A Self-Synchronizing Cyber Deception Framework
via Infrastructure as Code Reflection

Junyeong Park Sayeon Kim
Dept. of Computer and Information Cyber Electronic Warfare R&D
Security LIG Nexl

Sejong University
Seoul, Republic of Korea
piy010218@sju.ac.kr

Pangyo, Republic of Korea
sayeon.kim@lignex1.com

Shinwoo Shim
Cyber Electronic Warfare R&D
LIG Nex1
Pangyo, Republic of Korea
shimshinwoo@lignex1.com

Abstract—As cyberattacks become more sophisticated, the us
e of honeypots has emerged as an alternative to proactively collec
t attackers’ exploit strategies. However, conventional honeypots o
ften lack realism and require much human effort to deploy and m
aintain in modern IT infrastructures. This excessive cost in resou
rces creates a major obstacle to their widespread use. To address
these challenges, this paper proposes a self-synchronizing cyber d
eception framework that upholds the declarative approach of I
nfrastructure as Code (IaC), maintaining idempotency and consis
tency while automatically generating a deceptive environment. O
ur framework treats the target system's IaC files as a blueprint to
automatically generate and deploy a high-fidelity, "digital twin"
deception environment. Our framework uses an automated pipeli
ne to analyze the IaC file, apply the predefined transformation ru
les, and dynamically build new container images - replicating stru
ctural elements while replacing the core application logic with a h
oneypot. After deployment, the framework keeps the deceptive en
vironment synchronized with the original system by automaticall
y re-deploying the pipeline in response to any changes in the sour
ce IaC file, increasing fidelity and reducing management costs. T
he implementation of this prototype successfully shows a reductio
n in the manual effort required for deploying and maintaining de
ception environments, presenting a scalable and sustainable fram
ework for active defense. This provides a strong foundation for b
uilding the next-generation defense mechanisms that can adapt to
both evolving cyberattacks and changing infrastructure.

Keywords—deception, honeypot, IaC, automation

I. INTRODUCTION

As the cybersecurity landscape evolves, cyberattacks have
become equally sophisticated and persistent. Now the paradigm
of cyberattacks has shifted to persistence, where attackers target
specific systems and routes, invest more time and effort, and
collect more information about the target system through a long
period of time. Such persistence has led attackers to successfully
bypass traditional defense mechanisms such as firewalls and
intrusion detection systems (IDS), regardless of user caution.
This paradigm has shed a light upon an active defense
mechanism, a proactive approach where defenders engage with,
mislead, and or study attackers to generate cyber threat
intelligence. Within this context, cyber deception, particularly

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Woohyun Jang Yeon-Jae Kim
Cyber Electronic Warfare R&D Cyber Electronic Warfare R&D
LIG Nexl LIG Nexl1

Pangyo, Republic of Korea
woohyun.jang2@lignex1.com

Pangyo, Republic of Korea
yeonjae kim@lignex1.com

Olmi Lee Ki-Woong Park*
Cyber Electronic Warfare R&D Dept. of Computer and Information
LIG Nex1 Security

Sejong University
Seoul, Republic of Korea
woongbak@sejong.ac.kr

Pangyo, Republic of Korea
olmi.lee@lignex1.com

through the use of honeypots, has emerged as a powerful
strategy to achieve these objectives.

However, despite its theoretical promise, the application of
cyber deception in real-world enterprise environments is
considered significantly difficult. First, the fidelity of
conventional honeypots offer a dilemma; low-interaction
honeypots are easily identified and bypassed by attackers, while
high-interaction honeypots, though more realistic, are complex
and resource-intensive to build and manage, with the risk of
using one’s own real-world data; something that was intended
to be protected. Second, the operational cost associated with
deploying, configuring, and maintaining a deception
environment is too high for a small return. The use of deceptive
environments requires expertise and manual effort, a cost that
rises drastically in large-scale infrastructures—ironically, the
very systems most targeted by attackers.

The most critical challenge comes from rapidly changing
modern IT environments. Declarative tools like Kubernetes,
Terraform, and Docker Compose make modern IT
environments dynamic, with services being updated and
reconfigured continuously with ease. Considering this context,
using a manually deployed, static deception environment,
designed to emulate the real environment, seems unrealistic. As
the production system evolves, the deception environment will
fail to adapt, creating a fatal gap that impacts its realism and thus
making it all the more useless.

To address these fundamental limitations, this paper
introduces a Self-Synchronizing Cyber Deception Framework
designed for modern, Infrastructure as Code (IaC) driven
infrastructures. The primary objective of this research is to
design and implement a framework that automates the lifecycle
of high-fidelity deception environments; from creation to
maintenance, ensuring that they remain synchronized with the
original environment to reduce manual reconfiguration. Our
framework leverages a methodology called “IaC Reflection”,
which involves programmatically parsing a target system’s [aC
file, analyzing its architecture, and transforming it into a “digital
twin” honeypot. In this process, our framework replicates the
original system’s structure, services versions, and
configurations, while replacing the core application logic with

predefined honeypot services or pre-made ‘dummy logic’. After
the deployment of the replicated environment, the Sync
Controller monitors the original IaC file for changes. Upon said
change, the controller automatically triggers the entire pipeline
again, restarting the lifecycle and thus eliminating the need of
human intervention.

The core achievement of this research is presenting a
scalable framework that makes advanced cyber deception
strategies a viable and cost-effective strategy for constantly
changing real-world systems. By reducing the required manual
effort and needed expertise, our framework lowers the barrier to
entry for adopting deceptive strategies. By providing an
automatically generated, and self-maintaining deception
environment, this research lays a concrete foundation for next-
generation security strategies. It is capable of evolving in sync
with growing dynamic infrastructures that attackers may target.
This paper details the architecture of our framework, the
implementation of its modules, and demonstrates its
effectiveness in creating and maintaining a realistic deception
environment from an industry standard IaC file.

II. RELATED WORK

The introduction of IaC and the integration of its principles
over various fields in the cyber domain have reduced significant
overhead in both the initial deployment and the implementation
of infrastructural change, allowing better cost-efficiency and
flexibility in organizational operations [1]. This shift of
paradigm has also opened new opportunities for cybersecurity,
including an automated approach in deploying dynamic security
environments, like security-focused digital twins [2]. However,
while automated infrastructure deployment is key contribution
of IaC, the need for dynamic control and management of the
entire [aC life cycle is on the rise in order to keep up with the
rapidly changing modern IT infrastructure [3]. This trend is
where our research lies, addressing the need for a dynamic, self-
synchronizing system in the cyber deception domain.

Within this context, the concept of replicating existing
architecture for active deception, such as high-fidelity
honeypots in conjunction with digital twins, is an emerging area
of research. The initial drive of the research in this domain was
to overcome the limited use cases of honeypots; to expand from
single instances to entire systems. We mainly discuss these
digital twin-based approaches as it successfully aligns with our
IaC-based approach, such as the use of replicate environments
or an automated lifecycle of the deception environment.

Previous works have proposed various ways of using digital
twins for cybersecurity. Yigit et al. proposed ‘TwinPot’, a digital
twin-based honeypot that was designed to detect and analyze
external attacks on smart ports [4], and Suhail et al. proposed
‘INCEPTION’, an automated digital twin-based deception
platform, focusing more on the automated generation and
management of the deception environment [5]. However, the
two research rely mostly on pre-existing digital twins, using
them as blueprints for creating the actual honeypots. This results
in a three-layer architecture; the original system, digital twin,
and the honeypot. Naturally, this becomes a costly prerequisite
for systems that do not deploy digital twins. These early
approaches, as emphasized by Heluany et al., have largely
remained at a theoretical or conceptual level, highlighting the

gap between the potential of digital twin deception and its
automated implementation [6].

Several studies have suggested multiple ways to automate
the deployment of deception environments. For example,
Kahlhofer et al. proposes ‘Koney’, a deception orchestration
framework designed for Kubernetes [7]. Koney introduces a
method called “deception policy documents” to convert
deception techniques into code. It also uses a Kubernetes
Operator to automatically inject traps in active services or
applications. Koney is very powerful as it modifies applications
at runtime, without requiring source code access. However, the
method of Koney differs from what we propose. Koney is a
‘runtime mutation’ framework, where as our research focuses on
pre-deployment generation and synchronization. This approach
differs in which process the framework sees valuable. Koney
recognized the importance of altering a service behavior, where
as the self-synchronizing framework sees importance in the
redeployment of the entire structure that also serves as a
honeypot.

Furthermore, new approaches in the deception strategy itself
are also notable, where the core difference lies in the response
of the deceptive environment according to the attacker’s actions,
which ultimately leads to an ‘adaptive’ deception strategy. The
primary goal of these research is to maximize attacker
engagement by varying the honeypot’s behavior and or
appearances. For example, Safargalieva et al. suggests bio-
inspired behavior such as camouflage and playing dead, to make
the honeypot more believable [8]. While these adaptive
honeypots present new possibilities for honeypot utilization, the
effectiveness still relies heavily on the rapid change and
reconfiguration of the deception system. Any intelligent
response mechanism must be set upon a quick, automated
deployment and synchronization framework in order for it to
function as intended.

Another approach involves creating a dynamic ‘deception
grid’ using Software-Defined Networking (SDN). Guerra et al.
proposed an architecture that uses SDN to dynamically
configure and redirect traffic into a honeynet based on a pre-
designed strategy [9]. This research contributes in a real-time
modification of the network topology to mislead attackers.
However, the deception strategy relies on only the topology, not
the individual honeypots that actually make up the network. So
the challenge remains: an automated, synchronized framework
for fast and accurate deployment.

Our research addresses these foundational gaps, differing
from the former strategies. Instead of focusing on what
deception strategy to deploy, we focus on zow. With this change
in view, we create the underlying mechanism that creates
dynamic and adaptive, synchronized deception practical. We
use a method called “[aC Reflection” to create a two-layer
architecture, making creation process of the deception
environment inherently simpler, faster, and more efficient. Our
framework suggests using the original system’s IaC blueprint as
the single source for desired deception environment, which
enables a direct generation of a ‘look-alike’ that itself serves as
a honeypot. This way, the generated deception environment
possesses identical structure and configurations while also
having different functionalities than the original, hence the term

IaC Parser |
¥

Policy Engine ‘
¥

Blueprint Generator }>|

|

|

|

Dockerfile Generator
T

|
|
|

[2
| IaC Renderer
|
|

¥
Deployer
¥
Sync Controller

Fig. 1. Main Automated Pipeline.

‘look-alike’, not ‘digital twin’. By eliminating the need for the
intermediate, our approach not only solves the problem of
continuous synchronization; by reducing the three-layer
synchronization to a two-layer synchronization but also presents
a more practical and efficient way for dynamic infrastructures.

III. FRAMEWORK ARCHITECTURE AND DESIGN

The Self-Synchronizing Cyber Deception Framework
proposed in this research is designed to overcome the
aforementioned limitations. The framework achieves this with
three core philosophies: High-Fidelity, Full Automation, and
Synchronization. First, high-fidelity is achieved through
replicating the ‘appearances’ of the original system, such as base
image, dependencies, or version that can be found in the source
IaC file. Second, full automation and synchronization is
achieved through creating automatically deployable modules for
each step of the deception environment lifecycle; configuration,
deployment, and maintenance. As a result, deploying and
maintaining deception environments become cost-effective and
thus, becomes a viable security option across various domains
in modern infrastructures.

The framework is composed of seven independent modules
as shown in Fig. 1—the IaC Parser, Policy Engine, Dockerfile
Generator, Blueprint Generator, [aC Renderer, Deployer and
Sync Controller. Each module is designed to perform a clearly
defined responsibility, which allows the entire framework to
harness sustainability and future scalability. Notably, the 1aC
Parser and Renderer modules are intentionally separated into
multiple parsers and renderers, according to the IaC format (e.g.,
Kubernetes, Terraform), to support diverse laC environments
and maintain sustainability.

A. Overall Architecture

The framework is designed as a multi-stage pipeline. The
entire process is intended to be automated, from making the
source IaC file to transforming it into a deception environment.
The pipeline, as shown in Fig 1, begins with the IaC Parser. The
[aC Parser reads the source file and translates it into a
standardized structure. This structure is then passed to the Policy
Engine, which analyzes the translated structure and adds ‘tags’;
a component from a predefined set of rules that defines the
relevant transformation actions.

The tagged data then moves to the Blueprint Generator,

where the blueprint of the final deception environment is created.

The Blueprint Generator reads these tags, then either modifies
the component directly, or calls the Dockerfile Generator to

create a new container image. After processing all components
and inserting common configurations, the final blueprint is
created and then sent to the [aC Renderer. The IaC Renderer
converts the blueprint into a new and configured IaC file, and
the Deployer deploys the IaC file, creating a new deception
environment based solely on the source IaC file.

B. Core Concepts — laC Reflection

The core concept in the Self-Synchronizing Cyber
Deception Framework is “IaC Reflection”. Unlike a text-based
approach, this approach allows precision and reliability when
transforming the source IaC file into desired blueprints. The IaC
Parser goes beyond the basic search-and-replace tactic, instead
it understands the relationships between services and volumes
(in Docker Compose) or between services and pods (in
Kubernetes). This makes the Policy Engine apply the predefined
rules more properly and easily. For instance, a predefined rule
may target the image of a specific service such as
‘database(services.database.image)’, a tricky task for a simple
string search where it might modify an image key elsewhere.

C. Core Concepts — Dynamic Build

In order to achieve high-fidelity in the final deception
environment, this framework uses a dynamic build strategy,
which is in contrast with the basic image replacement strategy.
Image replacement represents the simple rule of substituting a
production image with a pre-built, generic honeypot image.
While the image replacement strategy is easy to implement, this
approach is prone to attackers; an attacker can perform basic
reconnaissance and immediately identify the generic honeypot.

Meanwhile, the dynamic build strategy aims to create a
custom honeypot image, intentionally structured to be almost
identical to the original service while having none of the actual
application logic. The dynamic build is deployed by a specific
module called ‘the Dockerfile Generator’, and is made up of
these two operations:

e Structure Replacement: The foundation of the fidelity.
The Dockerfile Generator parses the original service’s
Dockerfile, and reads the service’s underlying structure.
Then, the module replicates key instructions that define
the service’s structure. Some examples include FROM
instructions to use the same base operating system, or
RUN commands to install the same packages and
libraries, or COPY commands for dependencies (e.g.,
requirements.txt). This results in a honeypot
environment which is almost identical to the original
environment.

e Logic Replacement: This is how the deceptive aspect
is created. The Dockerfile Generator ignores the
original COPY command, which normally inserts the
actual application logic. Instead, it uses a new COPY
command that places a pre-built honeypot application
into the image. This honeypot application does not
perform any actual functions nor use any real data from
the original source. This creates a seemingly identical
application from the outside, but the actual logic inside
has been altered completely.

The final output is a new Dockerfile.honeypot which

produces a container image with the same operating system,
same libraries, same dependencies but with completely different
application logic.

D. Module Design

The framework consists of the seven modules listed below.
This modular design is crucial for defining roles and
responsibilities between each module, thus creating scalability.

e IaC Parser: The starting point of the pipeline. It reads
the source IaC file and translates it into a standardized
python data structure (e.g., dictionary for Docker
Compose, list of dictionaries for Kubernetes).

e Policy Engine: The brains of the operation. It takes the
translated IaC file, and attaches a pre-defined set of
policies. The Policy Engine will find the correct objects
in the translated IaC file and attach the replacement rule
as an x-honmeypot-policy’ tag. This module does not
directly configure the components.

e Dockerfile Generator: This module is used when the
dynamic build strategy is called. It takes the original
service’s build and build policy as input, and replicates
the necessary dependencies to create a fake application.
The Dockerfile Generator then outputs a new
‘Dockerfile.honeypot’ to the designated directory.

e Blueprint Generator: The backbone of the operation.
It takes the tagged information from the Policy Engine,
reads the attached tags, and executes the actual
transformations. Transformations may be in the form of
simple image replacement, or a sophisticated dynamic
build via Dockerfile Generator. This module also takes
care of system-wide configurations such as logging
services (e.g., Fluentd) or healthcheck operations.

e IaC Renderer: The final stage of the transformation
process. It retrieves the final blueprint created by the
Blueprint Generator and converts it back to the original

format; the same format that the [aC Parser took as input.

e Deployer: This module is for the actual deployment of
the final blueprint. The default state of the Deployer is
an ‘underlying’ interface for the Sync Controller, but
when necessary it also serves as a user interface for
manual control. It provides crucial commands such as
up, down, status, to control the deployment of the
deception environment manually.

e Sync Controller: The eye that sees all. It monitors
changes in the source IaC file using monitoring tools
such as watchdog. 1f a change is detected, the Sync
Controller reactivates the entire pipeline, re-configuring
the blueprint and re-deploying the deception
environment. This module enforces the “self-
synchronizing” nature of the suggested framework.

IV. EXPERIMENTS

We analyzed the proposed claim and design of the Self-
Synchronizing Cyber Deception Framework with three core
experiments: (1) Verifying the accuracy of the constructed
honeypots and evaluating the fidelity, (2) Analyzing the

synchronization and efficiency to evaluate the framework’s
effectiveness in costs and complexity, compared to manual setup
and configuration, and (3) Evaluating the scalability of the
framework using bigger, more complex source files.

A. Experiment Setup

The experiment was conducted using Docker on a Windows
11 environment. The framework was executed with Python 3.10,
and the source infrastructure file was defined in a Docker
Compose file. As mentioned above, transformation policies
were pre-defined. To compare the generated honeypot and its
fidelity, an unmodified nginx service and a generic httpd:alpine
(Apache) service were used as baselines. Basic network
scanning tools such as Nmap and WhatWeb were used for
scanning the deployed environment.

B. Experiment 1: Verifying Accuracy

The first core concept of this experiment is to analyze the
structural fidelity of the honeypot, specifically generated by the
framework’s dynamic build strategy. By comparing the
metadata of containers created from both an original image and
the generated honeypot image, we prove that the generated
honeypot container is of high-fidelity, which replicates the
original service’s structure, while successfully replacing the
internal logic with a ‘dummy’ logic. We first built an original
image using the source api/Dockerfile, in order to create a
standard for comparing the honeypot image. Then we executed
the framework, which automatically generated the honeypot
image using the dynamic build strategy. Containers were created
from both images, and inspected through the docker inspect
command. We extracted detailed metadata of both containers
and compared core structures.

The metadata comparison, as summarized in Table 1,
indicates that the core characteristics of both structures are
identical. The base image, environment variables, and working
directory are exactly replicated in the honeypot container
metadata, creating a believable, seemingly identical high-
fidelity honeypot. The only meaningful difference can be found
in the CMD field in Table 1, which specifies the container’s
startup command. The original container runs real app.py,
while the honeypot runs app.py. This difference proves that the
framework is successfully working as intended; preserving the
structure of the original service while only replacing the internal
service logic. This experiment proves the framework’s ability to
achieve high-fidelity through the “TaC Reflection” method.

The second core concept is to evaluate the fidelity of the
digital twin honeypot created by the dynamic build strategy. By
assessing its outputs against popular reconnaissance tools like

TABLE L COMPARISON OF ORIGINAL VS DIGITAL TWIN
HONEYPOT CONTAINER METADATA
. Container
Attribute ” - — -
Original Container Digital Twin Honeypot
“Env” PYTHON_VERSION=3.9.23 PYTHON_VERSION=3.9.23
“Env” PATH=/usr/local/bin:/ust/ PATH=/ust/local/bin:/usr/
“ExposedPorts” 5000/tcp 5000/tcp

“Cmd” “python”, “real_app.py” “python”, “app.py”

TABLE IL FINGERPRINT SCAN RESULTS TABLEIIL. AVERAGE RESPONSE TIME PER MODIFICATION
Outputs Container
Target . Rounds P .
Ports Tool Signature Modifications Response Time
« ad? Port Settings Chang
Digital Twin (api) 5000 | nmap -sV Unrecognized 1 (8%80;0"1;’8888;;%6) 24.63s
1g1tal 1'win (api P inos Cha
ython/3.923 Port Settings Change
5000 | whatweb Werkzeug/2.3.8 2 (8888:80 > 8080:50) 25.87s
. Port Settings Change
Original Webserver 8080 | nmap sV hitp, nginx 1.29.0 (5000:5000 > 6060:6060) 26.48s
nginx : Port Settings Change
(nginx) 8080 | whatweb Nginx/1.29.0 4 (606016060 = 5000:2000) 26.71s
8081 nmap -sV http, Apache httpd 2.4.65 5 (I\r/[n};squl];i\ées:yﬂlld;%e) 27.19s
Generic (httpd) 2081 hatweb Apache/2.4.65 6 MySQL Version Change 26.05
Wwhatwe pache/2.4. (mysql:7.0 - mysql:8.0) s
7 MySQL Version Change 26.58s
Nmap and WhatWeb, we evaluate the generated honeypot’s (mysql:8.0 > mysql:6.0) :
‘stealthiness’. As mentioned above, we used an original, 8 o e 26.78s
unmodified nginx web application and a generic Apache service .
. . . 9 MySQL & Port Settings Change 26.78s
as baselines. As shown in Table 2, there are significant
differences in the outputs. Both Nginx and Apache were 10 MySQL & Port Settings Change 27.19s
accurately identified by the automated scanning tools, along
. . . . Average 26.326s
with their service names and versions. However, the honeypot

generated from the dynamic build strategy was not recognized
by Nmap as a known service. WhatWeb was only able to identify
the underlying Python/Werkzeug, without noticing any
honeypot signatures. This “unrecognized” state shows the
success of the dynamic build strategy in creating a high-fidelity
honeypot that cannot be detected or classified as a generic
honeypot.

C. Experiment 2: Self-Synchronization and Efficiency

The core concept of this experiment is to evaluate the ‘self-
synchronizing’ ability of the framework and how efficient it is
compared to a manual configuration. By measuring the average
time it took from reaction to the redeployment of the changed
infrastructure, we prove the automation is indeed vastly quicker
and cost-effective.

We started the experiment with monitoring the source for
any changes. A pre-defined change (e.g., modifying a service’s
port setting, changing the MySQL version, etc.) was applied to
the source file, and we measured the total time took from the file
save to the redeployment and reflection of the changed
environment. This process was repeated 10 times in order to
calculate the average time of the automation. The average
response time, from detecting the change to redeploying the
modified environment, was 26.326 seconds as shown in Table 3.
This rapid automation shows the framework’s ability to
maintain sync with the original environment in almost real-time.

Furthermore, the automated framework reduces the entire
modification process to a single step, making the obstacle in
modification, deployment, and maintenance, trivial. Manual
synchronization requires several steps; manually stopping the
current environment, editing the [aC source file, attaching and
reconfiguring according to policy, regenerating the deception
blueprint, and manually redeploying the new environment.

While the manual approach requires multiple steps as
mentioned, the automated approach need only one step (with the
exception of configuring the pre-defined policies); configurint
the IaC file. The proposed automation lets the user to save time
and resources, while also minimizing the possibility of human
error which can lead to malfunctioning deception environments.

The framework not only provides speed, but stability as well.

D. Experiment 3: Scalability

The core concept of this experiment is to evaluate the
scalability of the framework’s blueprint generating. In other
words, the blueprint generation must be of no fault for larger,
more complex infrastructures. By measuring the average ‘final
blueprint’ creation time, we prove that the computational
resources do not increase drastically, and still provides a cost-
effective and efficient way to deploy and manage large complex
infrastructures.

We created a complex docker-compose.yml file including 25
services, all of which are random. A policy.yml! file was also
created to apply pre-defined policies to 10 of the 25 services.
Then, we measured the time taken from parsing the source file
to creating the final blueprint for each round, and calculated the
average time taken.

As shown in Table 4, for 5 rounds, the framework
successfully processed 25 services and generated the final
blueprint in an average time of 0.027 seconds. In comparison to
the simple setup’s average blueprint creation time of 0.012
seconds, this indicates that the processing time and computation
did not increase linearly, showing the framework’s viability for
the widespread use in complex systems, with little overhead in
the deployment of the deception environment.

TABLE IV. AVERAGE BLUEPRINT CREATION TIME PER SERVICE
Complexit

Rounds Simple Setup (3 services) - Co o);nplex Setup (25 services)

1 0.013s 0.028s

2 0.011s 0.029s

3 0.013s 0.026s

4 0.012s 0.026s

5 0.011s 0.027s
Average 0.012s 0.027s

E. Discussion

The experiment results prove that the Self-Synchronizing
Cyber Deception Framework successfully achieves its intended
goals. The efficiency and fast processing times from experiment
2 and 3 show that this framework could be considered as a viable
option against the high-cost deceptive strategies. By reducing a
multi-step manual job into a single automated process, the
suggested framework not only saves time and resources, but also
eliminates the possibilities of human error. Also, the fidelity
evaluation proves the framework’s ability to create believable
honeypots without using any real data or application logic. The
dynamic build strategy acts as a core mechanism that creates
seemingly indistinguishable honeypots; a crucial factor in
deceptive environments. Overall, the proposed framework is an
effective framework in solving the aforementioned gaps and
limitations of current deception strategies.

However, considering that the experiments were done in
controlled environments with sample IaC files, real-world use
has still room for validation. Real-world enterprise [aC may
contain complex logic, including user-defined components. This
requires more dynamic modules, such as enhanced parsing
modules or adaptable transformation engines.

V. CONCLUSION

This paper addressed a critical challenge in the active cyber
deception domain: the difficulties of deploying and maintaining
high-fidelity deception environments in rapidly growing modern
IT infrastructures. Conventional honeypots quickly lose their
effectiveness due to the configuration gap, while automated
approaches often required costly prerequisites such as pre-
existing digital twins. To fill these gaps, we proposed a Self-
Synchronizing Cyber Deception Framework based on the “IaC
Reflection” method. Our framework successfully demonstrates
a fully automated pipeline that transforms the original
environment’s [aC blueprint into a high-fidelity self-
synchronizing honeypot.

There are three core contributions of this paper. First, by
treating the IaC file as a single source of input, our framework
creates a two-layer honeypot architecture. Second, the viability
of the dynamic build strategy achieves the creation of high-
fidelity honeypots. These honeypots have the same structural
dependencies but do not use real application logic, which allows
users to create a more realistic, seemingly identical honeypot.
Third, with the self-synchronizing mechanism, whenever a
change in infrastructure is made (in the source IaC file), the
framework can apply the changes automatically, solving the gap
between the modified original and the unmodified deception
environment in real-time. As the original system changes over
time, the self-synchronization mechanism provides stability and
cost reduction.

The final results of the framework also suggest a successful
integration of [aC and DevSecOps. By directly connecting the
source laC file with the domain of cyber deception, cyber
deception is no longer an extra step to take, especially in the
lifecycle of mass infrastructures. By a completely automated,
self-synchronizing framework, the cyber security space is kept
in-sync with the original infrastructure, providing a strong lure
for infrastructure owners to be more willing to accept a more

active security strategy. With one integration from the initial
planning and deployment of the infrastructure, active deceptive
strategies can easily be a part of keeping the system safe.

While the framework successfully addresses the
aforementioned limits in current active defense systems, the
framework still has potential for expansion. First, the current
framework handles simple [aC constructs. It may not support
advanced, complex logic in real-world IaC examples. Also,
efficiency was measured qualitatively. While the efficiency gain
was evident, using a quantitative approach would be required in
further research. Second, the dynamic build strategy is generic
in behavior. The next step would be to enhance the ‘behavioral
fidelity’ by dynamically generating application logic. Further
work will be focused not only on increasing support for broad
IaC features, but also addressing intelligent approaches in the
dynamic build strategy.

ACKNOWLEDGMENT

This work was supported by Korea Research Institute for
Defense Technology Planning and Advancement (KRIT) —
Grant funded by Defense Acquisition Program Administration
(DAPA) (KRIT-CT-22-051).

REFERENCES

[1] S. I. Abbas and A. Garg, "Integrating Emerging Technologies with
Infrastructure as Code in Distributed Environments," 2024 3rd
International Conference on Applied Artificial Intelligence and
Computing (ICAAIC), Salem, India, 2024, pp. 1138-1144, doi:
10.1109/ICAAIC60222.2024.10575600.

[2] K. Hammar and R. Stadler, "Digital Twins for Security
Automation," NOMS 2023-2023 IEEE/IFIP Network Operations and
Management Symposium, Miami, FL, USA, 2023, pp. 1-6, doi:
10.1109/NOMS56928.2023.10154288.

[3] Pahl, Claus et al. (2025). Infrastructure as Code -Technology Review and
Research Challenges. 10.5220/0013247700003950.

[4] Y. Yigit, O. K. Kinaci, T. Q. Duong and B. Canberk, "TwinPot: Digital
Twin-assisted Honeypot for Cyber-Secure Smart Seaports," 2023 IEEE
International ~ Conference on Communications Workshops (ICC
Workshops), Rome, Italy, 2023, pp- 740-745, doi:
10.1109/ICCWorkshops57953.2023.10283756.

[5] S. Suhail, M. Igbal and K. McLaughlin, "Digital-Twin-Driven Deception
Platform: Vision and Way Forward," in IEEE Internet Computing, vol. 28,
no. 4, pp. 40-47, July-Aug. 2024, doi: 10.1109/MIC.2024.3406188.

[6] Heluany, J., Amro, A., Gkioulos, V., & Katsikas, S. (2024, April).
Interplay of Digital Twins and Cyber Deception: Unraveling Paths for
Technological Advancements. 2024 [EEE/ACM 4th International
Workshop on Engineering and Cybersecurity of Critical Systems and
2024 [IEEE/ACM Second International Workshop on Software
Vulnerability (EnCyCriS/SVM), 20-28.

[71 Kahlhofer, Mario & Golinelli, Matteo & Rass, Stefan. (2025). Koney: A
Cyber Deception Orchestration — Framework for Kubernetes.
10.48550/arXiv.2504.02431.

[8] Safargalieva, A., & Vasilomanolakis, E. (Accepted/In press). Towards
bio-inspired cyber-deception: a case study of SSH and Telnet honeypots.
In Proceedings of 4th Workshop on Active Defense and Deception
(AD&D) : Co-located with the 10th IEEE European Symposium on
Security and Privacy (Euro S&P) IEEE.

[9] Guerra, Luis Maria de Figueiredo Cruz - Proactive Cybersecurity tailoring

through deception techniques. Lisboa: Instituto Superior de Engenharia
de Lisboa, 2023. Dissertagdo de Mestrado

