
THEMIS†: Towards Mutually Verifiable Billing Transactions
in the Cloud Computing Environment

Ki-Woong Park†, Sung Kyu Park†, Jaesun Han‡, and Kyu Ho Park†

Korea Advanced Institute of Science and Technology†, NexR Co.Ltd‡
{woongbak, skpark, kpark}@core.kaist.ac.kr, and jshan@nexr.co.kr

Abstract

The ability to record and keep account of the usage of

cloud resources in a credible and verifiable way is a
precursor to widespread cloud deployment and
availability because usage information is potentially
sensitive and must be verifiably accurate. In an attempt to
provide a mutually verifiable resource usage and billing
mechanism, we found that the frequent asymmetric key
operations of a digital signature lead to excessive
computations and a bottleneck of billing transactions. As
a remedy for these limitations, we propose a mutually
verifiable billing system called THEMIS. The system,
which introduces the concept of a cloud notary authority
for the supervision of billing, makes billing more
objective and acceptable to users and cloud service
providers. THEMIS generates mutually verifiable binding
information that can be used to resolve future disputes
between a user and a cloud service provider. Because
THEMIS does not require any asymmetric key operations
of users and providers, it provides a level of security that
is identical to that of a Public Key Infrastructure (PKI)
and it minimizes the latency of billing transactions. This
work has been undertaken on a real cloud computing
service called iCube Cloud 1.

1. Introduction

The pay-as-you-go pricing model is one of the core
components of the cloud computing environment. It
enables users to scale their capacity upwards or
downwards as their computing requirements change.
Cloud services change the economics of computing by
enabling users to pay only for the capacity that they
actually use. In this environment, the ability to record and
account for the usage of cloud resources in a credible and
verifiable way is a precursor to widespread cloud
deployment and availability [1, 23]. On the basis of
verifiability, cloud service providers (CSPs) and users can
both construct credible, verifiable usage records to prove
which resources were allocated and when they were
initiated. On the other hand, in commercial cloud services,

1 http://www.icubecloud.com:Cloud service platform & testbed of this work

such as Amazon EC2 [14] and Azure [3], the billing
transactions and management are both processed by the
CSP alone; there is no mutual verifiability of billing
transactions.

A PKI-based digital signature [17] stands out as a
fundamental and widely used mechanism for enforcing the
verifiability of billing systems. However, the
computational complexity of a PKI may result in a high
computational overhead and intolerable billing response
time because asymmetric key operations for digital
signatures need to be performed with regard to both the
thin client terminal and the CSP. In addition, the amount
of billing transactions increases rapidly in proportion to
the number of users that require diverse cloud resources.
By thoroughly investigating conventional cloud billing
systems, we identified the following two fundamental
requirements, which drive the architecture of our billing
system:

- A fine-grained billing mechanism with a minuscule

computational overhead: The frequent transactions of
fine-grained, mutually verifiable billing lead to an
excessive computational overhead or billing system
bottleneck. To mitigate these problems, we propose a
computationally efficient billing scheme called
THEMIS, which provides mutual verifiability. The
proposed billing scheme extremely minimizes the
asymmetric key operations of cloud users and CSPs; it
provides a level of mutual verifiability that is identical
to that of a PKI; it also minimizes billing transaction
latency.

- Support for a mutually verifiable billing
mechanism: In traditional cloud billing systems, the
billing management and billing information are both
processed by the CSP alone. For a credible and
verifiable way of logging resource usage, a digital
signature is essential because it enhances the billing
mechanism with mutual verifiability [2]. Our
proposed billing system, THEMIS, uses the novel
cloud notary authority to generate mutually verifiable
binding information for users and CSPs. Furthermore,
the resource usage log, which is based on a one-way
hash chain, retains the information in its local storage
for future accusations. THEMIS supervises billing

2010 IEEE 3rd International Conference on Cloud Computing

978-0-7695-4130-3/10 $26.00 © 2010 IEEE

DOI 10.1109/CLOUD.2010.21

139

and, because of its objectivity, is likely to be accepted
by users and CSPs alike.

In this paper, we present our realized THEMIS billing
system; it meets the above requirements and is deployed
in a real cloud computing service. According to the
performance evaluation, the overall latency of the billing
transactions of THEMIS (4.606 ms) is much shorter than
the latency of PKI-based billing transactions (which
averages 142.49 ms), though THEMIS provides identical
security features as a PKI.

The remainder of the paper is organized as follows: In
Section 2, we discuss relevant works. In Section 3, we
present the overall system design and components of the
proposed billing system. In Section 4, we illustrate the
proposed billing protocol. In Section 5, we evaluate the
performance of the proposed billing scheme. Finally, in
Section 6, we present our conclusions and future works.

2. Previous Work

A billing system that tracks the usage of computing
resources has been actively studied and developed in the
research area of grid or cloud computing. To date,
however, none of the billing systems have incorporated a
verifiable or fine-grained billing mechanism. In this
section, we briefly discuss the experimental results as we
evaluate existing billing systems in terms of their security
level and billing overhead. A more comprehensive
evaluation of the experimental results is described in
Section V.

2.1. Native billing systems

 In a pay-as-you-go pricing model, users can scale the
capacity of cloud resources on demand. Resource

consumption is billed on a utility basis with little or no
upfront cost. Two pioneering studies identified challenges
in managing the resources of a grid computing
environment and proposed a computational economy as a
metaphor for effective management of resources [4, 5].
Several researchers presented a resource usage processing
system that can be used to scan batch system logs to build
accounting records [6-10, 21]; this system is able to
record and account for the usage of grid resources. Figure
1 shows the architecture and characteristics of a billing
system without any security concerns. As shown in Figure
1, the resource usage information, such as the CPU cycles,
storage, and network bandwidth, are collected via a
resource monitor and charged over the billing module.
APEL [6] presents a billing system that processes log
information to create quantified accounting records. There
are also other resource management and billing
frameworks that have been suggested as part of traditional
grid approaches: namely, Condor/G [7], Nimrod/G [8],
GRASP [9], Tivoli [10], and TeraGrid [21]. However,
rather than address security concerns, those frameworks
mainly focus on presenting distributed resource usage
metering as well as an accounting and account balancing
mechanism for a distributed grid environment. Thus, they
fail to provide the type of mutual verifiability and integrity
needed in a verifiable billing system that records the usage
of cloud resources.

2.2. Security-enhanced billing systems

Several electronic payment schemes have been
proposed in the literature in an attempt to provide
security-enhanced billing mechanisms. They include
micropayment-based schemes such as PayWord [18],
MiniPay [16], e-coupons [19], and NetPay [24]. Broadly
deployed in e-payment systems, these schemes enable
users to securely and efficiently perform repeated

Cloud Resource Pool

Resource
Manager
Resource

Usage Monitor

Granted
Resources

2. Daily / Weekly / Monthly
Resource Usage Log

§ Supported billing function & Performance

Mutual-Verifiable Billing No

Resource Usage-Log Integrity No

Billing Transaction Latency 4.378ms

User

Cloud
Billing Agent

Figure 1. Native billing system and a brief overview
of the characteristics

1. Resource Request

Cloud Resource Pool

Resource
Manager
Resource

Usage Monitor

Granted
Resources

Resource Usage Log

Cloud
Billing Agent

§ Supported billing function & Performance

Mutual-Verifiable Billing Yes

Resource Usage-Log Integrity Yes

Billing Transaction Latency 142.49ms

2. Signature by Cloud service provider
3. Signature by User

User

1. Resource Request

Figure 2. Billing system enhanced with PKI and its
characteristics

140

payments. Many of these schemes are based on the use of
one-way hash functions that generate chains of hash
values; users perform billing transactions by releasing a
certain number of hashes in the hash chain. Although
these schemes are supposed to provide secure billing for
micropayment transactions in a computationally efficient
way, they offer no support for mutual verifiability of the
resource usage log.

The research area of cloud or grid computing has
presented the following market models and PKI enhanced
billing and accounting frameworks for user authentication
and secure communication: RUS [10], DGAS [11], SGAS
[12], GridBank [13], and Amazon EC2 [14]. They have
an access control mechanism that uses digitally signed
certificates to define and enforce an access policy for a set
of distributed resources. However, none of these projects
addresses the problem of dealing with the verifiability of
billing transactions or its computational efficiency, as we
do for the cloud computing environment.

Due to its digital signature and non-repudiation
features, a PKI is generally considered to be the most
appropriate and fundamental way of enforcing verifiability
in terms of our requirements [15, 25]. Figure 2 illustrates
the organization of a PKI-enhanced billing system and its
characteristics in terms of security level and billing
overhead. A PKI has a billing overhead even though it
relies on full security features to achieve mutual
verifiability. The extent of the overhead is mainly
determined by the extremely high complexity of RSA
operations when the PKI is used for a billing system by a
thin client or heavily loaded server [20]. Figure 2 shows
that the estimated average billing transaction latency in
our experimental environment is about 142.49 ms.

3. THEMIS
†
 Architecture

 While deliberating on the system requirements

mentioned above, we based the design of our billing
system and protocol on two principles: verifiable billing
with a cloud notary authority; and computationally
efficient billing transactions. In this section, we present
the overall architecture and billing process of THEMIS.

3.1. The Proposed THEMIS Infrastructure

Figure 3 shows the overall architecture of our THEMIS
billing infrastructure. The three major components of the
architecture are listed as follows:

- Cloud Service Provider (CSP): The CSP enables

users to scale their capacity upwards or downwards
in accordance with their computing requirements
and to pay only for the capacity that they actually
use.

- Users: We assume that users are thins clients who
use services in the cloud computing environment.
To use services in such an environment, each user
makes a request to the CSP with a billing
transaction.

- Cloud Notary Authority (CNA): The cloud
notary authority provides a mutually verifiable
integrity mechanism to combat the malicious
behavior of users or the CSP. The cloud notary
authority investigates billing transactions and
generates mutually verifiable binding information

† THEMIS, Goddess of Justice: We named our system to THEMIS because we are
pursuing the justice of the Cloud.

Cloud Resource Pool

Resource
Manager
Resource

Usage Monitor

Granted
Resources

Cloud
Billing Agent

Mutual-Verifiable Billing Yes

Resource Usage-Log Integrity Yes

Billing Transaction Latency 4.606ms

Signature by CSP
Signature by User

User

Cloud Notary Authority

Cloud Service Provider (CSP)

1. Resource Request
2. μ-Contract by CSP § Supported b illing f unction & Perf ormance

3. μ-Contract by User, CSP
5. μ-Contract Confirm

5. μ-Contract Confirm

4. μ-Contract Verification

μ-Contract Consistency by one-way hash
chain-based signature

Figure 3. Overall architecture and process flow of THEMIS

(CNA)

141

among all the involved entities on the basis of a
one-way hash chain and resource usage log; it also
retains the information in its local storage for
future accusations. Due to the cloud notary
authority, our proposed billing system can provide
mutual verifiability and integrity for a cloud
resource usage log. The process, which involves
exclusive key sharing between entities and a one-
way hash chain-based signature, is computationally
efficient for a thin client and the CSP.

3.2. Overall Billing Process of the THEMIS

With the proposed cloud notary authority, mutually
verifiable billing can be provided without asymmetric key
operations of any entities after a renewal phase. Figure 3
shows the overall process of a billing transaction with our
billing system. The following details of the mutually
verifiable billing mechanism are described in more detail
in Section 4:

1. The user generates a cloud resource request message

and sends it to the CSP.
2. The CSP sends the user a µ-contract-CSP message

generated with a digital signature from a CSP hash
chain.

3. The user generates a µ-contract with a hash chain-
based digital signature of the user and sends it to the
cloud notary authority.

4. The cloud notary authority performs transactions to
verify the µ-contract from the user.

5. The billing process is completed when the user and
the CSP receive confirmation from the cloud notary
authority.

4. Proposed Billing Protocol

While deliberating on our system design philosophy,
we did our utmost to streamline the computation and
communication overhead of the billing operation. Our
novel µ-contract is generated by a hash function and it
exclusively distributes keys among entities. It can
optimize the computation and communication overheads
of the billing mechanism and facilitates mutual
verifiability and integrity for cloud resource usage. In this
section, we describe the overall transactions of the
proposed billing protocol. Table 1 describes the notations
of the entities and messages that describe the proposed
protocol.

4.1. Flow Diagram of the Billing Protocol

Figure 4 shows a flow diagram to present the

transactions of the proposed billing protocol. Figure 5
describes the overall billing transactions and the message
specification that describe the proposed protocol. The
protocol consists of three states and the protocol safety is
verified in Section 4.4:

- State 1: When a user first accesses the CSP, mutual

PKI-based authentications are performed by the user,

u-Contract & Signature by CSP

u-Contract & Signature by user

1. u-Contract Integrity Check
2. u-Contract Mutual Verification
 (User ↔ Cloud Service Provider)

Cloud Service End

Cloud Service Start

Authentication &
Secure CH?

No

1. Mutual Authentication
(User ↔ Cloud Service Provider)
(User ↔ Cloud Notary Authority)
2. Key distribution

Cloud Resource Request

Yes

Provision of Cloud Resource

Additional Cloud Resource? Yes

No

State3 : Billing Transaction

u-Contract Confirm & Commitment

Cloud resource pool Granted resource

Hash-Chain Generation & Exchange

Depleted Hash-Chain?

Yes

No

State 1 : Authentication

State 2 : Renewal Phase

Figure 4. Flow diagram of the proposed billing protocol

Table 1. Notations of the entities and messages

Definition of the entity symbols

c: Cloud Service Provider (CSP)
u: User
n: Cloud-Notary-Authority

Definition of the Message symbols

Kα,β : Shared Key between a and b
PKα : Public Key of a
SKα : Private Key of a
H(M) : Hash result for message M

Hash Chain: C0 à C1 à C2 à C3 à … à Cn , H (Cn) = Cn-1

Cα,n : nth value of the α’s hash chain
Ts : Time-Stamp
Na: Random value for preventing replay attack by a
{ M }K : M encrypted by K
{ M }PK : M encrypted by public Key
{ M }SK : Digital signature for M by private key

Usage Sequence

Hash Generation
Sequence

142

the CSP, and the cloud notary authority. Throughout
the mutual authentications, the following three keys
are shared exclusively among the user, the cloud
notary authority, and the CSP:
- User ↔ CSP: Ku,c
- User ↔ CNA: Ku,n
- CSP ↔ CNA: Kc,n

- State 2: In this state, the user, the CSP, and the CNA
generate a hash chain of length N by applying the
hash function N times to a random value (Cu,N, Cc,N)
so that a final hash (Cu,0, Cc,0) can be obtained. The
user and the CSP commit to the hash chain by
digitally signing the final hash (Cu,0, Cc,0), and by
registering them and the keys (Ku,n, Kc,n). As shown
in Figure 5, the purpose of this registration is to share
with the cloud notary authority and to receive the
hash chain (Cn,0) generated by the cloud notary
authority. Once the commitment of the one-way hash
chains is successfully completed, State 2 is skipped
until the corresponding hash chain either expires or is
revoked.

- State 3: A user who intends to receive a cloud
resource from the CSP sends a resource request
message and then receives a µ-contract message
from the CSP. The user generates a µ-contract by
using the symmetric key operation and hash function
and then transmits the contract to the cloud notary
authority. When the µ-contract is received from the
user, the cloud notary authority verifies the contract
and sends confirmation messages to both the user and
the CSP. When the confirmation message is received
from the cloud notary authority, the user and the CSP
confirm the contract between the user and CSP and
the billing operation is terminated.

4.2. Description of THEMIS Billing Protocol

As previously mentioned, the proposed protocol can
provide a verifiable and non-obstructive method of billing
after the authentication (State1) and the hash chain
registration or renewal (State2). Any user who accesses
the CSP for the first time or the renewal time is asked to
generate a hash chain and commit to it by digitally signing
the final hash, which requires a private key operation.
Hence, the initial billing operation takes longer than a
normal PKI-based billing operation. On the other hand,
the billing overhead for the client and the CSP can be
reduced drastically after the completion of State 2 because
the user and the CSP can perform the billing operation by
using a much simpler type of symmetric key operation and
hash operation.

A user who intends to receive a cloud resource from
the CSP generates a cloud request message (Msg1)
encrypted with Ku,c and sends it to the CSP. When the
message is received, the CSP transmits a stipulation
containing an agreement that covers factors such as the
granted resource, the time, and the price as well as the µ-
contract-CSP. The µ-contract-CSP contains an encrypted
value of three inputs (namely, a hashed value of the
stipulation (S), a hash element (Cc,n), and a randomly
generated nonce) and a hashed value of two inputs
(namely, a stipulation (S) and a hash element (Cc,n)). The
hash element is updated for each billing transaction on a
chain-by-chain basis so that all of the hash elements can
be linked and verified sequentially toward the seed value
(Cc,0) of the hash chain. Furthermore, the used hash
element (Cc,n) is unknown to the user. When the user
receives the µ-contract-CSP (Msg2), the user generates a
billing request message (Msg3) by combining the µ-
contract-CSP from the CSP with the user’s own µ-
contract-User. The user then sends Msg3 to the cloud
notary authority for the mutual verifiability and integrity
of the µ-contract. When the message arrives, the cloud
notary authority checks the validity of the µ-contract by

Figure 5. Overall billing transactions of THEMIS

… … … … … …

143

comparing the H(S) section of µ-contract-User with the
H(S) section of µ-contract-CSP. The user and the CSP
should have an identical stipulation (S). The cloud notary
authority then sends the user and the CSP the verification
result (Msg4), which contains the hashed value of H(S)
and the hash element (Cn,n). The user and the CSP can
subsequently verify the integrity of H(S) in the µ-contract
by using Cn,n. The billing transaction is completed when
the user and the CSP receive the final confirmation
message.

4.3. How to prove the user billing records

Our proposed protocol can provide mutual verifiability
and integrity through the µ-contract, which is generated
among the entities by symmetric and hash cryptography
and distributed keys (Ku,c, Ku,n, Kc,n). This section
elaborates how billing can be verified in collaboration
with the cloud notary authority. Mutually verifiable billing
can be achieved when the cloud notary authority verifies
the validity of the user’s message for each billing
transaction in State3. The transaction does not require any
asymmetric key operations of the user and the CSP.
Throughout the verification phase (Msg3, Msg4), the
cloud notary authority generates and retains binding
information which states that the CSP sent Msg2 and that
the user sent Msg3 with the same stipulation (S). This
process is a type of notarized billing list (NBL). The NBL
is a data structure for storing evidence of the billing
transactions for future accusations. All of the contexts are
periodically stored with the digital signature of the cloud
notary authority to ensure the integrity of the NBL context.
In addition, the NBL can provide mutual verifiability and
integrity because all the transactions are linked to each
other with the hash chains of the user, the CSP, and the
cloud notary authority. Let’s assume that the CSP asserts
that the user repudiates a certain CSP billing. In this case,
the CSP can submit to the cloud notary authority a claim
for justice, drawing attention to the hash element (Cc,n)
and stipulation (S) included in µ-contract-CSP. The cloud
notary authority then demands to see the stipulation (S)
used to generate the µ-contract-User together with the
hash element (Cu,n) and inputs them to the hash function.
Any discrepancy between the output of the hash function
and the stored data of the cloud notary authority proves
that the user has modified the stipulation of the relevant
billing. The cloud notary authority can therefore refute the
user’s repudiation.

4.4. Proof of the Security of THEMIS

Our analysis of the protocol safety is based on
consideration of the replay attacks and the man-in-the-
middle (MITM) attacks. We assumed that the underlying

cryptography (AES, RSA, and SHA) 3 was invulnerable
with regard to message secrecy and integrity; hence, we
ignored attacks such as cryptanalysis and message slicing.
One the other hand, any principle can place or inject a
message on any link at any time. In addition, any principle
can see, delete, alter, and redirect all exchanged messages
being passed along any link or replay messages recorded
from past communications. In this section, we confirm
that our proposed protocol is safe from replay attacks and
MITM attacks.

Theorem1. THEMIS is safe from a malicious CSP or
malicious user.
Proof: We prove the safety for the next attack types as
follows:
1) Forgery of µ-contract before the provision of cloud

resources by a malicious CSP or a malicious user.
2) Forgery of µ-contract after the provision of cloud

resources by a malicious CSP or a malicious user.
- In case of 1), a malicious CSP or a malicious user

falsifies the µ-contract before any cloud resources are
provided. However, the forgery by a malicious CSP
or a malicious user cannot succeed because the cloud
notary authority checks the validity of µ-contracts from
the CSP and the user. The cloud notary authority can
compare the hash element in the CSP’s µ-contract-CSP
with that in the user’s µ-contract-User. If these
elements don’t matched, the cloud notary authority
does not send a confirm message to the CSP and the
user. Thus, neither the CSP nor user can successfully
falsify the µ-contract before the provision of cloud
resources.

- In case of 2), a malicious CSP or a malicious user
falsifies the µ-contract after the provision of cloud
resources. However, the falsification of the malicious
CSP or the malicious user cannot succeed because the
cloud notary authority already knows the verifiable µ-
contracts of both the CSP and the user. Hence, the
cloud notary authority can identify the malicious
provider or user by comparing the H(S) and Cn
sections in the µ-contracts of the cloud notary
authority with those in the µ-contracts of the CSP and
the user. □

Theorem2. THEMIS is safe from replay attacks.
Proof: Let’s assume that the billing path is [User ↔
Cloud-Notary-Authority ↔ CSP, User]. We prove the
safety for the next attack types as follows:

3 AES(Advanced Encryption Standard) is an encryption standard on the basis of

symmetric key operation (FIPS 197).
RSA(Rivest, Shamir, and Adleman) is an algorithm for asymmetric -key
cryptography.
SHA(Secure Hash Algorithm) is one of a number of cryptographic hash functions
published by the National Institute of Standards and Technology.

144

1) A replay attack for a resource request message (Msg1)
and µ-contract messages (Msg2 and Msg3).

2) A replay attack for the confirmation message (Msg4).
- In case of 1), an intruder can try to attack by sending

the captured messages. However, the intruder’s
attack cannot succeed because the messages include
the nonce data (Nu) and a µ-contract that is altered
with a time stamp for each billing transaction.

- In case of 2), an intruder can try to attack by sending
the captured messages. However, the intruder’s
attack cannot succeed because the messages include
the nonce data (Nu, Nc, and Nn). □

Theorem3. THEMIS is safe from MITM attacks.
Proof: We prove the safety for the next attack types as
follows:
1) MITM attack between a user and a CSP
2) MITM attack between a cloud-notary-authority and a user.
3) MITM attack between a cloud-notary-authority and a CSP
- In case of 1), the CSP and user generate billing

transaction messages that are altered for each billing
transaction, and the messages are encrypted and
transmitted by means of the shared keys that are paired
in a previous state. Thus, the intruder cannot
successfully masquerade as the user or the service
device.

- In case of 2) and 3), each entity performs a mutual
authentication over the PKI and shares the key for a
secure connection. Thus, the intruder cannot forge
the message of the cloud-notary authority. □

5. Efficiency and Performance Evaluation

In this section, we present the performance results of

our prototype version of THEMIS. First, we demonstrate
the overall experimental environment. We then describe
the operational efficiency of the billing protocol to
evaluate the performance of THEMIS in terms of billing
overhead.

5.1. Experimental Environment

To evaluate the performance characteristics of THEMIS,

we constructed a cloud user emulator and coupled it to a
billing transaction generator. The objective of the emulator
is to simulate the processing and communications resources
anticipated in a full implementation. Figure 6 shows the
overall experimental environment. The operating times of
the emulator are similar to actual operating times (for
communications, billing operations, and message
processing). In addition, a user emulator is connected to
THEMIS and the emulator receives control signals from the
billing transaction generator. The generator is a module that
generates control signals to produce billing request

messages; for this purpose, we use a random generator that
models the computer usage pattern of users [22].

5.2. Billing Protocol Efficiency and Comparative
Evaluation

The performance of the billing protocol in terms of
billing overhead and the consumption of processing and
communication resources is an important factor to be
considered when designing billing protocols. First, we
analyze how the efficiency of THEMIS compares with
PKI-based billing; we also analyze the micropayment in
terms of computation and communication efficiency.

Figure 7 gives the number of public and private keys
(RSA 1024 bit), the symmetric key (AES 128 bit), and the
hash (SHA-1) operations performed with the total
operating time for each billing protocol. In spite of its
smaller number of cryptography operations per billing, the
PKI-based billing protocol has a much longer latency of
billing transactions than other schemes because it has a
certain number of private and public key operations for all
of the entities. The micropayment, on the other hand, has
the shortest operating time because it can be completed by
symmetric key and hash operations but it fails to meet our
security requirement. In the case of THEMIS, the first
time a user accesses the CSP, all of the entities perform
mutual PKI-based authentications and generate a hash
chain which requires two private and public key
operations and multiple hash operations. The
authentication and hash chain generation time of THEMIS
is similar to the operating time of PKI-based billing.
However, after the operations, the user can perform a
billing operation by processing only four symmetric key
operations and two hash operations; this process has a
much shorter operating time than the corresponding
process of a PKI-based billing transaction. By way of
summarizing the above results, we give an outline of the
overall transaction time of the billing protocols. The PKI-

iCube Cloud Testbed

Server Specification
- CPU: Xeon 3.2GHz
- RAM: 4GB

Cloud Notary
Authority

Cloud User Emulator

...

Billing Transaction Generator

Thin Client
CPU: Atom 1.6GHz, RAM: 512MB

80 Nodes
- 600 cores / 1TB Memory
- 8Gbps Optical Network

Figure 6. Overall experiment environment

145

based billing transaction time with the RSA 1024 bit
algorithm is 142.41 ms. In the case of THEMIS, the
billing transaction can be accomplished without asymmetric
key operations. These results confirm that THEMIS has a
much shorter operating time, in spite of its mutual
verifiability and integrity. As shown in Figure 7, we
estimated the operating time of each entity for each billing
transaction so that we could measure how much
cryptography causes an obstructive billing overhead. We
measured the billing transaction latency by measuring the
time interval between the start time of Msg1 and the end
time of Msg4 on the client side. With THEMIS, the total
transaction time for the user and the CSP is much shorter
than that of the PKI-based billing system. Moreover,
without compromising the PKI security level, THEMIS’s
total billing transaction time (4.606 ms) is much shorter
than that of PKI-based billing (142.49 ms).

5.3. Storage Overhead

The cloud notary authority needs to store all the µ-
contracts contained in the messages it receives so that
mutual verifiability can be ensured for an indefinite period.
First, we measured the size of the µ-contracts and the
related index stored in the iCube Cloud Testbed by the
cloud notary authority, the users, and the CSP for a period
of one month. The iCube Cloud Testbed is currently used
by three research institutes (Seoul National University, the
University of Paris VI, and the Korea Advanced Institute
of Science and Technology) for course work and research
activities. The total number of users is about 300. The
average size of the µ-contracts stored by the cloud notary
authority per user per day is 38 KB, and the average size
of the usage log and related information stored on by the
cloud and the user is 875 KB per user per day. If a million
people use the cloud service, THEMIS will need archiving
capabilities so that after a certain period records can be

moved from the cloud notary authority into archival
storage. Currently, we are working towards the scalability
and optimization of the storage requirements for THEMIS
billing transactions.

6. Conclusion and Future work

Our aim was to provide a full-fledged verifiable and
non-obstructive billing solution tailored for a cloud
computing environment. To accomplish this task, we
thoroughly reviewed the ways in which conventional
billing systems are used in the environment, and we
consequently derived blueprints for our mutually
verifiable and computationally efficient billing system
called THEMIS. Besides utilizing conventional billing
systems, we conceived and implemented the concept of a
cloud notary authority that supervises billing to make it
more objective and acceptable to users and CSPs alike.
THEMIS ensures undeniable verification of any transaction
between a user and a CSP. Furthermore, our mutually
verifiable billing protocol significantly reduces the billing
overhead. Our next step is to consider the scalability and
fault tolerance of THEMIS. Currently, we are investigating
THEMIS from the perspectives of massive scalability and
robustness. We believe that putting multiple trusted third
parties in charge of the cloud notary authority is an
appropriate way forward, as is the case with the PKI. We
are working towards a THEMIS-based system with more
fault tolerance to scalable billing.

7. Acknowledgments

The authors wish to thank their anonymous referees for all
of their invaluable comments and suggestions. They
would also like to NexR Co. Ltd for their help in
conducting some of the experiments in this study. The
work presented in this paper was supported by MKE

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0

TH EM IS

u -P aym e n t

P K I

C om p u ta tio n

C omm u n ic a tio n

O vera ll Latency (m s)

142.49m s

4.378m s

4.606m s

PU : Public Key O peration , PR : P rivate Key O peration

Figure 7. T otal transaction overhead for each billing protocol

146

(Ministry of Knowledge Economy, Republic of Korea),
Project No. A1100-0901-1710.

8. References

[1] Ristenpart T., Tromer E., Shacham H, and Savage S., “Hey,

you, get off of my cloud: exploring information leakage in
third-party compute clouds”, 16th ACM Conference on
Computer and Communication Security (CCS) 2009.

[2] H.-Y. Lin, and L. Ham, “Authentication protocols with
non-repudiation services in personal communication
system”, IEEE Communications Letters 3 (8). 1999.

[3] Azure Service, “Microsoft, Windows Azure Platform”,
http://www.microsoft.com/windowsazure/

[4] Buyya R, Abramson D, Giddy J, Stockinger H. “Economic
models for resource management and scheduling in Grid
computing”, Concurrency and Computation: Practice and
Experience 2002; 14(13–15):1507–1542.

[5] Chun BN, Culler DE. Market-based proportional resource
sharing for clusters. Technical Report CSD-1092,
Computer Science Division, UC at Berkeley, January 2000.

[6] R Byrom , “APEL: An implementation of Grid accounting
using R-GMA, et al.”, 2005 UK e-Science All Hands
Meeting, September 2005

[7] M. Litzkow, M. Livny, and M. Mutka, “Condor: A hunter
of idle workstations”, 8th Int. Conf. Distributed Computing
Systems (ICDCS 1988), San Jose, CA, Jan. 1988.

[8] Buyya R, Abramson D, Giddy J., “Nimrod/G: An
architecture for a resource management and scheduling
system in a global Computational Grid”, Proc. of the 4th
International Conference on HPC, May 2000.

[9] Kwon, O., Hahm, J., Kim, S., and Lee, J. 2004., “GRASP:
A Grid Resource Allocation System based on OGSA”, In
Proc. of the 13th IEEE international Symposium on High
Performance Distributed Computing.

[10] IBM, “Tivoli: Usage and Accounting Manager”, IBM Press 2009
[11] Guarise, A., Piro, R., and Werbrouck, A. “DataGrid

Accounting System - Architecture”, EU DataGrid, 2003.
[12] P. Gardfj¨all, E. Elmroth, L. Johnsson, O. Mulmo, and T.

Sandholm. Scalable grid-wide capacity allocation with the
SweGrid Accounting System (SGAS). Concurrency
Computat.: Pract. Exper., 20(18):2089–2122, 2008.

[13] A. Barmouta and R. Buyya, “GridBank: A Grid Accounting
Services Architecture (GASA) for Distributed Systems
Sharing and Integration”, Proceedings of the 17th IEEE
IPDPS 2003, April,2003, pp. 22–26.

[14] Amazon Web Services, “Amazon Elastic Compute Cloud”,
http://aws.amazon.com/ec2/

[15] Thompson, M., Johnston, W., Mudumbai, S., Hoo, G.,
Jackson, K., and Essiari, “Certificate-based access control
for widely distributed resources”. In Proceedings of the 8th
Conference on USENIX Security Symposium

[16] A. Herzberg, H. Yochai, “Mini-pay: charging per click on
the web”, in: 6th World Wide Web Conference, Santa
Clara, USA, April 1997.

[17] Stefan Kelm, “Public Key Infrastructure”, http://www.pki-
page.org/ ,2009

[18] R. Rivest, A. Shamir, “PayWord and MicroMint: two simple
micropayment schemes”, 1996 International Workshop on
Security Protocols, Lecture Notes in Computer Science, vol.
1189, Springer, pp. 69–87

[19] V. Patil, R.K. Shyamasundar, “An efficient, secure and
delegable micro-payment system”, 2004 IEEE International

Conference on e-Technology, e-Commerce and e-Service,
Taipei, Taiwan, 28–31 March 2004.

[20] J. Jonsson and B. Kaliski, "Public-Key Cryptography
Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1", Network Group

[21] E. Roberts, M. Dahan, J. Boisseau. “TeraGrid User Portal:
An Integrated Interface for TeraGrid User Information and
Services”, TeraGrid 2008

[22] D.Banks, J.S.Erickson, and M.Rhodes, “Towards Cloud-based
Collaboration Services”, Usenix Workshop HotCloud 2009

[23] N.Santos, K.P.Gummadi, and R.Rodrigues, “Towards Trusted
Cloud Computing”, Usenix Workshop HotCloud 2009

[24] Dai, X., and Grundy, J. “NetPay: an off-line, decentralized
micro-payment system for thin-client applications”, E-
Commerce Research and Applications, 6, 2007,91–101

[25] Park, K., Lim, S. S., and Park, K. H., "Computationally
Efficient PKI-Based Single Sign-On Protocol, PKASSO
for Mobile Devices", IEEE Trans. Computers. 57, 6 (Jun.
2008), 821-834

147

