
HyperDealer: Reference-pattern-aware Instant Memory Balancing for Consolidated
Virtual Machines

Woomin Hwang, Yangwoo Roh, Youngwoo Park, Ki-Woong Park, and Kyu Ho Park
Computer Engineering Research Laboratory, EE

Korea Advanced Institute of Science and Technology
Daejeon, Korea

{wmhwang,ywroh,ywpark,woongbak}@core.kaist.ac.kr, kpark@ee.kaist.ac.kr

Abstract—Memory contention among consolidated virtual
machines (VMs) creates the need for a memory balancing op-
eration. In an attempt to provide a prompt memory balancing
mechanism, we found problems with the retardation of memory
transfer by the reclamation delay. The scheduling of the VMs
generates the delay, and a conflicts of two reclamation policies
between the guest OS and the hypervisor deteriorates it. As
a remedy to these problems, we propose HyperDealer, which
selects the victim page by applying reference patterns, reclaims
the pages with hypervisor-level paging, and transfers those
pages with ballooning of the guest OS. Our scheme eliminates
the involvement of the victim VM in memory balancing and
extends the dwell time of reclaimed pages in the reclaimed
state. Consequently, HyperDealer significantly reduces the time
taken to transfer memory with a low overhead and enhances
the value of additional memory for the recipient VM. The
experimental results of our scheme show that the application
performance in the recipient VM is 11% more time-efficient
and has a penalty which is 50% less than previous approaches.

Keywords-memory balancing; virtual machine; consolidated;
VM; reference pattern

I. INTRODUCTION

As primary bases of cloud computing, virtualization
technologies have been renewed as a new service hosting
platform because it offers benefits of resource efficiency, cost
saving, and ease of system management. For high resource
utilization, multiple virtual machines (VMs) are consolidated
and share the same hardware. Such a situation, a hypervisor
controls all hardware resources while providing each guest
OS with the illusion of a bare machine by virtualizing those
resources. Although this separation is good for its essential
objective, it also creates a need for cooperative management
of physical memory between the hypervisor and the guest
OS. Typically, the application performance on a guest is
not proportional to the size of the memory allocated to each
VM. Because each application has a different memory access
locality and most of the free pages are consumed by a page
cache for their own caching purposes. Furthermore, unlike
CPU and I/O resources, which are sharable with a limited
overhead, memory is much harder to share because it is
allocated on large time scales.

Figure 1. A Concept of memory balancing

Due to the memory pressure from a page cache’s occupa-
tion, the static memory partitioning has a severe drawback
as a result of the fixed boundary of the free memory in
the system. Therefore, a conventional virtualization system
enables the amount of physical memory to be extended or
reduced to accommodate changes in memory requirements.
Although dynamic partitioning [1], [2] and hypervisor-level
paging [3], [4] provide a memory balancing scheme among
multiple guests, they are still incapable of maximizing the
value of additional memory for the recipient VM.

Dynamic partitioning is based on ballooning [1], which
utilizes internal knowledge of the guest OS. Following
the directives of the hypervisor, a balloon driver in each
guest allocates memory by using the guest’s own reclaiming
algorithm and internal memory access knowledge. Those
acquired page frames are returned to the hypervisor for
allocation to a different guest. However, besides the explicit
overhead of the size decision for its high complexity, we
identified a fundamental limitation caused by the involve-
ment of a victim guest OS, and that limitation drives the
architecture of our instant balancing scheme.
Decision Overhead To maximize systemwide performance

by balancing memory, the hypervisor should figure out
which VM requires memory and which VM gets the
least useful memory. If we assume that VM ∈ V can
get a maximum of M pages, then a brute force search
for the new memory size takes O(M |V |) time and
consequently reduces the merit of additional memory.
Furthermore, the lack of guest OS information makes

2010 IEEE 3rd International Conference on Cloud Computing

978-0-7695-4130-3/10 $26.00 © 2010 IEEE

DOI 10.1109/CLOUD.2010.70

426

Authorized licensed use limited to: Sejong Univ. Downloaded on January 12,2024 at 13:46:59 UTC from IEEE Xplore. Restrictions apply.

(a) Ballooning

(b) HyperDealer

Figure 2. Timeline for memory transfer

the working set size (WSS) inaccurate, thereby making
the decision of memory balancing hard. For example, a
working set may be overestimated with long sequential
scans [5], [6].

Balancing delay A beneficiary VM can acquire additional
memory only after one or more victim VMs relinquish
the page frames to be transferred. As shown in Figure
2(a), unavoidable dependency from the intervention of
the victim guest OS generates a scheduling-induced
memory balancing delay. If the hypervisor decides
that the beneficiary VM (domB) requires additional
memory, it requests the victim VM (domV) to re-
linquish page frames. DomV spends its own CPU
time, Tpage release, for memory relinquishment when
domV is scheduled after time Tschedule delay. DomB
then receives those page frames on the next schedule
after Tpresent. Unfortunately, the greater the number of
victim VMs, the longer the duration of Tschedule delay;
the sum of the Tpage release values is also greater,
even if the hypervisor changes the scheduling order
of the victim VMs. This delay can prevent domB
from acquiring memory when domB scheduled before
all domV completes memory relinquishment. If the
hypervisor transfers memory before all required page
frames are reclaimed, the total Tpresent value increases
because domB receives page frames multiple times. As
a result, the memory transfer speed is slower, which
means there is a reduction in the performance impact
of additional memory for the recipient guest.

Unlike the ballooning method, hypervisor-level paging has
no such overhead from the complex decisions and delays
caused by the intervention of the guest OS. However, if a
lack of memory access knowledge is visible to the guest OS,

Figure 3. Example of policy mismatch

a double paging anomaly is generated [7]. That is, a decrease
in the VM’s real memory size without a decrease in the size
of the memory of the VM generates a mismatch in two
reclamation policies. This mismatch leads to a reduction of
dwell time and a significant increase in the number of page
faults.

Reclamation policy mismatch The mismatch of the two
LRU-based page frame reclaiming policies reduces time
so that the reclaimed pages remain reclaimed and the
overhead of hypervisor-level paging is consequently
increased. Most general-purpose guest OSs use LRU-
like page frame reclaiming algorithms. As shown in
Figure 3, if the hypervisor reclaims a page frame on
the basis of the LRU strategy, the algorithm in the
hypervisor makes the worst choice each time. The
hypervisor must therefore recover page frames in a
reclaimed state within a short time. This requirement
reduces the dwell time of the page in the reclaimed
state so that the algorithm reclaims another page and
consequently increases the number of page faults.

In this paper, we present a hybrid approach that combines
the strong points of the hypervisor-level paging and the
ballooning method. With this approach, which utilizes the
benefits from the consideration of the application charac-
teristics but avoids their drawbacks, the memory balanc-
ing operation can be accelerated. The approach should be
accomplished with minimal modification of the guest OS.
We therefore propose HyperDealer: it utilizes hypervisor-
level paging on the basis of the reference pattern of the
page cache of guests and deploys ballooning to supply the
recipient guest with additional memory. We monitor access
to the page frames that belong to each guest’s page cache,
detect sequentially referenced clean pages at a filestream
level. Those sequentially referenced clean pages are best
candidates prior to other pages. The hypervisor steals them
with the MRU strategy, which means, as shown in Figure 3,
that there is a reduction in the number of page faults from
memory stealing. The hypervisor transfers those page frames
either through ballooning or through restoration of the stolen
page frames. Later, if a victim guest OS is deprived of too
much memory, the hypervisor requests explicit memory bor-
rowing from the victim guest to make the victim guest know

427

Authorized licensed use limited to: Sejong Univ. Downloaded on January 12,2024 at 13:46:59 UTC from IEEE Xplore. Restrictions apply.

the exact size of the memory the victim guest itself actually
uses. As shown in Figure 2(b), HyperDealer consequently
reduces the memory transfer delay and the number of page
faults from memory stealing, and this reduction improves the
response and throughput of the memory allocation requests
for a memory recipient guest.

We implemented our scheme in Xen [8]. The experimental
results show that the scheme can accelerate memory balanc-
ing and significantly increase the performance of VMs that
suffer from insufficient memory allocation with only a slight
overhead for the initially over-allocated VMs. The remainder
of this paper is organized as follows: Section II describes our
scheme in detail. Section III describes our implementation
issues. Section IV compares our experimental results with
the results of previous approaches. Section V discusses
related works. Finally, Section VI presents our conclusions.

II. REFERENCE PATTERN-BASED INSTANT MEMORY
BALANCING

In this section, we present the basic design of our ref-
erence pattern-based hybrid memory balancing architecture,
which includes a new victim page selection mechanism that
ensures a low overhead.

A. Basic Design

Our balancing architecture has two primary design goals.
First, to adapt the bursty and time-varying memory require-
ments of a variant workload, the scheme should try to
remove any intervention of a guest OS on the page frame
reclamation. Second, it should try to select victim page
frames intelligently to reduce the performance penalty of
a victim guest OS. To achieve these goals in HyperDealer,
we designed the hypervisor to monitor page frames that are
used as a page cache for all VMs and to reclaim the page
frames through reference pattern-based paging. Those page
frames are then allocated to the recipient VMs either directly
or through ballooning.

Figure 4 illustrates the overall architecture of Hyper-
Dealer. Each guest OS passes on information about pages
within its own page cache. The information specifies which
page is inserted into, evicted from, and reused within the
cache. At a machinewide level, the hypervisor maintains the
relative age of each page frame that belongs to the page
cache of any guest OS. The instances of memory access
from the VMs to those pages are intercepted by the hyper-
visor and used to update the management data structure.
Our pattern classification mechanism, which is described
in Section II-B, causes page frames to be categorized into
two types:sequential references and unclassified references.
Two partitions accommodate those classified page frames
separately. The management of each partition reflects the
characteristics of the page frames that belong to each par-
tition. For the partition that holds the sequential references,
a sequence consists of page frames that are sequentially

Figure 4. Overall architecture

referenced within a task-level filestream; All the sequences
are arranged according to the MRU strategy. Within the
partition that holds the unclassified references, we use the
LRU strategy. If a page frame in the sequential partition is
referenced again, the page frame is moved to the unclassified
partition and the associated sequence is split into two new
sequences with the same age.

The overall procedure of memory transfer is illustrated in
Figure 2(b). When a page is requested for memory balance,
for example, a least-valuable page frame is selected as the
victim page on the basis of its reference pattern. The page
frame is transparently reclaimed shortly before the hypervi-
sor tries to schedule the beneficiary VM. Depending on the
reason for the request, a different allocation mechanism is
then applied to the beneficiary VM. If the reason is a paging-
in event of a reclaimed page in the hypervisor, a victim page
is directly allocated. However, if the request is the result
of memory balancing, the hypervisor allocates the page to
a guest OS through ballooning. Later, if a victim VM has
stolen more memory than the threshold level, the hypervisor
requests explicit memory borrowing from the VM. This type
of borrowing reduces the disparity between the memory size
that the victim guest OS knows about and the memory size
that is actually allocated.

In our page frame management, we concentrate on clean
page frames that belong to a page cache because of the
volatility of the clean pages. Generally, guest operating
systems, such as Linux, attempt to use any available memory
for their own caching purposes. As a result, only a small
amount of memory is left free; others contain content stored
in permanent storage. Because the cached non-dirty content
can be rebuilt by doing a read operation from its storage
location, the guest can tolerate the loss of the page content.
Thus, if the hypervisor tries to reclaim those pages, there is
no need to swap out page content to its own swap device
and dual-swapping can be avoided. We don’t consider zero-
pages of the guest OS as a candidate for reclamation because
the counterproductive effect of doing so. In general, a guest
OS must maintain a small number of free pages so that it
can respond immediately to a memory allocation request.

428

Authorized licensed use limited to: Sejong Univ. Downloaded on January 12,2024 at 13:46:59 UTC from IEEE Xplore. Restrictions apply.

A guest OS can handle a request for memory allocation if
it uses the prepared free pages and replenishes them later.
However, a hypervisor that tries to reclaim the free pages
for the benefit of having no swap-out or reload offers the
guests false information about memory availability. Finally,
the hypervisor delays frequent instance of small memory
allocation. Furthermore, it blocks the execution of the pro-
cess until the guest kernel or the hypervisor uses its own
reclaiming algorithm to make up for a deficiency of free
pages; this step propagates delays for all applications in the
same victim domain.

Hence, we restrict our monitoring to page frames that
are used as a page cache and choose clean pages as a
victim. This process requires no swap storage area for the
hypervisor, no additional management cost, and no data flush
overhead. For the policy on the usage of zero-pages, we use
the same explicit management policy as the one proposed
in [2].

B. Reference pattern-based victim selection

The long dwell time of a reclaimed page staying with
no access is an important factor for ensuring the victim
guest OS has a low penalty. The victim guest OS gets a low
penalty when a page stays in the reclaimed state for a long
period. However, as mentioned in Section I, the short dwell
time from the reaccess under the LRU strategy repeatedly
provokes the reclamation of another page that is accessed
again.

To ensure a page stays in the reclaimed state for longer,
the hypervisor selects victim pages on the basis of each
page’s reference pattern. To detect reference patterns and
associated page frames, we distinguish the tasks and then
detect the filestream-level sequentiality on the basis of the
task. We distinguish each task by recognizing changes in
the page table used in [9]. We intercept read system calls
issued from a distinguished task and associate them with
the touched page frames. The hypervisor then collects the
associated 6-tuple information, which consists of a task
descriptor, a file descriptor, a start offset, an end offset, a
loop period, and the address of associated page frames. A
reference is categorized as a sequential reference after the
same task makes a given number of consecutive references.
The touched pages are then considered to be a sequential ref-
erence. Sequential references have no loop period, whereas
loop references have a loop period represented by a number
of page cache references between touches. Information about
page frames that contain touched data is required because
the memory transfer unit handles memory at the level of the
page unit.

Figure 5 shows an example of sequential and loop ref-
erences. In the figure, the page frames that contain a file
with fileID 4 referenced by a task with taskID 3 constitute a
sequential reference because they have infinite loop period.
The page frames that contain files with fileID 4 and fileID 5

Figure 5. Examples of sequential and loop pattern detection

referenced by task 1 and task 2 are loop references with
periods of 35 and 100, respectively. A page frame that
contains data about more than two reference patterns belongs
to the sequence with the last reference.

Victim page selection is based on the reference pattern of
the candidate page frames. Sequentially referenced pages are
never re-referenced. Therefore, the MRU selection strategy
is used for a longer dwell time in a reclaimed state and
consequently reduces the delay from a policy mismatch.
The hypervisor selects victim page frames from within
the partition that holds the sequential references. The page
frames of the partition that holds unclassified references
are selected with the LRU order after all the sequentially
referenced pages are reclaimed.

C. Reverse-ordered ballooning

As described in Section I, the main reason for the balanc-
ing delay is the ordered execution of inflation and subsequent
deflation of balloon drivers. We remove the functional de-
pendency by replacing the inflation of the balloon with the
reclamation in the hypervisor. This replacement reverses the
execution order of the ballooning. In our design, the inflation
of the balloon in a victim guest OS is performed either in
the idle time of the victim VM or when the stolen page
frames of the guest OS exceed the threshold. However, the
deflation occurs whenever the hypervisor balances memory
in such a way that inflation follows a number of deflations.
Therefore, reverse-ordered ballooning creates a dependency
between the reclamation in the hypervisor and the deflation
in a beneficiary VM. This process creates freedom from the
schedule of the victim VM and reduces the memory transfer
delay.

III. IMPLEMENTATION

We implemented a prototype system for Xen 3.3.1 and
Linux 2.6.18. All components were implemented in a Xen
hypervisor, with some hypercall invocations implemented in

429

Authorized licensed use limited to: Sejong Univ. Downloaded on January 12,2024 at 13:46:59 UTC from IEEE Xplore. Restrictions apply.

the Linux kernel. The hardware platform is x86-64 archi-
tecture, where the guest OS runs in privilege level 3. The
following subsections describe the specific implementation
of our scheme. First, we describe the implementation in
relation to OS information exploitation, such as tracking
page cache access. We then use the event correlation scheme
to describe the data read.

A. Monitoring of page cache access

The task of monitoring access to the page frames of
all the VM’s page cache is a combination of page cache
distinguishment and access detection to those page frames.
To distinguish page frames belonged to a page cache, we use
hypercall explicitly though they are available without any
modification of the guest OS [10]. When a page is inserted
into or evicted from a page cache, a hypercall is called to
inform the hypervisor of a change in the page’s position. For
detecting memory access event which are usually transparent
to the hypervisor, we borrow minor page fault from [2],
[15], [16]. With minor page fault, the hypervisor traps target
page frame accesses intentionally by granting highest access
privilege to the pages of concern. As access to the page table
entry (PTE) requires highest privilege, non-privileged access
to the target page is trapped to the hypervisor. Therefore, the
hypervisor can recognize accesses to the concerned page
frames.

B. Page read inference with event correlation

To detect filestream-level memory access pattern in the
hypervisor, we correlate file access information with phys-
ical memory address.At a filestream-level, memory access
pattern is a consecutive series of the read or write requests
to the page cache from a task. Any file information is
inside the guest OS, a read or write request is performed
by a corresponding system call. However, the series give no
information about the machine address of the touched page
frames where the data is located. In addition, the information
is not exploited outside the OS; the information reveals
which page frame contains the file data of a specific offset.
Therefore, the reference to the cached file data contains no
information about the physical page frames because it works
on the basis of a virtual address space of the guest OS.

To resolve this problem, we intercept some system calls
and correlate event that connects the reference to the data
and the touched page frame information. A read system
call includes required information as arguments such as a
file descriptor, an offset in the file, and the length of the
target data. The hypervisor distinguishes each file by the
file descriptor because of its uniqueness in a task; it also
detects consecutive instances of access by the offset and the
length of read data in the specified file. The event correlation
scheme, which is described in Figure 6, associates page
frames touched by the read system call with the sequence
in which the read system call belongs.

Figure 6. Intercepting page cache read based on file and task-awareness

The start of the read system call is initially intercepted
by the hypervisor to get arguments of the read request.
Access to the page frame in the page cache is trapped
by the hypervisor, and the hypervisor consequently knows
where the data read of the current task are located in the
page frame. This behavior is possible because the data
read usually blocks the operation, which means that the
specified task’s next event are stalled by the read request.
The hypervisor is notified whenever a read operation is
completed. By chaining consecutive events for the same task,
the hypervisor can infer the relation between the file-level
access and its physical memory location. In the original
Linux, system calls are made by triggering the int 0x80
interrupt line. In the original Xen hypervisor, a system call is
implemented as a direct trap for performance improvement.
In our Linux implementation on an x86-64 system, a system
call is trapped by the hypervisor because the guest OS runs
on privilege level 3. We simply add argument acquisition
codes. For the notification of the completion of a read
operation, we add hypercall.

IV. PERFORMANCE EVALUATION

In this section, we describe the experimental evaluation of
our prototype implementation. Our scheme is implemented
on an Intel server with 4 cores (two Intel Xeon 3.40 GHz
Dual-Core processors) and an 8GB memory. By default,
all the VMs are initially allocated 256MB of memory and
configured with 512MB as their highest possible memory
allocation. The beneficiary VM is executed first to minimize
the value of Tpresent whenever the page frames requested
to be transferred are ready. For the dynamic partitioning,
that is ballooning, we also change the scheduling order of
the victim VM with an interrupt to make the requested page
frames relinquish immediately, thereby minimizing the value
of Tschedule delay .

A. Overhead of the Access Monitoring

The runtime overhead of our scheme mainly comes from
the minor page faults of page frames in the page cache,
the detection of reference patterns and the reloading of data
from permanent storage. To evaluate the runtime overhead of
our scheme, we measure the execution time of the Tiobench

430

Authorized licensed use limited to: Sejong Univ. Downloaded on January 12,2024 at 13:46:59 UTC from IEEE Xplore. Restrictions apply.

Normalized Throughput
Non-monitored HyperDealer

Tiobench (seq. read) 1 0.9908
Tiobench (random read) 1 0.9980

Dbench 1 0.9834

Table I
RUNTIME MONITORING OVERHEAD

Page acquisition time (µs)
Ballooning 8.345

HyperDealer 0.600

Table II
ELAPSED TIME OF A PAGE RELEASE TO TRANSFER

Figure 7. Performance effect of memory transfer speed

(version 0.3.3) [11] benchmark with our scheme turned on
but without any memory reallocation. As shown in Table I,
the average monitoring overhead is negligible.

B. Effect of the memory transfer speed

To evaluate the effect of memory transfer speed to the
application performance, we first assign memory allocation
job to a VM, while other 3 VMs perform sequential and
random read in Tiobench benchmark. Then experiments are
performed to measure memory transfer speed. We use each
VM’s swap usage as a criterion of memory balancing.

Table II shows the result of average reclamation time of a
page from a victim VM using inflate of ballooning and our
scheme. Ballooning takes much time compared with Hy-
perDealer because it requires victim domain’s involvement
consuming Tpage release to acquire free memory. Therefore,
it imposes restrictions on elaborate memory balancing for its
delay proportional to the number of balancing trials.

Figure 7 shows the elapsed time of memory allocation
in beneficiary VM while the numbers of page frames are
transferred as a result of memory balancing. It presents
the effect of memory transfer speed and victim selection
policy on the application performance. Faster transfer of
page frames enlarge the amount of free memory when the
guest OS requires them. As a result, it reduces the number

Figure 8. Decomposed execution time of memory transfer

Figure 9. Dwell time in the reclaimed state according to the victim
selection strategy

of time-consuming memory reclamation trials if no free
memory exists. Therefore, the guest OS can respond faster
to the memory allocation request of user application. In
addition, if we reclaim and restore a sequence instead of
a page, we can get more accelerated result indicated as
Sequential+WHOLE SEQ. Because a sequence has more
page frames, and data can be easily recovered with less
number of long access to the permanent storage.

We can see how much the victim guest’s involvement
affects to the memory transfer speed in Figure 8. The graph
shows a ratio among the delay caused by Tpage release and
minimized Tschedule delay from victim VM, execution time
of beneficiary VM and the hypervisor. The delay makes
the beneficiary VM acquire memory slowly; hence the VM
consumes more CPU time to do its own job, including
self-reclamation inside the guest OS. HyperDealer has little
dependency on the delay; however, as a result of the fast
memory transfer, the OS of the beneficiary VM takes longer
to handle additional memory, particularly with regard to
managing and cleaning new pages.

Sacrificing sequential references prior to sacrificing un-
classified pages affects performance. To see how this effect
compares with the ordinary LRU strategy, we compare the
dwell time of a reclaimed page in a reclaimed state according
to the reclamation method. The result of the comparison
are shown in Figure 9. All the victim VMs execute the

431

Authorized licensed use limited to: Sejong Univ. Downloaded on January 12,2024 at 13:46:59 UTC from IEEE Xplore. Restrictions apply.

Tiobench benchmark. Maintaining a long dwell time is
important for a reclaimed page in a reclaimed state. The
long dwell time means that the reclaimed page cause no
unnecessary page fault or data reload from the permanent
storage-both those factors degrade performance. The results
confirm that the victim selection policy for the hypervisor-
level paging is effective. However, because of the policy
mismatch, a page that is reclaimed by the LRU victim
selection policy in the hypervisor is soon reclaimed by the
guest OS. The quick recovery of the reclaimed pages results
in a short dwell time. On the other hand, HyperDealer selects
sequentially referenced pages first and reclaims those pages
prior to others on the basis of the MRU strategy. Although
the inaccuracy of the sequential reference detection scheme
generates a short dwell time, a near maximum dwell time
of pages reclaimed by HyperDealer is much longer that of
pages reclaimed by the LRU policy.

This measurement is taken in a situation where reclama-
tion in a page cache of the guest OS is actively performed
by the Tiobench benchmark. If the workload fluctuates, the
difference in the dwell time from the policy mismatch is
increased. The large difference lowers the overhead of the
victim VM as a result of the page fault of the reclaimed
pages.

V. RELATED WORK

Contemporary studies present solutions that enhance
machine-wide performance in the VM-consolidated environ-
ment.

In Cellular Disco [3], each cell can borrow memory
from other cells that rich in free memory. However, the
cell is defined as a fault containment unit in a cluster
composed of several physical machines, and the authors
propose resource balancing policy among those cells. Our
proposed memory reallocation policy is for multiple VMs
within a cell, especially single physical machines. However,
they did not address this approach.

Waldspurger [1] introduces an important memory transfer
technique called memory ballooning, which is used in the
VMWare ESX Server. Each guest OS uses a special kernel
driver, a balloon driver, which inflates when memory is
allocated from the kernel and is subsequently released to the
hypervisor. Similar to inflate, the driver also deflates when
memory is requested from the hypervisor and subsequently
released to the guest kernel. The balloon driver gives the
guest OS the illusion that the driver occupies memory when
the memory is under the control of another VM. Because
of this behavior, the memory allocation of a VM can be
changed dynamically. However, the inflation and deflation
of a balloon driver sacrifices the CPU time of the victim
guest OS. Moreover, the inflation in the victim guest OS
must precede the deflation in the beneficiary guest OS. As
a result, there is a delay in the memory transfer.

In Hypervisor Exclusive Cache [12], the hypervisor man-
ages each VM’s memory portion as a second level exclusive
cache and tracks its LRU-based miss ratio curve. By chang-
ing the size of each VM’s hypervisor-level cache, it achieves
the same effect as changing the VM’s memory allocation.
Newly allocated memory is either inserted into the VM
through a balloon driver or used as an exclusive cache in
the hypervisor. Because the tracking of the miss ration curve
starts when the memory size needs to be mediated and the
hypervisor requires some additional memory references in
the exclusive cache, there may be a long lag between the
time for a change and the time for completing the balance.
Furthermore, a VM that executes a memory-intensive but
non-I/O-intensive job cannot measure the memory require-
ment correctly.

Transcendent Memory (Tmem) [13] also proposed a
hypervisor-level second-chance page cache for each guest
domain in a physical machine. With Tmem, a hypervisor
collects fallow memory and wasted guest memory and then
uses it as a per-VM private page cache. The authors try
to balance memory by implicitly mediating the size of a
private page cache with a global LRU queue. The scheme is
effective for balancing I/O-intensive applications with a large
size page cache, but each VM must maintain a sufficiently
large private cache for a correct decision. A page copy
operation from every eviction of the cache content generates
some overhead, and every data read should check the caches
on both layers. Furthermore, because Tmem is not directly
accessible and a page copy operation is required, it cannot
respond to the memory need of user-level applications.

Memory Balancer (MEB) and Collaborative Memory
Management (CMM) are highly relevant for our research.
MEB [2] decides the proper memory size of each VM
through WSS estimation. The victim VMs then inflate the
balloon driver to release memory, and the beneficiary VMs
subsequently deflate the balloon driver to make the guest
OS control the acquired memory. MEB utilizes its own
memory reclaiming policy with regard to the guest OS’s
selection of victim pages. However, the policy also causes
a swap out or data flush of dirty pages to the corresponding
storage location in accordance with the guest OS’s policy.
Furthermore, the balloon driver’s inflation and subsequent
deflation cause a scheduling-induced balancing delay; hence,
the ballooning is unsuitable for applications with dynam-
ically changing memory requirements. If multiple VMs
exist, the increased delay prolongs the memory contention,
and consequently depreciates the longer, thus depreciate
the additional memory in the beneficiary VM. Feedback-
directed ballooning [14] also mentioned a similar solution
with the same weak points.

CMM [4] attempts to address the issue of double paging
[7] and the overhead of moving memory by ballooning in
the hosted Linux environment of System z. In CMM, the
guest VM gives the hypervisor hints that help page frames

432

Authorized licensed use limited to: Sejong Univ. Downloaded on January 12,2024 at 13:46:59 UTC from IEEE Xplore. Restrictions apply.

to be selected and reclaimed in a more intelligent way. The
hints contain each page frame’s state about which pages
are being used and which pages are reclaimable with little
penalty. The hypervisor can then select the victim pages
with the internal knowledge of the guest OS. On the other
hand, monitoring of all memory access in hardware without
any additional CPU protection privilege, such as Intel CPUs,
significantly degrades performance [15], [16]. Our scheme
limits the overhead by monitoring only page frames of a
page cache that belongs to all VMs without any hardware
assistance. The policy mismatch problem is not addressed
in this paper; it will require a large number of modifications
of the guest OS.

For the VM scheduling-related issue, Govindan et al.
[17] tried to solve the performance degradation caused
by scheduling-induced delays in network communication.
Each application spends a large amount of time waiting for
a chance to communicate because it must wait until the
CPU scheduler chooses it among the competing co-located
applications. As a result, the dependency on the scheduling
order causes the delay. We found that a similar delay in the
memory reallocation procedure makes the beneficiary miss
the opportunity to maximize the effect of donated memory.

The need for reference pattern detection is addressed in
[18]–[21] for victim selection of the page reclamation in
OS. The authors detect and classify the sequential reference
pattern and the loop reference pattern from instances where
the disk cache is accessed and then select a victim page
for reclamation on the basis of each pattern’s marginal gain.
Although this paper uses a detection scheme for detecting
reference patterns, we focus on the performance effect of
memory balancing among consolidated VMs, especially
with regard to the reduction in the victim VM’s overhead.

VI. CONCLUSION

As virtualization technology consolidates more guest OSs
into single hardware units, resource management has be-
come a key issue. Although memory balancing can reduce
memory contention among virtual machines, slow memory
balancing degrades the effectiveness of additional memory
in the suffering virtual machines. In this paper, we pro-
vide a full-fledged non-obstructive memory transfer scheme
enhanced with the reference pattern-based victim selection
and hypervisor-level reclamation. We propose HyperDealer,
which makes balancing operation free from the involvement
of a victim VM and extends the dwell time of reclaimed
pages in the reclaimed state. Consequently, HyperDealer
significantly accelerates the balancing operation with a low
overhead, thereby increasing the effect of additional memory
on the beneficiary VM. The experimental results show that
our scheme outperforms other approaches by 11% in terms
of time efficiency and by 50% in terms of mitigating the
overhead. In future works, we plan to adapt our scheme to
the memory requirements of the I/O workload.

REFERENCES

[1] C. A. Waldspurger, “Memory Resource Management in
VMware ESX Server,” in Proceedings of Fifth Symposium on
Operating Systems Design and Implementation (OSDI ’02),
Dec. 2002.

[2] W. Zhao and Z. Wang, “Dynamic memory balancing for
virtual machines,” in VEE ’09: Proceedings of the 2009
ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments. ACM, 2009, pp. 21–30.

[3] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum, “Cel-
lular disco: resource management using virtual clusters on
shared-memory multiprocessors,” SIGOPS Oper. Syst. Rev.,
vol. 33, no. 5, pp. 154–169, 1999.

[4] M. Schwidefsky, H. Franke, R. Mansell, D. Osisek, H. Raj,
and J. Choi, “Collaborative Memory Management in Hosted
Linux Systems,” in Proceedings of the 2006 Ottawa Linux
Symposium, 2006.

[5] H.-T. Chou and D. J. DeWitt, “An evaluation of buffer man-
agement strategies for relational database systems,” in VLDB
’1985: Proceedings of the 11th international conference on
Very Large Data Bases, 1985, pp. 127–141.

[6] G. M. Sacco and M. Schkolnick, “Buffer management in
relational database systems,” ACM Trans. Database Syst.,
vol. 11, no. 4, pp. 473–498, 1986.

[7] R. P. Goldberg and R. Hassinger, “The double paging
anomaly,” in AFIPS ’74: Proceedings of the national com-
puter conference and exposition. ACM, 1974, pp. 195–199.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” in SOSP ’03: Proceedings of the nineteenth
ACM symposium on Operating systems principles. ACM,
2003, pp. 164–177.

[9] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Antfarm: tracking processes in a virtual machine environ-
ment,” in ATEC ’06: Proceedings of the annual conference
on USENIX ’06 Annual Technical Conference. Berkeley,
CA, USA: USENIX Association, 2006.

[10] ——, “Geiger: monitoring the buffer cache in a virtual
machine environment,” SIGOPS Oper. Syst. Rev., vol. 40,
no. 5, pp. 14–24, 2006.

[11] M. Kuoppala, “Tiobench - Threaded I/O bench for Linux,”
2002.

[12] P. Lu and K. Shen, “Virtual machine memory access tracing
with hypervisor exclusive cache,” in ATC’07: Proceedings of
the 2007 USENIX Annual Technical Conference. USENIX
Association, 2007, pp. 1–15.

[13] D. Magenheimer, “Transcendent Memory on Xen,” Xen Sum-
mit, 2009.

[14] ——, “Memory Overcommit... without the commitment,”
Xen Summit, June 2008.

433

Authorized licensed use limited to: Sejong Univ. Downloaded on January 12,2024 at 13:46:59 UTC from IEEE Xplore. Restrictions apply.

[15] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou,
and S. Kumar, “Dynamic tracking of page miss ratio curve
for memory management,” SIGPLAN Not., vol. 39, no. 11,
pp. 177–188, 2004.

[16] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss,
“CRAMM: Virtual Memory Support for Garbage-Collected
Applications,” in Proceedings of 7th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’06),
2006.

[17] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and A. Siva-
subramaniam, “Xen and co.: communication-aware CPU
scheduling for consolidated xen-based hosting platforms,” in
VEE ’07: Proceedings of the 3rd international conference on
Virtual execution environments. ACM, 2007, pp. 126–136.

[18] J. Choi, S. H. Noh, S. L. Min, and Y. Cho, “Towards
application/file-level characterization of block references: a
case for fine-grained buffer management,” in SIGMETRICS
’00: Proceedings of the 2000 ACM SIGMETRICS interna-
tional conference on Measurement and modeling of computer
systems. ACM, 2000, pp. 286–295.

[19] J. Choi, S. H. Noh, S. L. Min, E.-Y. Ha, and Y. Cho,
“Design, implementation, and performance evaluation of a
detection-based adaptive block replacement scheme,” IEEE
Transactions on Computers, vol. 51, pp. 793–800, 2002.

[20] F. Zhou, R. von Behren, and E. Brewer, “AMP: Program
Context Specific Buffer Caching,” in ATEC ’05: Proceedings
of the 2005 USENIX Annual Technical Conference, 2005, pp.
371–374.

[21] Y. Zhu and H. Jiang, “Race: A robust adaptive caching
strategy for buffer cache,” Computers, IEEE Transactions on,
vol. 57, no. 1, pp. 25–40, Jan. 2008.

434

Authorized licensed use limited to: Sejong Univ. Downloaded on January 12,2024 at 13:46:59 UTC from IEEE Xplore. Restrictions apply.

