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Abstract— In this study we evaluate a production-style 

OpenTelemetry (OTel) pipeline on Google Kubernetes Engine 

(GKE) Autopilot under a sustained trace workload, 

instrumenting end-to-end ingestion→processing→export and 

scraping Collector self-telemetry and spanmetrics with 

Prometheus over a 30-minute run. The Collector averaged 573 

spans/s accepted and 561 spans/s exported, yielding 97.84% 

within-window export efficiency and peaking near 924 spans/s. 

A brief saturation interval (150 s) produced a queue peak of 

6.38, short drops (peak 3.49 spans/s, ~358 total), and p95 

inflation to 116 ms; median latency remained low (p50 ≈ 12.9 

ms) and recovered after pressure subsided. Resource footprint 

was modest (≈0.36 CPU cores, 0.21 GiB memory, sub-Mbps 

network), indicating headroom. We document integration 

pitfalls (OTLP endpoint/protocol) and show that queue growth 

and exporter errors anticipate p95 tails. The study contributes 

reproducible methodology, quantitative evidence of cloud-scale 

OTel scalability, and operator guidance for capacity planning 

and alert design. 

Keywords— OpenTelemetry (OTel), Distributed tracing, 

Cloud observability, Kubernetes (GKE Autopilot) 

I. INTRODUCTION AND BACKGROUND 

Modern microservice platforms require high-fidelity 
observability to localize latency regressions and make 
defensible capacity decisions. OpenTelemetry (OTel) has 
become the vendor-neutral standard for generating and 
transporting traces, metrics, and logs via stable APIs/SDKs 
and the OpenTelemetry Protocol (OTLP). The OTel Collector 
implements configurable “receive → process → export” 
pipelines that decouple application instrumentation from the 
export path, enabling multi-backend delivery without per-
agent lock-in[1]. 

Operational metrics in this study are scraped with 
Prometheus, who’s dimensional, label-rich time-series model 
and PromQL make it a de-facto substrate for aggregation and 
alerting in cloud-native systems[2]. We deploy in Google 

Kubernetes Engine (GKE) Autopilot, a managed mode in 
which Google provisions and scales the node layer and applies 
opinionated hardening—an environment representative of 
production clusters where teams focus on workload 
configuration rather than infrastructure plumbing[3].  

At scale, tail latency rather than the mean governs user 
experience: delays that are rare at small scale can dominate 
perceived performance as fan-out grows. Dean and Barroso 
formalized this “tail at scale” effect and argued for tail-tolerant 
techniques that manage variability before it breaches service 
SLOs. This motivates our emphasis on p50/p95 behavior 
alongside throughput and backpressure signals[4]. 

Beyond foundational systems, a growing body of work 
studies how to extract actionable insights or reduce the cost of 
telemetry at scale. Thalheim et al.[5] propose Sieve, a 
framework that reduces monitored metrics by 10–100× and 
infers dependencies between microservices using Granger 
causality, enabling autoscaling and root-cause analysis while 
significantly lowering CPU, storage, and network overhead. 
Zhang et al. introduce Hindsight, a retroactive sampling 
system that records detailed trace data locally and only persists 
it when symptomatic edge cases (e.g., high tail latency, errors, 
bottlenecked queues) are detected, thereby scaling to millions 
of requests per second with nanosecond-level overhead[6]. 

Building on this context, Omar examined OTel in 
edge/hybrid environments and reported integration 
sensitivities that affect end-to-end observability (e.g., 
protocol/endpoint configuration and resource constraints). 
The present study complements that line of inquiry by 
profiling a cloud-hosted OTel pipeline on GKE Autopilot 
under sustained load, with a focus on how Collector telemetry 
(throughput, queues, drops, exporter errors) relates to tail 
latency in practice[7]. 

Finally, our framing aligns with upstream guidance: the 
OTel specification and Collector architecture describe stable 
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signals (traces/metrics/logs), pipeline components, and OTLP 
transport semantics that we rely on to structure measurements 
and interpret backpressure. Using Prometheus’ scrape model 
keeps the analysis reproducible and independent of any 
proprietary backend[8]. 

Beyond evaluating raw scalability, this study contributes 
to a broader research agenda on cloud observability: whether 
managed Kubernetes environments introduce unique 
constraints on telemetry pipelines, and how Collector-level 
signals (queue growth, exporter errors) can be used to 
anticipate tail latency before it breaches SLO thresholds. By 
situating our work within prior research on tracing system 
scalability and “tail at scale” effects, we show how OTel 
behaves in a real-cloud environment and how our findings 
complement and extend previous approaches. 

II. SYSTEM AND METHODOLOGY 

We deploy a production-style OpenTelemetry (OTel) 
pipeline on Google Kubernetes Engine (GKE) Autopilot in the 
asia-northeast3 region. The system consists of an OTel 
Collector configured for OTLP over HTTP on port 4318, 
Prometheus scraping the Collector’s self-telemetry and 
spanmetrics, and a sustained trace generator 
(telemetrygen/tracegen). The observation window is 30 
minutes sampled every 15 seconds, with timestamps in UTC. 

Prometheus scrapes a fixed set of signals: accepted and 
exported spans per second, p50 and p95 latency (seconds), the 
Collector’s internal queue size, dropped spans per second, 
exporter errors per second, and resource metrics (CPU cores, 
memory bytes, and network RX/TX bytes per second). Raw 
time series (CSV) and figures (PNG/PDF) are exported for 
offline analysis and reproducibility. 

The analysis focuses on throughput, tail latency, and 
backpressure using simple, auditable computations from the 
time series. For throughput, we summarize means, peaks, and 
totals over the window and define export efficiency over the 
same window 𝒯  as the ratio of exported to accepted trace 
volume, computed directly from the sampled rates: 

𝜂exp   =  
∑ 𝜆exp𝑡∈𝒯 (𝑡)

∑ 𝜆acc𝑡∈𝒯 (𝑡)
 ,         (1) 

where 𝜆acc(𝑡)  and 𝜆exp(𝑡)  denote accepted and exported 

spans per second at time 𝑡  (15-second cadence). To 

characterize backpressure, we use the Collector’s queue size 

𝑄(𝑡) and mark saturation when 𝑄(𝑡) > 3; the corresponding 

duration and temporal co-movement with p95 latency are 

reported in the Results section. We also examine short lead–

lag relationships between 𝑄(𝑡)  and p95 to assess whether 

queue growth precedes tail inflation. Endpoint/protocol 

configuration (OTLP/HTTP on :4318) and the scrape 

cadence are fixed for all runs to ensure comparability and 

reproducibility. 

III. RESULTS 

A. Throughput and Export Efficiency 

Over the 30-minute window (UTC 09:25:48–09:55:48; 
Δt=15 s, N=121), the Collector admitted a mean of 573.2 
spans/s and exported 560.8 spans/s; both streams reached a 
common peak of 923.7 spans/s during the step load. The  

 

Fig. 1. Trace Throughput (Accepted vs, Exported) 

within-window export efficiency defined in Eq. (1) is 
97.84%, and a five-minute moving average of pointwise 
efficiency maintained a high level (mean 97.53%) with a brief 
minimum of 90.63% during the ramp. Volume accounting 
shows a small accepted–exported gap consistent with window 
boundary and scrape alignment effects; explicit drop counters 
indicate only short-lived loss. Exported throughput tracks 
accepted throughput closely outside the short saturation 
interval and return to baseline without drift. 

Accepted and exported spans per second for the 
OpenTelemetry Collector on GKE Autopilot over the 30-
minute window (UTC; 15-s cadence). Exported throughput 
closely tracks accepted throughput except during a brief 
saturation interval; within-window export efficiency is 
computed by Eq. (1). 

B. Latency and Tail Behavior 

The latency profile derived from spanmetrics shows stable 
central tendency and transient tails. Median latency p50 
averages 0.0129 s (peak 0.0255 s), while p95 averages 0.0513 
s with a short excursion to 0.1157 s during the load ramp, after 
which it returns to baseline. Tail dynamics co-vary with 
backpressure: the Pearson correlation between queue size and 
p95 at the same timestamp is r = 0.554; allowing a +15 s shift 
(queue leading p95 by one step) increases the correlation to r 
= 0.575. A descriptive linear model fitted to the samples, 

𝑡 = 𝛼 + 𝛽 𝑄𝑡 + 𝛾 
𝑡

+ 𝛿 𝜆,𝑡 + 𝜖𝑡 , 

yields R² ≈ 0.31 with β ≈ 5.65×10⁻³ s per queue unit (≈5.7 

ms higher p95 per additional unit of 𝑄), summarizing the 

association between backpressure and tail inflation (not a 

causal claim).  

End-to-end latency percentiles from spanmetrics across 

the same window. Median latency (p50) remains stable, 

while p95 exhibits a short excursion coincident with 

backpressure; tails recover once the queue drains. 

C. Ackpressure and Drops 

The Collector’s internal queue remains low for most of the 
run (median 0.28) but peaks at 6.38 during a short saturated 
period. Using the threshold 𝑄(𝑡) > 3, the detected saturation 
interval spans 150 s (09:39:33–09:42:03 UTC). During this 
interval, explicit dropped spans/s reach 3.49, and integrating 
dropped_spans_per_sec over the full window yields ~358 
spans. Exporter errors occur at a low background rate (mean 
0.021/s, peak 0.8/s) and align temporally with the saturation 
window. Outside this period, queue size returns to baseline 
and drops cease, indicating rapid recovery of the pipeline.  
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Fig. 2. Latency Profile (p50 and p95). 

 

Fig. 3. Backpressure Indicators (Queue Size and Dropped Spans) 

Collector internal queue size and dropped spans per 
second. A short saturation period (Q(t) > 3) produces a queue 
peak and brief drops that align temporally with the p95 spike 
in Figure 2; exporter errors (not shown) co-occur in the same 
interval. 

TABLE I.  Environment and Headline KPIs 

Category Value 

Cluster / Region GKE Autopilot / asia-northeast3 

Window 

(UTC) 

09:25:48–09:55:48 

(Δt = 15 s; 121 samples) 

Accepted / Exported 
(mean) 

573.2 / 560.8 spans/s 

Accepted / Exported (peak) 923.7 / 923.7 spans/s 

Export efficiency η_exp 

(Eq. (1)) 
97.84% 

Totals over window 
(summary CSV) 

1,031,493 accepted / 1,008,983 
exported spans 

Drops (integrated / peak) ~358 spans / 3.49 spans/s 

Queue size 
(median / peak) 

0.28 / 6.38 

Saturation interval 

(Q > 3) 
09:39:33–09:42:03 UTC (150 s) 

p50 latency 
(mean / peak) 

0.0129 s / 0.0255 s 

p95 latency 

(mean / peak) 
0.0513 s / 0.1157 s 

CPU 
(mean / peak) 

0.36 / 0.58 cores 

Memory 

(mean / peak) 
0.21 / 0.22 GiB 

Network 
(mean RX / TX) 

0.147 / 0.292 Mb/s 

Exporter errors 

(mean / peak) 
0.021/s / 0.8/s 

 

 

D. Resource Footprint 

Mean/peak CPU are 0.36/0.58 cores, memory 0.21/0.22 
GiB, and average network 0.147/0.292 Mb/s (RX/TX). These 
values indicate headroom under the tested load and are 
summarized with other KPIs in Table 1. 

Cluster context (GKE Autopilot, region, window, 
cadence) and summary metrics: accepted/exported throughput 
(means/peaks/totals), export efficiency (Eq. (1)), queue 
statistics, latency (p50/p95), drops, exporter errors, and 
resource footprint (CPU, memory, network). 

IV. DISCUSSION 

We evaluated a production-style OpenTelemetry (OTel) 
pipeline on GKE Autopilot under a sustained trace load and 
observed that exported throughput closely tracked accepted 
throughput, with deviations confined to a short saturation 
interval. We interpret this pattern as evidence that—in this 
configuration—scalability is governed primarily by exporter 
and queue policy rather than raw CPU or memory 
provisioning. We further examined the relationship between 
backpressure and tail latency: queue growth co-varied with 
p95 inflation and brief drops, and both subsided once pressure 
abated. This supports an operational focus on backpressure as 
the leading indicator of user-visible latency. 

We operationalized these findings into concrete controls. 
First, we recommend alerting on the rate of change of the 
Collector queue (∆Q/∆t) and enforcing a rolling export-
efficiency floor (as defined by Eq. (1)) alongside a p95 target; 
together, these detect incipient saturation while recovery is 
still possible via batching/backoff. Second, we found that 
endpoint/protocol misconfiguration (e.g., OTLP/HTTP vs. 
OTLP/gRPC) manifests as exporter errors and transient 
backlog; we therefore advocate a pre-flight verification step 
(receiver protocol, exporter health, synthetic canary). Finally, 
we distinguish windowed efficiency from explicit loss: 
accepted–exported differences over finite windows reflect 
both backlog dynamics and scrape alignment, whereas drop 
counters report irrecoverable loss. Reporting both 
perspectives yields actionable guidance on when to increase 
exporter concurrency, adjust batching, or shard collectors. 

The findings in this study reflect a specific configuration: 
a single OTel Collector instance on GKE Autopilot, a 
homogeneous regional cluster, and a controlled, trace 
workload. While this environment models real production 
clusters, larger deployments with heterogeneous node pools, 
multi-region routing, or spike-driven workloads may exhibit 
different queue dynamics. Workloads with high cardinality, 
tail-heavy request patterns, or multi-collector routing may 
push exporter bottlenecks earlier. Therefore, while the results 
are indicative of OTel behavior under realistic conditions, they 
should be interpreted as lower-bound performance rather than 
universal guarantees. Extending this evaluation across diverse 
cluster sizes, workload mixes, and network conditions 
represent an important direction for future work. 

 

V. CONCLUSION AND FUTURE WORK 

We evaluated a production-style OpenTelemetry (OTel) 
pipeline on GKE Autopilot under sustained load, measuring 
end-to-end throughput, tail latency, and backpressure. 
Exported throughput closely tracked accepted throughput; a 
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brief saturated interval produced queue growth, transient 
drops, and p95 inflation that subsequently recovered. These 
findings indicate that, in this configuration, scalability is 
governed mainly by exporter/queue policy rather than raw 
CPU or memory, and that backpressure is a reliable leading 
indicator of tail behavior. The study meets the stated 
objectives: (i) demonstrates scalability in a real cloud setting 
(throughput and export efficiency), (ii) identifies integration 
sensitivities (protocol/endpoint) with observable signatures 
(errors, queue, drops), and (iii) provides computational 
profiling that links queue dynamics to p95 tails. Limitations 
include a controlled workload and a 30-minute window; 
heterogeneous, diurnal traffic may surface different behaviors. 

Future work: evaluate multi-Collector sharding and 
exporter concurrency tuning; assess tail-based sampling and 
batching strategies; extend runs to multi-hour horizons and 
adverse network conditions; and introduce more realistic 
workload mixes to refine capacity guidance. 
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