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Abstract—As cyberattacks become more sophisticated, the us

e of honeypots has emerged as an alternative to proactively collec

t attackers’ exploit strategies. However, conventional honeypots o

ften lack realism and require much human effort to deploy and m

aintain in modern IT infrastructures. This excessive cost in resou

rces creates a major obstacle to their widespread use. To address 

these challenges, this paper proposes a self-synchronizing cyber d

eception framework that upholds the declarative approach of I

nfrastructure as Code (IaC), maintaining idempotency and consis

tency while automatically generating a deceptive environment. O

ur framework treats the target system's IaC files as a blueprint to 

automatically generate and deploy a high-fidelity, "digital twin" 

deception environment. Our framework uses an automated pipeli

ne to analyze the IaC file, apply the predefined transformation ru

les, and dynamically build new container images - replicating stru

ctural elements while replacing the core application logic with a h

oneypot. After deployment, the framework keeps the deceptive en

vironment synchronized with the original system by automaticall

y re-deploying the pipeline in response to any changes in the sour

ce IaC file, increasing fidelity and reducing management costs. T

he implementation of this prototype successfully shows a reductio

n in the manual effort required for deploying and maintaining de

ception environments, presenting a scalable and sustainable fram

ework for active defense. This provides a strong foundation for b

uilding the next-generation defense mechanisms that can adapt to 

both evolving cyberattacks and changing infrastructure. 
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I. INTRODUCTION 

As the cybersecurity landscape evolves, cyberattacks have 
become equally sophisticated and persistent. Now the paradigm 
of cyberattacks has shifted to persistence, where attackers target 
specific systems and routes, invest more time and effort, and 
collect more information about the target system through a long 
period of time. Such persistence has led attackers to successfully 
bypass traditional defense mechanisms such as firewalls and 
intrusion detection systems (IDS), regardless of user caution. 
This paradigm has shed a light upon an active defense 
mechanism, a proactive approach where defenders engage with, 
mislead, and or study attackers to generate cyber threat 
intelligence. Within this context, cyber deception, particularly 

through the use of honeypots, has emerged as a powerful 
strategy to achieve these objectives. 

 However, despite its theoretical promise, the application of 
cyber deception in real-world enterprise environments is 
considered significantly difficult. First, the fidelity of 
conventional honeypots offer a dilemma; low-interaction 
honeypots are easily identified and bypassed by attackers, while 
high-interaction honeypots, though more realistic, are complex 
and resource-intensive to build and manage, with the risk of 
using one’s own real-world data; something that was intended 
to be protected. Second, the operational cost associated with 
deploying, configuring, and maintaining a deception 
environment is too high for a small return. The use of deceptive 
environments requires expertise and manual effort, a cost that 
rises drastically in large-scale infrastructures—ironically, the 
very systems most targeted by attackers. 

The most critical challenge comes from rapidly changing 
modern IT environments. Declarative tools like Kubernetes, 
Terraform, and Docker Compose make modern IT 
environments dynamic, with services being updated and 
reconfigured continuously with ease. Considering this context, 
using a manually deployed, static deception environment, 
designed to emulate the real environment, seems unrealistic. As 
the production system evolves, the deception environment will 
fail to adapt, creating a fatal gap that impacts its realism and thus 
making it all the more useless. 

To address these fundamental limitations, this paper 
introduces a Self-Synchronizing Cyber Deception Framework 
designed for modern, Infrastructure as Code (IaC) driven 
infrastructures. The primary objective of this research is to 
design and implement a framework that automates the lifecycle 
of high-fidelity deception environments; from creation to 
maintenance, ensuring that they remain synchronized with the 
original environment to reduce manual reconfiguration. Our 
framework leverages a methodology called “IaC Reflection”, 
which involves programmatically parsing a target system’s IaC 
file, analyzing its architecture, and transforming it into a “digital 
twin” honeypot. In this process, our framework replicates the 
original system’s structure, services versions, and 
configurations, while replacing the core application logic with 



predefined honeypot services or pre-made ‘dummy logic’. After 
the deployment of the replicated environment, the Sync 
Controller monitors the original IaC file for changes. Upon said 
change, the controller automatically triggers the entire pipeline 
again, restarting the lifecycle and thus eliminating the need of 
human intervention. 

The core achievement of this research is presenting a 
scalable framework that makes advanced cyber deception 
strategies a viable and cost-effective strategy for constantly 
changing real-world systems. By reducing the required manual 
effort and needed expertise, our framework lowers the barrier to 
entry for adopting deceptive strategies. By providing an 
automatically generated, and self-maintaining deception 
environment, this research lays a concrete foundation for next-
generation security strategies. It is capable of evolving in sync 
with growing dynamic infrastructures that attackers may target. 
This paper details the architecture of our framework, the 
implementation of its modules, and demonstrates its 
effectiveness in creating and maintaining a realistic deception 
environment from an industry standard IaC file. 

II. RELATED WORK 

 The introduction of IaC and the integration of its principles 
over various fields in the cyber domain have reduced significant 
overhead in both the initial deployment and the implementation 
of infrastructural change, allowing better cost-efficiency and 
flexibility in organizational operations [1]. This shift of 
paradigm has also opened new opportunities for cybersecurity, 
including an automated approach in deploying dynamic security 
environments, like security-focused digital twins [2]. However, 
while automated infrastructure deployment is  key contribution 
of IaC, the need for dynamic control and management of the 
entire IaC life cycle is on the rise in order to keep up with the 
rapidly changing modern IT infrastructure [3]. This trend is 
where our research lies, addressing the need for a dynamic, self-
synchronizing system in the cyber deception domain. 

 Within this context, the concept of replicating existing 
architecture for active deception, such as high-fidelity 
honeypots in conjunction with digital twins, is an emerging area 
of research. The initial drive of the research in this domain was 
to overcome the limited use cases of honeypots; to expand from 
single instances to entire systems. We mainly discuss these 
digital twin-based approaches as it successfully aligns with our 
IaC-based approach, such as the use of replicate environments 
or an automated lifecycle of the deception environment.  

 Previous works have proposed various ways of using digital 
twins for cybersecurity. Yigit et al. proposed ‘TwinPot’, a digital 
twin-based honeypot that was designed to detect and analyze 
external attacks on smart ports [4], and Suhail et al. proposed 
‘INCEPTION’, an automated digital twin-based deception 
platform, focusing more on the automated generation and 
management of the deception environment [5]. However, the 
two research rely mostly on pre-existing digital twins, using 
them as blueprints for creating the actual honeypots. This results 
in a three-layer architecture; the original system, digital twin, 
and the honeypot. Naturally, this becomes a costly prerequisite 
for systems that do not deploy digital twins. These early 
approaches, as emphasized by Heluany et al., have largely 
remained at a theoretical or conceptual level, highlighting the 

gap between the potential of digital twin deception and its 
automated implementation [6]. 

 Several studies have suggested multiple ways to automate 
the deployment of deception environments. For example,  
Kahlhofer et al. proposes ‘Koney’, a deception orchestration 
framework designed for Kubernetes [7]. Koney introduces a 
method called “deception policy documents” to convert 
deception techniques into code. It also uses a Kubernetes 
Operator to automatically inject traps in active services or 
applications. Koney is very powerful as it modifies applications 
at runtime, without requiring source code access. However, the 
method of Koney differs from what we propose. Koney is a 
‘runtime mutation’ framework, where as our research focuses on 
pre-deployment generation and synchronization. This approach 
differs in which process the framework sees valuable. Koney 
recognized the importance of altering a service behavior, where 
as the self-synchronizing framework sees importance in the 
redeployment of the entire structure that also serves as a 
honeypot. 

 Furthermore, new approaches in the deception strategy itself 
are also notable, where the core difference lies in the response 
of the deceptive environment according to the attacker’s actions, 
which ultimately leads to an ‘adaptive’ deception strategy. The 
primary goal of these research is to maximize attacker 
engagement by varying the honeypot’s behavior and or 
appearances. For example, Safargalieva et al. suggests bio-
inspired behavior such as camouflage and playing dead, to make 
the honeypot more believable [8]. While these adaptive 
honeypots present new possibilities for honeypot utilization, the 
effectiveness still relies heavily on the rapid change and 
reconfiguration of the deception system. Any intelligent 
response mechanism must be set upon a quick, automated 
deployment and synchronization framework in order for it to 
function as intended. 

 Another approach involves creating a dynamic ‘deception 
grid’ using Software-Defined Networking (SDN). Guerra et al. 
proposed an architecture that uses SDN to dynamically 
configure and redirect traffic into a honeynet based on a pre-
designed strategy [9]. This research contributes in a real-time 
modification of the network topology to mislead attackers. 
However, the deception strategy relies on only the topology, not 
the individual honeypots that actually make up the network. So 
the challenge remains: an automated, synchronized framework 
for fast and accurate deployment. 

 Our research addresses these foundational gaps, differing 
from the former strategies. Instead of focusing on what 
deception strategy to deploy, we focus on how. With this change 
in view, we create the underlying mechanism that creates 
dynamic and adaptive, synchronized deception practical. We 
use a method called “IaC Reflection” to create a two-layer 
architecture, making creation process of the deception 
environment inherently simpler, faster, and more efficient. Our 
framework suggests using the original system’s IaC blueprint as 
the single source for desired deception environment, which 
enables a direct generation of a ‘look-alike’ that itself serves as 
a honeypot. This way, the generated deception environment 
possesses identical structure and configurations while also 
having different functionalities than the original, hence the term 



Fig. 1.    Main Automated Pipeline. 

‘look-alike’, not ‘digital twin’. By eliminating the need for the 
intermediate, our approach not only solves the problem of 
continuous synchronization; by reducing the three-layer 
synchronization to a two-layer synchronization but also presents 
a more practical and efficient way for dynamic infrastructures. 

III. FRAMEWORK ARCHITECTURE AND DESIGN 

 The Self-Synchronizing Cyber Deception Framework 
proposed in this research is designed to overcome the 
aforementioned limitations. The framework achieves this with 
three core philosophies: High-Fidelity, Full Automation, and 
Synchronization. First, high-fidelity is achieved through 
replicating the ‘appearances’ of the original system, such as base 
image, dependencies, or version that can be found in the source 
IaC file. Second, full automation and synchronization is 
achieved through creating automatically deployable modules for 
each step of the deception environment lifecycle; configuration, 
deployment, and maintenance. As a result, deploying and 
maintaining deception environments become cost-effective and 
thus, becomes a viable security option across various domains 
in modern infrastructures. 

 The framework is composed of seven independent modules 
as shown in Fig. 1—the IaC Parser, Policy Engine, Dockerfile 
Generator, Blueprint Generator, IaC Renderer, Deployer and 
Sync Controller. Each module is designed to perform a clearly 
defined responsibility, which allows the entire framework to 
harness sustainability and future scalability. Notably, the IaC 
Parser and Renderer modules are intentionally separated into 
multiple parsers and renderers, according to the IaC format (e.g., 
Kubernetes, Terraform), to support diverse IaC environments 
and maintain sustainability. 

A. Overall Architecture 

 The framework is designed as a multi-stage pipeline. The 
entire process is intended to be automated, from making the 
source IaC file to transforming it into a deception environment. 
The pipeline, as shown in Fig 1, begins with the IaC Parser. The 
IaC Parser reads the source file and translates it into a 
standardized structure. This structure is then passed to the Policy 
Engine, which analyzes the translated structure and adds ‘tags’; 
a component from a predefined set of rules that defines the 
relevant transformation actions. 

 The tagged data then moves to the Blueprint Generator, 
where the blueprint of the final deception environment is created. 
The Blueprint Generator reads these tags, then either modifies 
the component directly, or calls the Dockerfile Generator to 

create a new container image. After processing all components 
and inserting common configurations, the final blueprint is 
created and then sent to the IaC Renderer. The IaC Renderer 
converts the blueprint into a new and configured IaC file, and 
the Deployer deploys the IaC file, creating a new deception 
environment based solely on the source IaC file. 

B. Core Concepts – IaC Reflection 

 The core concept in the Self-Synchronizing Cyber 
Deception Framework is “IaC Reflection”. Unlike a text-based 
approach, this approach allows precision and reliability when 
transforming the source IaC file into desired blueprints. The IaC 
Parser goes beyond the basic search-and-replace tactic, instead 
it understands the relationships between services and volumes 
(in Docker Compose) or between services and pods (in 
Kubernetes). This makes the Policy Engine apply the predefined 
rules more properly and easily. For instance, a predefined rule 
may target the image of a specific service such as 
‘database(services.database.image)’, a tricky task for a simple 
string search where it might modify an image key elsewhere.  

C. Core Concepts – Dynamic Build 

 In order to achieve high-fidelity in the final deception 
environment, this framework uses a dynamic build strategy, 
which is in contrast with the basic image replacement strategy. 
Image replacement represents the simple rule of substituting a 
production image with a pre-built, generic honeypot image. 
While the image replacement strategy is easy to implement, this 
approach is prone to attackers; an attacker can perform basic 
reconnaissance and immediately identify the generic honeypot.  

 Meanwhile, the dynamic build strategy aims to create a 
custom honeypot image, intentionally structured to be almost 
identical to the original service while having none of the actual 
application logic. The dynamic build is deployed by a specific 
module called ‘the Dockerfile Generator’, and is made up of 
these two operations: 

• Structure Replacement: The foundation of the fidelity. 
The Dockerfile Generator parses the original service’s 
Dockerfile, and reads the service’s underlying structure. 
Then, the module replicates key instructions that define 
the service’s structure. Some examples include FROM 
instructions to use the same base operating system, or 
RUN commands to install the same packages and 
libraries, or COPY commands for dependencies (e.g., 
requirements.txt). This results in a honeypot 
environment which is almost identical to the original 
environment. 

• Logic Replacement: This is how the deceptive aspect 
is created. The Dockerfile Generator  ignores the 
original COPY command, which normally inserts the 
actual application logic. Instead, it uses a new COPY 
command that places a pre-built honeypot application 
into the image. This honeypot application does not 
perform any actual functions nor use any real data from 
the original source. This creates a seemingly identical 
application from the outside, but the actual logic inside 
has been altered completely. 

 The final output is a new Dockerfile.honeypot which 

 

 

 

 



produces a container image with the same operating system, 
same libraries, same dependencies but with completely different 
application logic. 

D. Module Design 

 The framework consists of the seven modules listed below. 
This modular design is crucial for defining roles and 
responsibilities between each module, thus creating scalability. 

• IaC Parser: The starting point of the pipeline. It reads 
the source IaC file and translates it into a standardized 
python data structure (e.g., dictionary for Docker 
Compose, list of dictionaries for Kubernetes). 

• Policy Engine: The brains of the operation. It takes the 
translated IaC file, and attaches a pre-defined set of 
policies. The Policy Engine will find the correct objects 
in the translated IaC file and attach the replacement rule 
as an ‘x-honeypot-policy’ tag. This module does not 
directly configure the components. 

• Dockerfile Generator: This module is used when the 
dynamic build strategy is called. It takes the original 
service’s build and build policy as input,  and replicates 
the necessary dependencies to create a fake application. 
The Dockerfile Generator then outputs a new 
‘Dockerfile.honeypot’ to the designated directory. 

• Blueprint Generator: The backbone of the operation. 
It takes the tagged information from the Policy Engine, 
reads the attached tags, and executes the actual 
transformations. Transformations may be in the form of 
simple image replacement, or a sophisticated dynamic 
build via Dockerfile Generator. This module also takes 
care of system-wide configurations such as logging 
services (e.g., Fluentd) or healthcheck operations. 

• IaC Renderer: The final stage of the transformation 
process. It retrieves the final blueprint created by the 
Blueprint Generator and converts it back to the original 
format; the same format that the IaC Parser took as input.  

• Deployer: This module is for the actual deployment of 
the final blueprint. The default state of the Deployer is 
an ‘underlying’ interface for the Sync Controller, but 
when necessary it also serves as a user interface for 
manual control. It provides crucial commands such as 
up, down, status, to control the deployment of the 
deception environment manually. 

• Sync Controller: The eye that sees all. It monitors 
changes in the source IaC file using monitoring tools 
such as watchdog. If a change is detected, the Sync 
Controller reactivates the entire pipeline, re-configuring 
the blueprint and re-deploying the deception 
environment. This module enforces the “self-
synchronizing” nature of the suggested framework. 

IV. EXPERIMENTS 

 We analyzed the proposed claim and design of the Self-
Synchronizing Cyber Deception Framework with three core 
experiments: (1) Verifying the accuracy of the constructed 
honeypots and evaluating the fidelity, (2) Analyzing the 

synchronization and efficiency to evaluate the framework’s 
effectiveness in costs and complexity, compared to manual setup 
and configuration, and (3) Evaluating the scalability of the 
framework using bigger, more complex source files. 

A. Experiment Setup 

 The experiment was conducted using Docker on a Windows 
11 environment. The framework was executed with Python 3.10, 
and the source infrastructure file was defined in a Docker 
Compose file. As mentioned above, transformation policies 
were pre-defined. To compare the generated honeypot and its 
fidelity, an unmodified nginx service and a generic httpd:alpine 
(Apache) service were used as baselines. Basic network 
scanning tools such as Nmap and WhatWeb were used for 
scanning the deployed environment. 

B. Experiment 1: Verifying Accuracy 

 The first core concept of this experiment is to analyze the 
structural fidelity of the honeypot, specifically generated by the 
framework’s dynamic build strategy. By comparing the 
metadata of containers created from both an original image and 
the generated honeypot image, we prove that the generated 
honeypot container is of high-fidelity, which replicates the 
original service’s structure, while successfully replacing the 
internal logic with a ‘dummy’ logic. We first built an original 
image using the source api/Dockerfile, in order to create a 
standard for comparing the honeypot image. Then we executed 
the framework, which automatically generated the honeypot 
image using the dynamic build strategy. Containers were created 
from both images, and inspected through the docker inspect 
command. We extracted detailed metadata of both containers 
and compared core structures. 

 The metadata comparison, as summarized in Table 1, 
indicates that the core characteristics of both structures are 
identical. The base image, environment variables, and working 
directory are exactly replicated in the honeypot container 
metadata, creating a believable, seemingly identical high-
fidelity honeypot. The only meaningful difference can be found 
in the CMD field in Table 1, which specifies the container’s 
startup command. The original container runs real_app.py, 
while the honeypot runs app.py. This difference proves that the 
framework is successfully working as intended; preserving the 
structure of the original service while only replacing the internal 
service logic. This experiment proves the framework’s ability to 
achieve high-fidelity through the “IaC Reflection” method. 

 The second core concept is to evaluate the fidelity of the 
digital twin honeypot created by the dynamic build strategy. By 
assessing its outputs against popular reconnaissance tools like 

TABLE I.   COMPARISON OF ORIGINAL VS DIGITAL TWIN 

HONEYPOT CONTAINER METADATA 

Attribute 
Container 

Original Container Digital Twin Honeypot 

“Env” PYTHON_VERSION=3.9.23 PYTHON_VERSION=3.9.23 

“Env” PATH=/usr/local/bin:/usr/ PATH=/usr/local/bin:/usr/ 

“ExposedPorts” 5000/tcp 5000/tcp 

“Cmd” “python”, “real_app.py” “python”, “app.py” 



TABLE II.    FINGERPRINT SCAN RESULTS 

Target 
Outputs 

Ports Tool Signature 

Digital Twin (api) 

5000 nmap -sV “Unrecognized” 

5000 whatweb 
Python/3.923 

Werkzeug/2.3.8 

Original Webserver 

(nginx) 

8080 nmap -sV http, nginx 1.29.0 

8080 whatweb Nginx/1.29.0 

Generic (httpd) 
8081 nmap -sV http, Apache httpd 2.4.65 

8081 whatweb Apache/2.4.65 
  

Nmap and WhatWeb, we evaluate the generated honeypot’s 
‘stealthiness’. As mentioned above, we used an original, 
unmodified nginx web application and a generic Apache service 
as baselines. As shown in Table 2, there are significant 
differences in the outputs. Both Nginx and Apache were 
accurately identified by the automated scanning tools, along 
with their service names and versions. However, the honeypot 
generated from the dynamic build strategy was not recognized 
by Nmap as a known service. WhatWeb was only able to identify 
the underlying Python/Werkzeug, without noticing any 
honeypot signatures. This “unrecognized” state shows the 
success of the dynamic build strategy in creating a high-fidelity 
honeypot that cannot be detected or classified as a generic 
honeypot. 

C. Experiment 2: Self-Synchronization and Efficiency 

 The core concept of this experiment is to evaluate the ‘self-
synchronizing’ ability of the framework and how efficient it is 
compared to a manual configuration. By measuring the average 
time it took from reaction to the redeployment of the changed 
infrastructure, we prove the automation is indeed vastly quicker 
and cost-effective. 

 We started the experiment with monitoring the source for 
any changes. A pre-defined change (e.g., modifying a service’s 
port setting, changing the MySQL version, etc.) was applied to 
the source file, and we measured the total time took from the file 
save to the redeployment and reflection of the changed 
environment. This process was repeated 10 times in order to 
calculate the average time of the automation.  The average 
response time, from detecting the change to redeploying the 
modified environment, was 26.326 seconds as shown in Table 3. 
This rapid automation shows the framework’s ability to 
maintain sync with the original environment in almost real-time. 

 Furthermore, the automated  framework reduces the entire 
modification process to a single step, making the obstacle in 
modification, deployment, and maintenance, trivial. Manual 
synchronization requires several steps; manually stopping the  
current environment, editing the IaC source file, attaching and 
reconfiguring according to policy, regenerating the deception 
blueprint, and manually redeploying the new environment. 

 While the manual approach requires multiple steps as 
mentioned, the automated approach need only one step (with the 
exception of configuring the pre-defined policies); configurint 
the IaC file. The proposed automation lets the user to save time 
and resources, while also minimizing the possibility of human 
error which can lead to malfunctioning deception environments. 

TABLE III.  AVERAGE RESPONSE TIME PER MODIFICATION 

Rounds 
Container 

Modifications Response Time 

1 
Port Settings Change  

(8080:80 → 8888:80) 24.63s 

2 
Port Settings Change 

(8888:80 → 8080:80) 25.87s 

3 
Port Settings Change 

(5000:5000 → 6060:6060) 26.48s 

4 
Port Settings Change 

(6060:6060 → 5000:5000) 26.71s 

5 
MySQL Version Change 

(mysql:8.0 → mysql:7.0) 27.19s 

6 
MySQL Version Change 

(mysql:7.0 → mysql:8.0) 26.05s 

7 
MySQL Version Change 

(mysql:8.0 → mysql:6.0) 26.58s 

8 
MySQL Version Change 

(mysql:6.0 → mysql:8.0) 26.78s 

9 MySQL & Port Settings Change 26.78s 

10 MySQL & Port Settings Change 27.19s 

Average 26.326s 
 

The framework not only provides speed, but stability as well. 

D. Experiment 3: Scalability 

 The core concept of this experiment is to evaluate the 
scalability of the framework’s blueprint generating. In other 
words, the blueprint generation must be of no fault for larger, 
more complex infrastructures. By measuring the average ‘final 
blueprint’ creation time, we prove that the computational 
resources do not increase drastically, and still provides a cost-
effective and efficient way to deploy and manage large complex 
infrastructures. 

 We created a complex docker-compose.yml file including 25 
services, all of which are random. A policy.yml file was also 
created to apply pre-defined policies to 10 of the 25 services. 
Then, we measured the time taken from parsing the source file 
to creating the final blueprint for each round, and calculated the 
average time taken.  

 As shown in Table 4, for 5 rounds, the framework 
successfully processed 25 services and generated the final 
blueprint in an average time of 0.027 seconds. In comparison to 
the simple setup’s average blueprint creation time of 0.012 
seconds, this indicates that the processing time and computation 
did not increase linearly, showing the framework’s viability for 
the widespread use in complex systems, with little overhead in 
the deployment of the deception environment. 

TABLE IV.  AVERAGE BLUEPRINT CREATION TIME PER SERVICE 

Rounds 
Complexity 

Simple Setup (3 services) Complex Setup (25 services) 

1 0.013s 0.028s 

2 0.011s 0.029s 

3 0.013s 0.026s 

4 0.012s 0.026s 

5 0.011s 0.027s 

Average 0.012s 0.027s 
 



E. Discussion 

 The experiment results prove that the Self-Synchronizing 
Cyber Deception Framework successfully achieves its intended 
goals. The efficiency and fast processing times from experiment 
2 and 3 show that this framework could be considered as a viable 
option against the high-cost deceptive strategies. By reducing a 
multi-step manual job into a single automated process, the 
suggested framework not only saves time and resources, but also 
eliminates the possibilities of human error. Also, the fidelity 
evaluation proves the framework’s ability to create believable 
honeypots without using any real data or application logic. The 
dynamic build strategy acts as a core mechanism that creates 
seemingly indistinguishable honeypots; a crucial factor in 
deceptive environments. Overall, the proposed framework is an 
effective framework in solving the aforementioned gaps and 
limitations of current deception strategies.  

 However, considering that the experiments were done in 
controlled environments with sample IaC files,  real-world use 
has still room for validation. Real-world enterprise IaC may 
contain complex logic, including user-defined components. This 
requires more dynamic modules, such as enhanced parsing 
modules or adaptable transformation engines.  

V. CONCLUSION 

 This paper addressed a critical challenge in the active cyber 
deception domain: the difficulties of deploying and maintaining 
high-fidelity deception environments in rapidly growing modern 
IT infrastructures. Conventional honeypots quickly lose their 
effectiveness due to the configuration gap, while automated 
approaches often required costly prerequisites such as pre-
existing digital twins. To fill these gaps, we proposed a Self-
Synchronizing Cyber Deception Framework based on the “IaC 
Reflection” method. Our framework successfully demonstrates 
a fully automated pipeline that transforms the original 
environment’s IaC blueprint into a high-fidelity self-
synchronizing honeypot.  

 There are three core contributions of this paper. First, by 
treating the IaC file as a single source of input, our framework 
creates a two-layer honeypot architecture. Second, the viability 
of the dynamic build strategy achieves the creation of high-
fidelity honeypots. These honeypots have the same structural 
dependencies but do not use real application logic, which allows 
users to create a more realistic, seemingly identical honeypot. 
Third, with the self-synchronizing mechanism, whenever a 
change in infrastructure is made (in the source IaC file), the 
framework can apply the changes automatically, solving the gap 
between the modified original and the unmodified deception 
environment in real-time. As the original system changes over 
time, the self-synchronization mechanism provides stability and 
cost reduction.  

 The final results of the framework also suggest a successful 
integration of IaC and DevSecOps. By directly connecting the 
source IaC file with the domain of cyber deception, cyber 
deception is no longer an extra step to take, especially in the 
lifecycle of mass infrastructures. By a completely automated, 
self-synchronizing framework, the cyber security space is kept 
in-sync with the original infrastructure, providing a strong lure 
for infrastructure owners to be more willing to accept a more 

active security strategy. With one integration from the initial 
planning and deployment of the infrastructure, active deceptive 
strategies can easily be a part of keeping the system safe. 

 While the framework successfully addresses the 
aforementioned limits in current active defense systems, the 
framework still has potential for expansion. First, the current 
framework handles simple IaC constructs. It may not support 
advanced, complex logic in real-world IaC examples. Also, 
efficiency was measured qualitatively. While the efficiency gain 
was evident, using a quantitative approach would be required in 
further research. Second, the dynamic build strategy is generic 
in behavior. The next step would be to enhance the ‘behavioral 
fidelity’ by dynamically generating application logic. Further 
work will be focused not only on increasing support for broad 
IaC features, but also addressing intelligent approaches in the 
dynamic build strategy. 
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