ~358 spans / 3.49 spans/s
Queue size
(median / peak) 0.28/6.38
Saturation interval
09:39:33-09:42:03 UTC (150 s
Q>3) (1509
p30 latency 0.0129 s/ 0.0255 s
(mean / peak)
P95 latency 0.05135/0.1157 s
(mean / peak)
CPU
(mean / peak) 0.36/0.58 cores
Memory .
(mean / peak) 0.21/0.22 GiB
Network
(mean RX / TX) 0.147/0.292 Mb/s
Exporter errors 0.021/s/0.8/s
(mean / peak)

The 11th International Conference on Next Generation Computing (ICNGC 2025)

D. Resource Footprint

Mean/peak CPU are 0.36/0.58 cores, memory 0.21/0.22
GiB, and average network 0.147/0.292 Mb/s (RX/TX). These
values indicate headroom under the tested load and are
summarized with other KPIs in Table 1.

Cluster context (GKE Autopilot, region, window,
cadence) and summary metrics: accepted/exported throughput
(means/peaks/totals), export efficiency (Eq. (1)), queue
statistics, latency (p50/p95), drops, exporter errors, and
resource footprint (CPU, memory, network).

IV. DISCUSSION

We evaluated a production-style OpenTelemetry (OTel)
pipeline on GKE Autopilot under a sustained trace load and
observed that exported throughput closely tracked accepted
throughput, with deviations confined to a short saturation
interval. We interpret this pattern as evidence that—in this
configuration—scalability is governed primarily by exporter
and queue policy rather than raw CPU or memory
provisioning. We further examined the relationship between
backpressure and tail latency: queue growth co-varied with
p95 inflation and brief drops, and both subsided once pressure
abated. This supports an operational focus on backpressure as
the leading indicator of user-visible latency.

We operationalized these findings into concrete controls.
First, we recommend alerting on the rate of change of the
Collector queue (AQ/At) and enforcing a rolling export-
efficiency floor (as defined by Eq. (1)) alongside a p95 target;
together, these detect incipient saturation while recovery is
still possible via batching/backoff. Second, we found that
endpoint/protocol misconfiguration (e.g., OTLP/HTTP vs.
OTLP/gRPC) manifests as exporter errors and transient
backlog; we therefore advocate a pre-flight verification step
(receiver protocol, exporter health, synthetic canary). Finally,
we distinguish windowed efficiency from explicit loss:
accepted—exported differences over finite windows reflect
both backlog dynamics and scrape alignment, whereas drop
counters report irrecoverable loss. Reporting both
perspectives yields actionable guidance on when to increase
exporter concurrency, adjust batching, or shard collectors.

The findings in this study reflect a specific configuration:
a single OTel Collector instance on GKE Autopilot, a
homogeneous regional cluster, and a controlled, trace
workload. While this environment models real production
clusters, larger deployments with heterogeneous node pools,
multi-region routing, or spike-driven workloads may exhibit
different queue dynamics. Workloads with high cardinality,
tail-heavy request patterns, or multi-collector routing may
push exporter bottlenecks earlier. Therefore, while the results
are indicative of OTel behavior under realistic conditions, they
should be interpreted as lower-bound performance rather than
universal guarantees. Extending this evaluation across diverse
cluster sizes, workload mixes, and network conditions
represent an important direction for future work.

V. CONCLUSION AND FUTURE WORK

We evaluated a production-style OpenTelemetry (OTel)
pipeline on GKE Autopilot under sustained load, measuring
end-to-end throughput, tail latency, and backpressure.
Exported throughput closely tracked accepted throughput; a

brief saturated interval produced queue growth, transient
drops, and p95 inflation that subsequently recovered. These
findings indicate that, in this configuration, scalability is
governed mainly by exporter/queue policy rather than raw
CPU or memory, and that backpressure is a reliable leading
indicator of tail behavior. The study meets the stated
objectives: (i) demonstrates scalability in a real cloud setting
(throughput and export efficiency), (i) identifies integration
sensitivities (protocol/endpoint) with observable signatures
(errors, queue, drops), and (iii) provides computational
profiling that links queue dynamics to p95 tails. Limitations
include a controlled workload and a 30-minute window;
heterogeneous, diurnal traffic may surface different behaviors.

Future work: evaluate multi-Collector sharding and
exporter concurrency tuning; assess tail-based sampling and
batching strategies; extend runs to multi-hour horizons and
adverse network conditions; and introduce more realistic
workload mixes to refine capacity guidance.

ACKNOWLEDGMENT

This work was partly supported by the Institute of
Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Ministry of Science and
ICT (Project No. RS-2024-00438551, 30%);

The National Research Foundation of Korea (NRF) grant
funded by the Korean government (Project No. RS-2023-
00208460, 30%); and the Korea Creative Content Agency
(KOCCA) under the Copyright Technology Global Talent

The 11th International Conference on Next Generation Computing (ICNGC 2025)

Development Program (Project No. RS-2025-02221620,
40%).

REFERENCES

“Overview,” accessed Oct. 29, 2025.

Available:

[1] OpenTelemetry,
[Online].
https://opentelemetry.io/docs/specs/otel/overview/

[2] Prometheus, “Overview,” accessed Oct. 29, 2025. [Online].
Available: https:/prometheus.io/docs/introduction/overview/

[3] Google Cloud, “GKE Autopilot overview,” Google Kubernetes
Engine (GKE) Documentation, accessed Oct. 29, 2025.
[Online]. Available: https://docs.cloud.google.com/kubernetes-
engine/docs/concepts/autopilot-overview?

[4] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM,
vol. 56, no. 2, pp. 74-80, Feb. 2013, doi:
10.1145/2408776.2408794.

[5] J. Thalheim et al., “Sieve: Actionable Insights from Monitored
Metrics in Microservices,” in Proc. Middleware 2017, 2017.
[Online]. Available:
https://arxiv.org/abs/1709.06686

[6] L.Zhang et al., “The Benefit of Hindsight: Tracing Edge-Cases
in Distributed Systems,” 2022. [Online]. Available:
https://arxiv.org/abs/2202.05769

[77 O. B. K. Bhuian and K.-W. Park, “Deep dive into
OpenTelemetry for evaluation of their observability in edge
computing environment,” in Proc. 10th Int. Conf. Next Gener.
Comput. (ICNGC 2024), 2024, pp. 161-164. Accessed: Oct.
29, 2025. [Online]. Available:
http://syscore.sejong.ac.kr/~woongbak/publications/C92.pdf

[8] OpenTelemetry, “Specification status summary,” accessed
Oct. 29, 2025. [Online]. Available:
https://opentelemetry.io/docs/specs/status/

https://opentelemetry.io/docs/specs/otel/overview/
https://prometheus.io/docs/introduction/overview/
https://docs.cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview
https://docs.cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview
https://arxiv.org/abs/1709.06686
http://syscore.sejong.ac.kr/~woongbak/publications/C92.pdf
https://opentelemetry.io/docs/specs/status/

