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Abstract 

 
The ability to record and keep account of the usage of 

cloud resources in a credible and verifiable way is a 
precursor to widespread cloud deployment and 
availability because usage information is potentially 
sensitive and must be verifiably accurate. In an attempt to 
provide a mutually verifiable resource usage and billing 
mechanism, we found that the frequent asymmetric key 
operations of a digital signature lead to excessive 
computations and a bottleneck of billing transactions. As 
a remedy for these limitations, we propose a mutually 
verifiable billing system called THEMIS. The system, 
which introduces the concept of a cloud notary authority 
for the supervision of billing, makes billing more 
objective and acceptable to users and cloud service 
providers. THEMIS generates mutually verifiable binding 
information that can be used to resolve future disputes 
between a user and a cloud service provider. Because 
THEMIS does not require any asymmetric key operations 
of users and providers, it provides a level of security that 
is identical to that of a Public Key Infrastructure (PKI) 
and it minimizes the latency of billing transactions. This 
work has been undertaken on a real cloud computing 
service called iCube Cloud 1. 

  
1. Introduction 
 

The pay-as-you-go pricing model is one of the core 
components of the cloud computing environment. It 
enables users to scale their capacity upwards or 
downwards as their computing requirements change. 
Cloud services change the economics of computing by 
enabling users to pay only for the capacity that they 
actually use. In this environment, the ability to record and 
account for the usage of cloud resources in a credible and 
verifiable way is a precursor to widespread cloud 
deployment and availability [1, 23]. On the basis of 
verifiability, cloud service providers (CSPs) and users can 
both construct credible, verifiable usage records to prove 
which resources were allocated and when they were 
initiated. On the other hand, in commercial cloud services, 

                                                 
1 http://www.icubecloud.com:Cloud service platform & testbed of this work 

such as Amazon EC2 [14] and Azure [3], the billing 
transactions and management are both processed by the 
CSP alone; there is no mutual verifiability of billing 
transactions. 

A PKI-based digital signature [17] stands out as a 
fundamental and widely used mechanism for enforcing the 
verifiability of billing systems. However, the 
computational complexity of a PKI may result in a high 
computational overhead and intolerable billing response 
time because asymmetric key operations for digital 
signatures need to be performed with regard to both the 
thin client terminal and the CSP. In addition, the amount 
of billing transactions increases rapidly in proportion to 
the number of users that require diverse cloud resources. 
By thoroughly investigating conventional cloud billing 
systems, we identified the following two fundamental 
requirements, which drive the architecture of our billing 
system: 

 
- A fine-grained billing mechanism with a minuscule 

computational overhead: The frequent transactions of 
fine-grained, mutually verifiable billing lead to an 
excessive computational overhead or billing system 
bottleneck. To mitigate these problems, we propose a 
computationally efficient billing scheme called 
THEMIS, which provides mutual verifiability. The 
proposed billing scheme extremely minimizes the 
asymmetric key operations of cloud users and CSPs; it 
provides a level of mutual verifiability that is identical 
to that of a PKI; it also minimizes billing transaction 
latency.  

- Support for a mutually verifiable billing 
mechanism: In traditional cloud billing systems, the 
billing management and billing information are both 
processed by the CSP alone. For a credible and 
verifiable way of logging resource usage, a digital 
signature is essential because it enhances the billing 
mechanism with mutual verifiability [2]. Our 
proposed billing system, THEMIS, uses the novel 
cloud notary authority to generate mutually verifiable 
binding information for users and CSPs. Furthermore, 
the resource usage log, which is based on a one-way 
hash chain, retains the information in its local storage 
for future accusations. THEMIS supervises billing 

2010 IEEE 3rd International Conference on Cloud Computing

978-0-7695-4130-3/10 $26.00 © 2010 IEEE

DOI 10.1109/CLOUD.2010.21

139



and, because of its objectivity, is likely to be accepted 
by users and CSPs alike. 
 

In this paper, we present our realized THEMIS billing 
system; it meets the above requirements and is deployed 
in a real cloud computing service. According to the 
performance evaluation, the overall latency of the billing 
transactions of THEMIS (4.606 ms) is much shorter than 
the latency of PKI-based billing transactions (which 
averages 142.49 ms), though THEMIS provides identical 
security features as a PKI. 

The remainder of the paper is organized as follows: In 
Section 2, we discuss relevant works. In Section 3, we 
present the overall system design and components of the 
proposed billing system. In Section 4, we illustrate the 
proposed billing protocol. In Section 5, we evaluate the 
performance of the proposed billing scheme. Finally, in 
Section 6, we present our conclusions and future works. 
 
2. Previous Work 
 

A billing system that tracks the usage of computing 
resources has been actively studied and developed in the 
research area of grid or cloud computing. To date, 
however, none of the billing systems have incorporated a 
verifiable or fine-grained billing mechanism. In this 
section, we briefly discuss the experimental results as we 
evaluate existing billing systems in terms of their security 
level and billing overhead. A more comprehensive 
evaluation of the experimental results is described in 
Section V. 
 
2.1. Native billing systems 
 

 In a pay-as-you-go pricing model, users can scale the 
capacity of cloud resources on demand. Resource 

consumption is billed on a utility basis with little or no 
upfront cost.  Two pioneering studies identified challenges 
in managing the resources of a grid computing 
environment and proposed a computational economy as a 
metaphor for effective management of resources [4, 5]. 
Several researchers presented a resource usage processing 
system that can be used to scan batch system logs to build 
accounting records [6-10, 21]; this system is able to 
record and account for the usage of grid resources. Figure 
1 shows the architecture and characteristics of a billing 
system without any security concerns. As shown in Figure 
1, the resource usage information, such as the CPU cycles, 
storage, and network bandwidth, are collected via a 
resource monitor and charged over the billing module. 
APEL [6] presents a billing system that processes log 
information to create quantified accounting records. There 
are also other resource management and billing 
frameworks that have been suggested as part of traditional 
grid approaches: namely, Condor/G [7], Nimrod/G [8], 
GRASP [9], Tivoli [10], and TeraGrid [21]. However, 
rather than address security concerns, those frameworks 
mainly focus on presenting distributed resource usage 
metering as well as an accounting and account balancing 
mechanism for a distributed grid environment. Thus, they 
fail to provide the type of mutual verifiability and integrity 
needed in a verifiable billing system that records the usage 
of cloud resources. 
 
2.2. Security-enhanced billing systems 
 

Several electronic payment schemes have been 
proposed in the literature in an attempt to provide 
security-enhanced billing mechanisms. They include 
micropayment-based schemes such as PayWord [18], 
MiniPay [16], e-coupons [19], and NetPay [24]. Broadly 
deployed in e-payment systems, these schemes enable 
users to securely and efficiently perform repeated 
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payments. Many of these schemes are based on the use of 
one-way hash functions that generate chains of hash 
values; users perform billing transactions by releasing a 
certain number of hashes in the hash chain. Although 
these schemes are supposed to provide secure billing for 
micropayment transactions in a computationally efficient 
way, they offer no support for mutual verifiability of the 
resource usage log. 

The research area of cloud or grid computing has 
presented the following market models and PKI enhanced 
billing and accounting frameworks for user authentication 
and secure communication: RUS [10], DGAS [11], SGAS 
[12], GridBank [13], and Amazon EC2 [14]. They have 
an access control mechanism that uses digitally signed 
certificates to define and enforce an access policy for a set 
of distributed resources. However, none of these projects 
addresses the problem of dealing with the verifiability of 
billing transactions or its computational efficiency, as we 
do for the cloud computing environment.  

Due to its digital signature and non-repudiation 
features, a PKI is generally considered to be the most 
appropriate and fundamental way of enforcing verifiability 
in terms of our requirements [15, 25]. Figure 2 illustrates 
the organization of a PKI-enhanced billing system and its 
characteristics in terms of security level and billing 
overhead. A PKI has a billing overhead even though it 
relies on full security features to achieve mutual 
verifiability. The extent of the overhead is mainly 
determined by the extremely high complexity of RSA 
operations when the PKI is used for a billing system by a 
thin client or heavily loaded server [20]. Figure 2 shows 
that the estimated average billing transaction latency in 
our experimental environment is about 142.49 ms. 
 

3. THEMIS
†
 Architecture 

 
 While deliberating on the system requirements 

mentioned above, we based the design of our billing 
system and protocol on two principles: verifiable billing 
with a cloud notary authority; and computationally 
efficient billing transactions. In this section, we present 
the overall architecture and billing process of THEMIS.   
 
3.1. The Proposed THEMIS Infrastructure 
 

Figure 3 shows the overall architecture of our THEMIS 
billing infrastructure. The three major components of the 
architecture are listed as follows: 

 
- Cloud Service Provider (CSP): The CSP enables 

users to scale their capacity upwards or downwards 
in accordance with their computing requirements 
and to pay only for the capacity that they actually 
use. 

- Users: We assume that users are thins clients who 
use services in the cloud computing environment. 
To use services in such an environment, each user 
makes a request to the CSP with a billing 
transaction. 

- Cloud Notary Authority (CNA): The cloud 
notary authority provides a mutually verifiable 
integrity mechanism to combat the malicious 
behavior of users or the CSP. The cloud notary 
authority investigates billing transactions and 
generates mutually verifiable binding information 

                                                 
† THEMIS, Goddess of Justice: We named our system to THEMIS because we are 
pursuing the justice of the Cloud.  
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among all the involved entities on the basis of a 
one-way hash chain and resource usage log; it also 
retains the information in its local storage for 
future accusations. Due to the cloud notary 
authority, our proposed billing system can provide 
mutual verifiability and integrity for a cloud 
resource usage log. The process, which involves 
exclusive key sharing between entities and a one-
way hash chain-based signature, is computationally 
efficient for a thin client and the CSP.  
 

3.2. Overall Billing Process of the THEMIS 
 

With the proposed cloud notary authority, mutually 
verifiable billing can be provided without asymmetric key 
operations of any entities after a renewal phase. Figure 3 
shows the overall process of a billing transaction with our 
billing system. The following details of the mutually 
verifiable billing mechanism are described in more detail 
in Section 4: 

 
1. The user generates a cloud resource request message 

and sends it to the CSP. 
2. The CSP sends the user a µ-contract-CSP message 

generated with a digital signature from a CSP hash 
chain. 

3. The user generates a µ-contract with a hash chain-
based digital signature of the user and sends it to the 
cloud notary authority. 

4. The cloud notary authority performs transactions to 
verify the µ-contract from the user.  

5. The billing process is completed when the user and 
the CSP receive confirmation from the cloud notary 
authority.   
 

4. Proposed Billing Protocol 
 

While deliberating on our system design philosophy, 
we did our utmost to streamline the computation and 
communication overhead of the billing operation. Our 
novel µ-contract is generated by a hash function and it 
exclusively distributes keys among entities. It can 
optimize the computation and communication overheads 
of the billing mechanism and facilitates mutual 
verifiability and integrity for cloud resource usage. In this 
section, we describe the overall transactions of the 
proposed billing protocol. Table 1 describes the notations 
of the entities and messages that describe the proposed 
protocol. 
 
4.1. Flow Diagram of the Billing Protocol 

 
Figure 4 shows a flow diagram to present the 

transactions of the proposed billing protocol. Figure 5 
describes the overall billing transactions and the message 
specification that describe the proposed protocol. The 
protocol consists of three states and the protocol safety is 
verified in Section 4.4:  

 
- State 1: When a user first accesses the CSP, mutual 

PKI-based authentications are performed by the user, 
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u-Contract Confirm & Commitment
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Hash-Chain Generation & Exchange
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State 1 : Authentication

State 2 : Renewal Phase

Figure 4. Flow diagram of the proposed billing protocol

Table 1. Notations of the entities and messages 

Definition of the entity symbols 

c: Cloud Service Provider (CSP) 
u: User 
n: Cloud-Notary-Authority 

Definition of the Message symbols 

Kα,β : Shared Key between a and b 
PKα : Public Key of a 
SKα : Private Key of a 
H( M ) : Hash result for message M 
 
Hash Chain:  C0 à C1 à C2 à C3 à … à Cn ,    H (Cn) = Cn-1 
 

 
Cα,n : nth value of the α’s hash chain  
Ts : Time-Stamp 
Na: Random value for preventing replay attack by a 
{ M }K : M encrypted by K 
{ M }PK : M encrypted by public Key 
{ M }SK : Digital signature for M by private key 

Usage Sequence 

Hash Generation 
Sequence 
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the CSP, and the cloud notary authority. Throughout 
the mutual authentications, the following three keys 
are shared exclusively among the user, the cloud 
notary authority, and the CSP: 
- User ↔ CSP: Ku,c 
- User ↔ CNA: Ku,n 
- CSP ↔ CNA: Kc,n 

- State 2:  In this state, the user, the CSP, and the CNA 
generate a hash chain of length N by applying the 
hash function N times to a random value (Cu,N, Cc,N) 
so that a final hash (Cu,0, Cc,0) can be obtained. The 
user and the CSP commit to the hash chain by 
digitally signing the final hash (Cu,0, Cc,0), and by 
registering them and the keys (Ku,n, Kc,n). As shown 
in Figure 5, the purpose of this registration is to share 
with the cloud notary authority and to receive the 
hash chain (Cn,0) generated by the cloud notary 
authority. Once the commitment of the one-way hash 
chains is successfully completed, State 2 is skipped 
until the corresponding hash chain either expires or is 
revoked. 

- State 3: A user who intends to receive a cloud 
resource from the CSP sends a resource request 
message and then receives a µ-contract message 
from the CSP. The user generates a µ-contract by 
using the symmetric key operation and hash function 
and then transmits the contract to the cloud notary 
authority. When the µ-contract is received from the 
user, the cloud notary authority verifies the contract 
and sends confirmation messages to both the user and 
the CSP. When the confirmation message is received 
from the cloud notary authority, the user and the CSP 
confirm the contract between the user and CSP and 
the billing operation is terminated. 
 

4.2. Description of THEMIS Billing Protocol 
 

As previously mentioned, the proposed protocol can 
provide a verifiable and non-obstructive method of billing 
after the authentication (State1) and the hash chain 
registration or renewal (State2). Any user who accesses 
the CSP for the first time or the renewal time is asked to 
generate a hash chain and commit to it by digitally signing 
the final hash, which requires a private key operation. 
Hence, the initial billing operation takes longer than a 
normal PKI-based billing operation. On the other hand, 
the billing overhead for the client and the CSP can be 
reduced drastically after the completion of State 2 because 
the user and the CSP can perform the billing operation by 
using a much simpler type of symmetric key operation and 
hash operation.   

A user who intends to receive a cloud resource from 
the CSP generates a cloud request message (Msg1) 
encrypted with Ku,c and sends it to the CSP. When the 
message is received, the CSP transmits a stipulation 
containing an agreement that covers factors such as the 
granted resource, the time, and the price as well as the µ-
contract-CSP. The µ-contract-CSP contains an encrypted 
value of three inputs (namely, a hashed value of the 
stipulation (S), a hash element (Cc,n), and a randomly 
generated nonce) and a hashed value of two inputs 
(namely, a stipulation (S) and a hash element (Cc,n)). The 
hash element is updated for each billing transaction on a 
chain-by-chain basis so that all of the hash elements can 
be linked and verified sequentially toward the seed value 
(Cc,0) of the hash chain. Furthermore, the used hash 
element (Cc,n) is unknown to the user. When the user 
receives the µ-contract-CSP (Msg2), the user generates a 
billing request message (Msg3) by combining the µ-
contract-CSP from the CSP with the user’s own µ-
contract-User. The user then sends Msg3 to the cloud 
notary authority for the mutual verifiability and integrity 
of the µ-contract. When the message arrives, the cloud 
notary authority checks the validity of the µ-contract by 

Figure 5. Overall billing transactions of THEMIS 
 

… … … … … … 

143



comparing the H(S) section of µ-contract-User with the 
H(S) section of µ-contract-CSP. The user and the CSP 
should have an identical stipulation (S). The cloud notary 
authority then sends the user and the CSP the verification 
result (Msg4), which contains the hashed value of H(S) 
and the hash element (Cn,n). The user and the CSP can 
subsequently verify the integrity of H(S) in the µ-contract 
by using Cn,n. The billing transaction is completed when 
the user and the CSP receive the final confirmation 
message. 

 
4.3. How to prove the user billing records 
 

Our proposed protocol can provide mutual verifiability 
and integrity through the µ-contract, which is generated 
among the entities by symmetric and hash cryptography 
and distributed keys (Ku,c, Ku,n, Kc,n). This section 
elaborates how billing can be verified in collaboration 
with the cloud notary authority. Mutually verifiable billing 
can be achieved when the cloud notary authority verifies 
the validity of the user’s message for each billing 
transaction in State3. The transaction does not require any 
asymmetric key operations of the user and the CSP. 
Throughout the verification phase (Msg3, Msg4), the 
cloud notary authority generates and retains binding 
information which states that the CSP sent Msg2 and that 
the user sent Msg3 with the same stipulation (S). This 
process is a type of notarized billing list (NBL). The NBL 
is a data structure for storing evidence of the billing 
transactions for future accusations. All of the contexts are 
periodically stored with the digital signature of the cloud 
notary authority to ensure the integrity of the NBL context. 
In addition, the NBL can provide mutual verifiability and 
integrity because all the transactions are linked to each 
other with the hash chains of the user, the CSP, and the 
cloud notary authority. Let’s assume that the CSP asserts 
that the user repudiates a certain CSP billing. In this case, 
the CSP can submit to the cloud notary authority a claim 
for justice, drawing attention to the hash element (Cc,n) 
and stipulation (S) included in µ-contract-CSP. The cloud 
notary authority then demands to see the stipulation (S) 
used to generate the µ-contract-User together with the 
hash element (Cu,n) and inputs them to the hash function. 
Any discrepancy between the output of the hash function 
and the stored data of the cloud notary authority proves 
that the user has modified the stipulation of the relevant 
billing. The cloud notary authority can therefore refute the 
user’s repudiation. 

 
4.4. Proof of the Security of THEMIS 
 

Our analysis of the protocol safety is based on 
consideration of the replay attacks and the man-in-the-
middle (MITM) attacks. We assumed that the underlying 

cryptography (AES, RSA, and SHA) 3  was invulnerable 
with regard to message secrecy and integrity; hence, we 
ignored attacks such as cryptanalysis and message slicing. 
One the other hand, any principle can place or inject a 
message on any link at any time. In addition, any principle 
can see, delete, alter, and redirect all exchanged messages 
being passed along any link or replay messages recorded 
from past communications. In this section, we confirm 
that our proposed protocol is safe from replay attacks and 
MITM attacks. 

 
Theorem1. THEMIS is safe from a malicious CSP or 
malicious user. 
Proof: We prove the safety for the next attack types as 
follows: 
1) Forgery of µ-contract before the provision of cloud 

resources by a malicious CSP or a malicious user. 
2) Forgery of µ-contract after the provision of cloud 

resources by a malicious CSP or a malicious user.  
- In case of 1), a malicious CSP or a malicious user 

falsifies the µ-contract before any cloud resources are 
provided. However, the forgery by a malicious CSP 
or a malicious user cannot succeed because the cloud 
notary authority checks the validity of µ-contracts from 
the CSP and the user. The cloud notary authority can 
compare the hash element in the CSP’s µ-contract-CSP 
with that in the user’s µ-contract-User. If these 
elements don’t matched, the cloud notary authority 
does not send a confirm message to the CSP and the 
user. Thus, neither the CSP nor user can successfully 
falsify the µ-contract before the provision of cloud 
resources. 

- In case of 2), a malicious CSP or a malicious user 
falsifies the µ-contract after the provision of cloud 
resources. However, the falsification of the malicious 
CSP or the malicious user cannot succeed because the 
cloud notary authority already knows the verifiable µ-
contracts of both the CSP and the user. Hence, the 
cloud notary authority can identify the malicious 
provider or user by comparing the H(S) and Cn 
sections in the µ-contracts of the cloud notary 
authority with those in the µ-contracts of the CSP and 
the user.                                                                     □ 
 

Theorem2. THEMIS is safe from replay attacks. 
Proof: Let’s assume that the billing path is [User ↔ 
Cloud-Notary-Authority ↔ CSP, User]. We prove the 
safety for the next attack types as follows: 

                                                 
3 AES(Advanced Encryption Standard)  is an encryption standard on the basis of 

symmetric key operation (FIPS 197). 
RSA(Rivest, Shamir, and Adleman)  is an algorithm for asymmetric -key 
cryptography. 
SHA(Secure Hash Algorithm) is one of a number of cryptographic hash functions 
published by the National Institute of Standards and Technology. 
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1) A replay attack for a resource request message (Msg1) 
and µ-contract messages (Msg2 and Msg3). 

2) A replay attack for the confirmation message (Msg4). 
- In case of 1), an intruder can try to attack by sending 

the captured messages. However, the intruder’s 
attack cannot succeed because the messages include 
the nonce data (Nu) and a µ-contract that is altered 
with a time stamp for each billing transaction. 

- In case of 2), an intruder can try to attack by sending 
the captured messages. However, the intruder’s 
attack cannot succeed because the messages include 
the nonce data (Nu, Nc, and Nn).                                        □ 
 

Theorem3. THEMIS is safe from MITM attacks. 
Proof: We prove the safety for the next attack types as 
follows: 
1) MITM attack between a user and a CSP 
2) MITM attack between a cloud-notary-authority and a user. 
3) MITM attack between a cloud-notary-authority and a CSP 
- In case of 1), the CSP and user generate billing 

transaction messages that are altered for each billing 
transaction, and the messages are encrypted and 
transmitted by means of the shared keys that are paired 
in a previous state. Thus, the intruder cannot 
successfully masquerade as the user or the service 
device.  

- In case of 2) and 3), each entity performs a mutual 
authentication over the PKI and shares the key for a 
secure connection. Thus, the intruder cannot forge 
the message of the cloud-notary authority.                □ 
 

5. Efficiency and Performance Evaluation 
 
In this section, we present the performance results of 

our prototype version of THEMIS. First, we demonstrate 
the overall experimental environment. We then describe 
the operational efficiency of the billing protocol to 
evaluate the performance of THEMIS in terms of billing 
overhead. 
 
5.1. Experimental Environment 

 
To evaluate the performance characteristics of THEMIS, 

we constructed a cloud user emulator and coupled it to a 
billing transaction generator. The objective of the emulator 
is to simulate the processing and communications resources 
anticipated in a full implementation. Figure 6 shows the 
overall experimental environment. The operating times of 
the emulator are similar to actual operating times (for 
communications, billing operations, and message 
processing). In addition, a user emulator is connected to 
THEMIS and the emulator receives control signals from the 
billing transaction generator. The generator is a module that 
generates control signals to produce billing request 

messages; for this purpose, we use a random generator that 
models the computer usage pattern of users [22]. 
 
5.2. Billing Protocol Efficiency and Comparative 
Evaluation 
 

The performance of the billing protocol in terms of 
billing overhead and the consumption of processing and 
communication resources is an important factor to be 
considered when designing billing protocols. First, we 
analyze how the efficiency of THEMIS compares with 
PKI-based billing; we also analyze the micropayment in 
terms of computation and communication efficiency. 

Figure 7 gives the number of public and private keys 
(RSA 1024 bit), the symmetric key (AES 128 bit), and the 
hash (SHA-1) operations performed with the total 
operating time for each billing protocol. In spite of its 
smaller number of cryptography operations per billing, the 
PKI-based billing protocol has a much longer latency of 
billing transactions than other schemes because it has a 
certain number of private and public key operations for all 
of the entities. The micropayment, on the other hand, has 
the shortest operating time because it can be completed by 
symmetric key and hash operations but it fails to meet our 
security requirement. In the case of THEMIS, the first 
time a user accesses the CSP, all of the entities perform 
mutual PKI-based authentications and generate a hash 
chain which requires two private and public key 
operations and multiple hash operations. The 
authentication and hash chain generation time of THEMIS 
is similar to the operating time of PKI-based billing. 
However, after the operations, the user can perform a 
billing operation by processing only four symmetric key 
operations and two hash operations; this process has a 
much shorter operating time than the corresponding 
process of a PKI-based billing transaction. By way of 
summarizing the above results, we give an outline of the 
overall transaction time of the billing protocols. The PKI-
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Cloud Notary 
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Cloud User Emulator

...

Billing Transaction Generator

Thin Client 
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- 600 cores / 1TB Memory
- 8Gbps Optical Network

Figure 6. Overall experiment environment
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based billing transaction time with the RSA 1024 bit 
algorithm is 142.41 ms. In the case of THEMIS, the 
billing transaction can be accomplished without asymmetric 
key operations. These results confirm that THEMIS has a 
much shorter operating time, in spite of its mutual 
verifiability and integrity. As shown in Figure 7, we 
estimated the operating time of each entity for each billing 
transaction so that we could measure how much 
cryptography causes an obstructive billing overhead. We 
measured the billing transaction latency by measuring the 
time interval between the start time of Msg1 and the end 
time of Msg4 on the client side. With THEMIS, the total 
transaction time for the user and the CSP is much shorter 
than that of the PKI-based billing system. Moreover, 
without compromising the PKI security level, THEMIS’s 
total billing transaction time (4.606 ms) is much shorter 
than that of PKI-based billing (142.49 ms). 
 
5.3. Storage Overhead 
 

The cloud notary authority needs to store all the µ-
contracts contained in the messages it receives so that 
mutual verifiability can be ensured for an indefinite period. 
First, we measured the size of the µ-contracts and the 
related index stored in the iCube Cloud Testbed by the 
cloud notary authority, the users, and the CSP for a period 
of one month. The iCube Cloud Testbed is currently used 
by three research institutes (Seoul National University, the 
University of Paris VI, and the Korea Advanced Institute 
of Science and Technology) for course work and research 
activities. The total number of users is about 300. The 
average size of the µ-contracts stored by the cloud notary 
authority per user per day is 38 KB, and the average size 
of the usage log and related information stored on by the 
cloud and the user is 875 KB per user per day. If a million 
people use the cloud service, THEMIS will need archiving 
capabilities so that after a certain period records can be 

moved from the cloud notary authority into archival 
storage. Currently, we are working towards the scalability 
and optimization of the storage requirements for THEMIS 
billing transactions.  

 
6. Conclusion and Future work 
 

Our aim was to provide a full-fledged verifiable and 
non-obstructive billing solution tailored for a cloud 
computing environment. To accomplish this task, we 
thoroughly reviewed the ways in which conventional 
billing systems are used in the environment, and we 
consequently derived blueprints for our mutually 
verifiable and computationally efficient billing system 
called THEMIS. Besides utilizing conventional billing 
systems, we conceived and implemented the concept of a 
cloud notary authority that supervises billing to make it 
more objective and acceptable to users and CSPs alike. 
THEMIS ensures undeniable verification of any transaction 
between a user and a CSP. Furthermore, our mutually 
verifiable billing protocol significantly reduces the billing 
overhead. Our next step is to consider the scalability and 
fault tolerance of THEMIS. Currently, we are investigating 
THEMIS from the perspectives of massive scalability and 
robustness. We believe that putting multiple trusted third 
parties in charge of the cloud notary authority is an 
appropriate way forward, as is the case with the PKI. We 
are working towards a THEMIS-based system with more 
fault tolerance to scalable billing.  
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