
Efficient Memory Management of a Hierarchical and a
Hybrid Main Memory for MN-MATE∗ Platform

Kyu Ho Park, Sung Kyu Park, Hyunchul Seok, Woomin Hwang, Dong-Jae Shin, Jong
Hun Choi, and Ki-Woong Park

Computer Engineering Research Laboratory, KAIST
kpark@ee.kaist.ac.kr, {skpark, hcseok, wmhwang, djshin, jhchoi,

woongbak}@core.kaist.ac.kr

ABSTRACT
The advent of manycore in computing architecture causes se-
vere energy consumption and memory wall problem. Thus,
emerging technologies such as on-chip memory and non-
volatile memory (NVRAM) have led to a paradigm shift
in computing architecture era. For instance, nonvolatile
memories like PRAM can be viable DRAM replacements,
achieving competitive speeds at lower power consumption.
On-chip memory such as 3D-stacked memory can solve the
limitation of memory bandwidth. The confluence of these
trends offers a new opportunity to rethink traditional com-
puting system and memory hierarchies.
In an attempt to mitigate the energy and memory wall, we

propose a new architecture with a hierarchical and a hybrid
main memory for manycore system, termed MN-MATE. The
hierarchical memory consists of on-chip memory, which is
called M1 memory, and a conventional DRAM memory is
replaced by a hybrid memory of DRAM and PRAM, called
M2 memory. On the top of the system, we designed and
evaluated efficient management techniques to achieve the
high performance and the low energy usage, including hier-
archical memory management, power-aware hybrid memory
management, and file caching on a hybrid memory. Prelimi-
nary results show that these techniques can improve perfor-
mance and reduce energy usage. As a case study, we intro-
duce the MaaS (Matching-as-a-Service) application which
requires the large amount of memory and high computing
power.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles; D.4.7 [Operating
Systems]: Organization and Design

General Terms
Design, Management, Performance

∗MN-MATE is an abbreviation of Manycore and Nonvolatile
memory MAnagemenT for Energy efficiency.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PMAM 2012, February 26, 2012 New Orleans LA, USA
Copyright 2012 ACM 978-1-4503-1211-0/12/02 ...$10.00.

Figure 1: Overall Architecture on MN-MATE

Keywords
Manycore, NVRAM, Hybrid Memory, Hierarchical Memory,
Memory Management

1. INTRODUCTION
Emerging manycore computing systems with hundreds or

thousands of cores [5] causes severe energy consumption and
ever-increasing memory size challenges. The manycore com-
puting system makes it possible to run many applications
such as rich multimedia applications and scientific calcula-
tions, simultaneously. On the other hand, large amount of
memories and storages must be taken into account to ex-
ecute many processes on the manycore system with high
performance and low power. However, the rate of growth
in DRAM memory cannot follow the rate of growth in cores
[1] and DRAM access latencies cannot be decreased to chase
the cpu cycle. This problem is called the ‘memory wall’ [33].
In this computing environment, increasing the amount of
DRAM size and adding more memory channels is not good
approach because of the pin limitation of processors. There-
fore it cannot increase the bandwidth limitation. This may
also lead to severe energy consumed by DRAM.

Recent advances such as 3D-stacked memory [13, 17, 16,
18] and nonvolatile memory (NVRAM) [28, 35, 14] have
demonstrated orders of magnitude performance and power
benefits. For instance, 3D-stacked DRAM can significantly
increase the memory bandwidth by increasing the width and
the frequency of memory bus, and NVRAMs can increase
the total amount of a memory with low cost because of its
high density and low energy consumption.

In an attempt to mitigate the energy and memory wall,

83

we propose a new architecture with on-chip memory like 3D-
stacked DRAM and PRAM which is the one of NVRAMs.
In a memory architecture, we propose a hierarchical main
memory which consists of on-chip DRAM and a conventional
memory placed to off-chip. In addition, we change a con-
ventional off-chip DRAM to a hybrid memory which consists
of DRAM and PRAM. Figure 1 shows the proposed over-
all architecture of MN-MATE. To efficiently operate many
applications on the proposed architecture, resource manage-
ments must be well implemented for usage of manycores and
large amount of various memories. Consequently, we study
the software techniques on the proposed hardware architec-
ture.
In this paper, we propose three types of techniques to

improve the performance and energy consumption, which
drive the architecture of our manycore-based system:

• A hierarchical main memory management: We
propose a software-managed memory management by
the help of hardware-managed page access monitoring.
Because the difference of bandwidth and access latency
between a hierarchical memory, we carefully manage
an allocation of the pages on on-chip memory to im-
prove the performance. For this purpose, page mon-
itoring module monitors page access patterns during
a period, and the OS manages the allocation of pages
with collected information.

• Power-aware hybrid main memory management
[26]: We propose a tchnique for saving total power
consumption on a hybrid memory. While the idle power
of DRAM is high and increases in proportion to its size,
non-volatile memory like PRAM have no idle power.
Therefore, using a hybrid memory can be the good ap-
proach to decrease consumed power, but PRAM has
an endurance problem, long latency to access, and high
write energy. It is the reason that the well-organized
management scheme is needed. For this purpose, we
propose power-aware page migration and culling tech-
niques.

• File caching technique based on a hybrid mem-
ory [30]: When we use the hybrid memory as a page
cache, PRAM memory shows bad write latency and
endurance. Thus, the page caching algorithm must
consider the different features of memories. We pro-
pose a page caching algorithm with prediction and mi-
gration. The prediction method is to distinguish page
access patterns and the page migration scheme is to
maintain write-bound access pages to DRAM.

As a case study, we demonstrate the versatility of the
MN-MATE platform by showing how MN-MATE can be
applied to manycore-based applications. On the top of our
platform, we introduce the MaaS (Matching-as-a-Service)
[6] application which requires the large amount of memory
and high computing power. The MaaS requests high com-
puting power, high memory bandwidth and large amount
of memory. The MN-MATE platform can be used because
it consists manycore and various memories including a hi-
erarchical and a hybrid memories. In this paper, we intro-
duce the Matching as a Service (MaaS) application. Finally,
we show how MN-MATE significantly enhances the system
performance in terms of energy consumption and memory
access speed.

Lastly, we propose the simulation platform. Our research
ideas aim at the management of manycore and the hierarchi-
cal and the hybrid memories. These researches are related to
brand-new hardware architectures and special hardware de-
vices such as NVRAMs and on-chip memories. Especially,
PRAM is not manufactured in the field. To perform the
researches with the proposed MN-MATE platform, we de-
velop the MN-GEMS [9], a timing-aware full system simula-
tor. Our simulation platform addresses the need for many-
core support, a timing-aware simulation of multiple types of
main memories. Moreover, the simulation platform is open
and modular so that it can produce any kind of NVRAMs
that we may desire.

This study is an extension of our previous work [25], in
which we focused on the energy-efficiency with minimal per-
formance loss for the combined architecture of manycore,
DRAM, and NVRAM. Our objective in this study, however,
is to devise techniques for the hierarchical and hybrid main
memory and integrate the overall components in our many-
core computing system.

The reminder of the paper is organized as follows. Sec-
tion 2 describes the previous works and section 3 presents
the management of proposed memory system. Section 4
presents an example of applications called MaaS. A timing-
aware full system simulator is presented in Section 5. Our
work is concluded in Section 6.

2. PREVIOUS WORKS
Many researchers have tried to change the current main

memory system which uses only DRAM for supporting the
large memory requirement of new applications. As the ca-
pacity of main memory increases, DRAM main memory
shows large power consumption and bandwidth limitation.
It also has the scalability wall for sub-45nm technology. In
order to solve these drawbacks, on-chip DRAM memory and
non-volatile memory technologies are emerging. There are
two main memory design options: DRAM-cache and hy-
brid main memory. DRAM-cache architecture with on-chip
memory shows high bandwidth and low latency, and hy-
brid main memory architecture which combines DRAM with
non-volatile memory shows low power consumption.

DRAM-cache architecture is introduced for improving the
performance gain. L. Zhao et. al. [35] investigate the inte-
gration of large capacity, high-bandwidth and low-latency
DRAM caches to address memory stall overhead. They
also describe the placement of DRAM cache tags and pro-
posed partial on-die tag and sectored cache with prefetching
can achieve a performance improvement. However, the tag
checking overhead of large caches with small cache line size
is nontrivial. To address this issue, Z. Zhang et. al. [34] in-
crease DRAM cache line size. They also propose a prediction
technique which accurately predicts the hit/miss status of
an access to the cached DRAM, thus reducing the access la-
tency. In the case that uses a large DRAM cache line size, it
requires too much bandwidth because the miss rate does not
reduce enough to overcome the bandwidth increase. Thus,
X. Jiang et. al. [11] propose CHOP (Caching HOt Pages)
in DRAM cache to overcome this limitation. By studying
several filter-based DRAM caching techniques which are a
filter cache, a memory-based filter cache, and an adaptive
DRAM caching technique, they achieve a performance im-
provement and reduce the overhead in tag space. As another
method to increase the memory bandwidth, D. H. Woo et.

84

al. [31] employ a 3D-stacked memory architecture which is
placed in the core shows higher bandwidth and lower latency
than those of conventional DRAM memory. They propose
SMART-3D which is a new 3D-stacked memory architecture
with a vertical L2 fetch/write-back network using a large ar-
ray of through-silicon-vias (TSVs). Moreover, they propose
an efficient mechanism to manage the false sharing prob-
lem when implementing SMART-3D in a multi-socket sys-
tem. Therefore, they can take full advantage of this massive
bandwidth.
For achieving the large main memory capacity, non-volatile

memory which has high density and low power consumption
characteristics is supposed to be a candidate of main mem-
ory. Because non-volatile memory has a limitation in per-
formance, hybrid main memory architecture of DRAM and
non-volatile memory is proposed. M. K. Qureshi et. al. [28]
and H. Park et. al. [24] use DRAM as a buffer located in
front of non-volatile memory which is used for main memory.
In order to exploit this architecture efficiently, M. K. Qureshi
et. al. present laze-write, line-level writeback, page level by-
pass, and fine-grained wear-leveling. These techniques can
reduce the write count to non-volatile memory and make the
write count even among lines of non-volatile memory, thus
they can improve performance as well as increase the lifetime
of non-volatile memory. H. Park et. al. [24] also introduce
runtime-adaptive time out control, DRAM bypassing, and
longer time out for dirty data for the power management
in the hybrid main memory architecture. These techniques
can reduce the energy consumption of main memory with
negligible performance overhead. This hybrid main mem-
ory architecture shows low power consumption, but addi-
tional hardware supports are necessary. In order to reduce
additional hardware overhead, G. Dhiman et. al. [8] lo-
cates DRAM and non-volatile memory in the same linear
region. For exploiting this architecture efficiently, they pro-
pose a low overhead hybrid solution for managing memory
which consists of the memory allocator and page swapper.
The memory allocator serves the memory allocation requests
and the page swapper manages the page swap and bad-page
interrupts. From these techniques, they can achieve bet-
ter overall and performance efficiency with negligible over-
head. While hybrid main memory architectures which com-
bine DRAM and non-volatile memory can achieve low power
consumption and large main memory capacity, they cannot
significantly improve performance due to the performance
limitation of DRAM and non-volatile memory.
In this paper, we propose a hierarchical main memory

architecture which combines on-chip memory and a hybrid
main memory of DRAM and non-volatile memory. We also
present efficient main memory management strategies in this
architecture. Finally, we can achieve both high performance
and low power consumption with the large capacity of main
memory.

3. RESOURCE MANAGEMENT

3.1 Hierarchical Main Memory Management
Because on-chip DRAM memory shows higher bandwidth

and lower latency than those of conventional DRAM mem-
ory, it can be used as a LLC (last level cache) to overcome
size limitation of the SRAM caches. Many researches re-
cently have introduced DRAM-cache which uses the on-chip
DRAM as a last level cache [17, 11, 31]. DRAM-cache shows

Figure 2: Hierarchical main memory architecture
and its basic operation

good performance gain when running memory-intensive ap-
plications, but L. Zhao et. al. [35] said a scalability problem
can occur when the DRAM-cache size increase. Currently,
the size of on-chip memory can be increased up to 16GB in
the stack [31].

3.1.1 Hierarchical main memory architecture
In this paper, we propose the method to use the on-chip

memory as a part of the physically addressable memory.
This approach can mitigate the key drawbacks of managing
the on-chip memory as a cache, such as tag space overhead
and latency of the tag lookup. We propose a hierarchical
main memory which consists of two layers, called M1 and
M2, shown in Figure 2. M1 memory can be constructed
with the on-chip DRAM, and it is placed on a processor.
M2 memory is a conventional off-chip DRAM memory. We
consider that the hierarchical main memory exclusively ar-
ranges through the physical memory area and is physically
divided by memory address.

On-chip M1 memory which is placed in the core shows
higher bandwidth and lower latency than those of M2 on-
board DRAM memory. Therefore, many applications want
to get many memories of M1 to execute their works faster.
Because the size of M1 is limited, many application must
contend to obtain large size of M1 memory. For increasing
the overall performance and solving the contention problem,
software memory management must be needed.

3.1.2 Software memory management
Basic approach is described in Figure 2. During a period,

the hardware page access monitor in a memory controller
collects information about page accesses. At the end of the
period, the OS uses the collected information to decide a new
memory mapping. The key assumption of this approach is
that the page access pattern in one period is similar to the
next pattern in the next period. The OS will migrate the
most frequently accessed pages into M1 memory and move
the less accessed pages in M1 memory to M2 memory.

The LLC misses are handled by the memory controller
and cause the memory requests. The memory controller can
watch the all memory requests so that it can monitor the
page access pattern. We add a page access monitor module
in the memory controller and this monitor gathers a list

85

of the most frequently accessed pages. To monitor the page
accesses, a monitor module maintain page access maps which
consist of page address and counter, as shown in Figure 2.
Whenever a memory request occurs, it finds the matched
page access map with a page address and a corresponding
counter value is increased by one. If there is no matched
one, new page access map is created and added to a list.
We construct two lists to store the history of page ac-

cesses. Actually, the memory controller cannot log all kinds
of pages during the operation. Therefore, we should design
the monitoring method with small size of page access maps.
It the first level, we designed it contains the most frequently
accessed pages. It is managed with LFU-like replacement
policy. If one page access map is removed from the first
level by adding new one, the count value of this page will be
lost and the corresponding page also lose the chance to move
to the first level with a next access. To store the history of
the pages, we add the second level of the list and the second
level is managed by LRU replacement policy, as shown in
Figure 2. If a hit on the second level occurs and the counter
value is equal to the minimum of the first level, this page
access map moves to the first level to the next page access
map with greater than the value.
At every period, the OS obtains the information of page

access pattern from monitoring module , determine alloca-
tions of pages, and then migrates the most frequently ac-
cessed pages to the M1 memory. In our proposed scheme,
the pages in the first level list are the most frequently ac-
cessed pages during one period so that the OS will allocate
all pages in the first level into the M1 memory.

3.1.3 Preliminary evaluation
In order to evaluate the proposed memory management

scheme for the hierarchical main memory, we made a sim-
ulator based on Pin [19]. In this section, we present the
performance results of our proposed scheme for the hierar-
chical main memory. As workloads for evaluation, we se-
lected the SPEC CPU2006 benchmark [3]. The preliminary
experiments are conducted with a single application. We
evaluated our management scheme and compare the hit ra-
tio on the M1 memory and IPC (instruction per cycle). From
Figure 3(a), we can know that the hit ratio is highest when
we utilize the M1 memory as DRAM cache. However, if we
watch the IPC, our scheme shows the better performance,
as shown in Figure 3(b). It is because that if we use DRAM
cache, DRAM should be accessed twice for looking up tags
and for reading data.

3.2 Power-aware Hybrid Main Memory Man-
agement

For the MN-MATE system, we consolidate both DRAM
and PRAM into hybrid main memory to save the energy.
The idle power of DRAM has non-negligible effect on the
total power consumption, and it has increased in propor-
tion to its size [22]. On the contrary, non-volatile memories
such as PRAM have no refresh power and low idle power.
These emerging memories can be good candidates for replac-
ing DRAM in terms of energy. However, PRAM has some
vulnerabilities such as limited write endurance about 108,
long latency to access, and high write energy compared to
DRAM [14].

3.2.1 Hybrid main memory architecture

(a) Hit ratio on m1 memory

(b) IPC

Figure 3: Hit ratio on M1 memory and IPC with
32MB size of M1 memory

Figure 4: Hybrid Main Memory Architecture

Figure 4 shows the simplified hybrid main memory ar-
chitecture. The hybrid main memory consists of DRAM
and PRAM. This heterogeneous memory chips are wired
with same memory controller, then they are assigned to lin-
ear physical addresses and both regions can be accessed by
memory controller directly.

This architecture has several advantages compared to an-
other approach [28] which is composed of DRAM cache and
PRAM main memory. Though cache architecture provides
a decrease in write count of PRAM, it has a overhead to
access data in PRAM due to copy operation from PRAM

86

Figure 5: Power-aware Page Migration and Culling

to DRAM when cache miss occurs. And DRAM which is
only used for cache cannot increase the total size of main
memory. However, linear architecture described in Figure 4
is possible to aggravate both performance and energy con-
sumption if many memory operations occur in PRAM [8].
Therefore, it should be well-managed to alleviate disadvan-
tages of PRAM.

3.2.2 Management scheme
We propose memory management mechanism to take ad-

vantages of hybrid memory architecture. The management
unit is a page because the page is the basic unit of manage-
ment in OS. Figure 5 describe the schemes to manage the
memory system.
First scheme is hot/cold separation in page level. Be-

cause PRAM has long latency, high write energy and lim-
ited endurance, hot pages should be in DRAM and cold
pages in PRAM is more beneficial. We have used access
bit in the page table entry to separate hot pages. We use
second chance algorithm to identify the characteristics of
pages, then two consecutive memory references mean a hot
page and two consecutive non-references mean a cold page.
Second, we migrate the hot pages to DRAM and cold pages
to PRAM. Using this manner, we can obtain both improve-
ment of performance and power. Migrate operation is ac-
complished by the OS periodically. Moreover, we can re-
duce main memory’s power consumption by turning off un-
used DRAM region. This turning off function is supported
in some mobile DRAM. In order to turn off the region of
DRAM, active region should be swept. Therefore we pro-
pose page culling and gathering which sweep DRAM region
which contains few used pages and compulsorily migrate
those pages to PRAM as shown in Figure 5. It always
searches for free pages in online DRAM region and helps
minimize DRAM idle power.

3.2.3 Energy saving
We implement all these schemes in Linux operating sys-

tem. For migration, we used virtual NUMA nodes to divide
DRAM and PRAM region. Migration operation is done by
kernel daemon we implemented. For evaluation, we use cy-
cle accurate simulator to count memory accesses. The ex-
perimental results show that the proposed techniques can
reduce the energy consumption by up to 35% with 5% delay
overhead of memory access.

3.3 File Caching Technique based on the Hy-
brid Memory

In modern computer systems, a large part of main memory

(a) Energy Saving

(b) Performance Overhead

Figure 6: Energy Saving and Performance Overhead
Results

is used as a page cache to hide disk access latency. Many
page caching algorithms such as LRU [7], LIRS [10], and
CLOCK-Pro [27] have been developed for current DRAM
based main memory. In addition, FBR [29], LRU-2 [23], 2Q
[12], LRFU [15], and MQ [36] were proposed and researchers
tried to combine ”recency” (LRU) and ”frequency” (LFU) in
order to compensate for the disadvantages of LRU. However,
such previous page caching algorithms only considered the
main memory with uniform access latency and unlimited
endurance. They cannot be directly adapted to the hybrid
main memory architecture with DRAM and PRAM.

The main objective of this work is to propose a new page
caching algorithm for the hybrid main memory. The al-
gorithm is designed to overcome the long latency and en-
durance problem of PRAM. On the basis of conventional
cache replacement algorithms, we propose a prediction of
the page access pattern by page monitoring and migration
schemes to move write-bound access pages to DRAM.

3.3.1 Prediction and page migration scheme
To satisfy the requirements, we add a prediction of page

access pattern and migration schemes. In order to monitor
the pages and to adapt the migration scheme, we use four
monitoring queues, which consist of a DRAM read queue,
a DRAM write queue, a PRAM read queue, and a PRAM
write queue, as shown in Figure 7. When one page block
is accessed, it is retained into both the LRU list and one of

87

the four queues by its access pattern and the memory type
where it is located.
To solve performance degradation and worn-out problem

caused by PRAM’s long latency and low endurance, we use
migration of pages between DRAM and PRAM. We move
the write-bound pages from PRAM to DRAM. Addition-
ally, we move the read-bound pages from DRAM to PRAM.
Before deciding the page migration, we have to know which
pages are write-bound and which pages are read-bound. For
prediction of the access pattern, we calculate the weighting
values, which indicate how close the values are to write-
bound or read-bound. By monitoring the request types of
the page requests, the weighting value can be calculated by
using a moving average with weight α ∈ [0, 1] as follows:

Wcur = αWprev + (1− α)RT (1)

, where RT means the requested type of the page; its value
is 1 if the page request is write and −1 if the page request
is read.
There are two migration cases: one is the migration of

write-bound pages from PRAM to DRAM; the other is the
migration of read-bound pages from DRAM to PRAM. Ac-
cording to equation 1, the Wcur is increased when write
requests occur and is decreased at every read request. Al-
gorithm 1 shows how the cached pages are migrated. For
example, if the write access is hit on a page in the PRAM
write queue, PW, as shown in Figure 7, and its weighting
value is over Trmig, this page will migrate to the DRAM
write queue. We use two threshold values for determining
the migration and the movement between read and write
queues in the same memory. Trmig is the threshold value
for determining whether a page is migrated and Trq is the
threshold value for determining movement between read and
write queues. Two threshold values are determined through
experiments.

Algorithm 1 : Page Migration Function

input: page address and request type
Wcur: Current weight value
Trmig: Threshold value for determining migration
Trq: Threshold value for determining movement be-
tween read and write queues

Calculate Wcur

if page in PRAM then
if Wcur ≥ Trmig then

migrate the page to DRAM
else if Wcur ≥ Trq and page in read queue then

the page moves to write queue
else if Wcur ≤ −Trq and page in write queue then

the page moves to read queue
end if

else if page in DRAM then
if Wcur ≤ −Trmig then

migrate the page to PRAM
else if Wcur ≤ −Trq and page in write queue then

the page moves to read queue
else if Wcur ≥ Trq and page in read queue then

the page moves to read queue
end if

end if

Figure 7 shows an example of write-bound page migration

Figure 7: Monitoring queues and an example of mi-
gration of the write-bound pages

from PRAM to DRAM. If there is no free space in DRAM,
we select a victim page from the bottom of the DRAM read
queue and remove it from DRAM. The write-bound page in
PRAM is moved to the DRAM where the victim page was
located. In the DRAM write queue, this page is put into
the top of the queue. In case of the victim page, we just
drop the page because it may increase PRAM write count if
we move the victim page to PRAM. If there is no element
in the DRAM read queue when we find a victim page for
migration, we choose a victim page from the bottom of the
DRAM write queue, which means that the victim page is
the least recently used. The migration of read-bound pages
is similar to the migration of write-bound pages.

3.3.2 Experiment results of hit ratio and write count
The hybrid main memory is defined in Figure 4. Because

PRAM density is expected to be four times higher than
that of DRAM [25, 32], we mainly allocate four times larger
amount of memory to PRAM in this experiment. To eval-
uate the performance characteristics of the proposed page
caching algorithm, we constructed a trace-driven simulator
and used the OLTP traces. These traces were made avail-
able courtesy of Ken Bates from HP, Bruce McNutt from
IBM, and the Storage Performance Council [2]. We selected
the parameter, α, in the equation 1 and two threshold values
in Algorithm 1 through experiments. We select the values
of α, Trmig and Trq as 0.5, 0.5 and 0.35, respectively.

The first experiment measures the hit ratio, which is im-
portant in determining the performance of the page caching
algorithm. We compared the hit ratio of our page caching
algorithm to the hit ratios of the conventional page caching
algorithms. The results are shown in Figure 8(a). From the
results, while the hit ratio of our algorithm is lower than
that of LRU, the results show that the hit ratio is similar to
those of the LRU, LIRS, and CLOCK-Pro algorithms. Be-
cause we designed the selected victim page for migration to
simply be eliminated, it is possible that the page faults will
occur more. The second experiment shows the total write
access count on PRAM, which is also important because it

88

(a) Hit ratio

(b) The total write access count on PRAM

Figure 8: Experiment results of the proposed and
conventional algorithms on financial1 workload

is related to the total latency of the page cache and the life-
time of PRAM. Figure 8(b) shows the total number of write
accesses on PRAM with financial1 workloads. When using
our algorithm, we can know that the total number of write
accesses is reduced compared to that for the conventional
page caching algorithm. We can reduce the total write ac-
cess count by a maximum of 52.9%.

4. CASE STUDY: MATCHING AS A SER-
VICE (MAAS)

With the advancement of digitalization and the availabil-
ity of communication networks, multimedia matching ser-
vices such as Picasa, Pudding application, and Google Gog-
gles have become increasingly popular services. To realize
the services, many vendors constructed their systems based
on their own ways which prevents people from taking advan-
tage of a high-quality multimedia matching services. How-
ever, they have been unable to share a well-defined multi-
media matching library and united multimedia database.
To alleviate this limitation, we suggest an open and high-

quality matching service, called ”Multimedia Matching as
a Service (MaaS)”. MaaS can analyze the multimedia in-
put stream and search the image which has similar features
with the input data at the multimedia database. It can
also accelerate the image analysis procedure by exploiting
the resources of MN-MATE platform which are manycore
CPUs, general-purpose GPUs, and hierarchical and hybrid
main memory. Thus, users can take the high quality multi-
media matching services, shared multimedia databases, and
a well-defined multimedia matching library.
Figure 9 shows an example of MaaS’s service flow. When

contents providers such as SmartTV Broadcast vendors, In-

Figure 9: Example Service of MaaS

Figure 10: Memory Characterization of MaaS Sys-
tem

ternet broadcast vendors, and movie film makers want to
use multimedia analyzing service for automatic-advertising,
deduplication of multimedia contents, or multimedia web
searching, they will request above kinds of service to im-
age analysis service providers. MaaS system’s computation
power, resource, and several image analyzing algorithm are
rent to the service providers. If service providers transmit
contents providers’ input stream to MaaS, then MaaS send
mathcing results which are followed service provider’s con-
ditions. For example, if service providers want to receive im-
ages which are similar to their input, MaaS will give matched
images finding from DB. To realize this system, accelerating
image analysis power and well-managed resource are impor-
tant.

MaaS operation consists of the feature extraction and the
feature matching operation. It requires the large main mem-
ory capacity and power consumption. Therefore, the MN-
MATE platform is a suitable candidate because it has the
hierarchical and hybrid main memory architecture which
has the large memory capacity and low power consumption
characteristics. MaaS operation shows the complex compu-
tational overhead. The MN-MATE platform can solve this
limitation with manycore CPUs and general purpose GPUs.
First, the feature extraction in MaaS operation has parallel
operations, thus it can be accelerated by manycore CPUs
and general purpose GPUs which are optimized for the par-
allel processing. Second, the matching operation matched
the uploaded images and videos with data in the image

89

database. The file caching technique based on the hybrid
memory can reduce the performance overhead by I/O op-
erations in the matching operation. By caching hot data
in DRAM and cold data in PRAM, we can improve perfor-
mance of the matching operation. During the feature extrac-
tion and the feature matching operation, the main memory
is largely used for storing uploaded images and videos and
data from the image database. Therefore, we can exploit
the management scheme in the hierarchical main memory
system and the hybrid main memory system in order to use
the main memory efficiently. Figure 10 shows the mem-
ory access of MaaS which can be divided into hot and cold
region. In both main memory systems, they use hot/cold
separation scheme that locates hot memory access into M1
memory/DRAM and cold memory into M2 memory/PRAM.
We can improve performance of MaaS by exploiting resource
management of MN-MATE platform.

5. MN-GEMS: A TIMING-AWARE FULL SYS-
TEM SIMULATOR

Our research ideas, including results from the first year
MN-MATE [25], aimed at the management of manycore and
various memory hierarchies including on-chip memory and
NVRAMS, which are not manufactured in the field, yet.
As a fundamental way of performing this kind of research,
simulation-based designs and evaluations stand out as the
most widely used mechanisms. The use of software simu-
lators allows the validation of architecture designs and the
exploration of new concepts before actual implementation.
Thus, there is a need for a well-defined simulation environ-
ment for the study on the manycore system and the vari-
ous memory hierarchy-based system design. By thoroughly
investigating our research direction, we identified three re-
quirements for the simulation environment construction: 1)
support for manycore simulation; 2) timing-aware simula-
tion of hybrid main memory hierarchy based on the on/off-
chip DRAM and NVRAM access characteristics; and 3) a
Performance Monitoring Unit (PMU).

Table 1: Functionalities of full-system simulators

Manycore
Timing Simulation

PMU Acceleration
DRAM NVRAM

M5 [4] X O X X X
Simics [20] O X X X X
GEMS [21] O O X X X
MN-GEMS O O O O O

Table 1 shows the functionalities of conventional simula-
tion platforms. The last row in Table 1 clarifies our sim-
ulation design goal with respect to desirable functionalities
to be achieved. Among the five requirements, M5 and Sim-
ics provide only one functionality, even though they support
a full-system simulation. They give little consideration to
the different access latencies that are in accord with the
NVRAM access type and to the memory access request or-
dering generated from manycore. Even though GEMS has
attained a consensus that it can enable DRAM timing sim-
ulation functionality as well as manycore support, it cannot
support an on/off-chip DRAM and an NVRAM timing sim-
ulation, runtime feedback of performance statistics. Finally,
previous simulators have not offered much of a solution to
reducing long simulation times when timing-awareness fea-
ture is enabled with a full-system simulation.

Figure 11: An example of modeled hardware and
execution environment in the simulator.

To alleviate these limitations, we realized a more advanced
simulation platform, MN-GEMS, which meets the above re-
quirements. GEMS is considered a promising foundation for
our simulation platform. Our simulation platform addresses
the need for manycore support, a timing-aware simulation
of multiple types of main memory, and a PMU by devising
a memory traffic multiplexer and a reconfigurable memory
controller. Moreover, the simulation platform is open and
modular, allowing simulation users to produce any kind of
DRAM and NVRAM that they may desire. Our MN-GEMS
simulation platform will be used as one of the base simulator
for ongoing research issues in the MN-MATE project.

5.1 Details of Simulation Platform
The primary purpose of MN-GEMS is to simulate a MN-

MATE node equipped with manycore and a hierarchical and
a hybrid main memory. To meet this requirement, the sim-
ulator models a hardware shown in Figure 11 and performs
a full-system simulation. We built the MN-GEMS by con-
figuring GEMS to support manycore and adding modified
cache hierarchy, on/off-chip DRAM hierarchy modules, a
NVRAM timing simulation module and a PMU.

5.1.1 Manycore support
To simulate manycore processors, we configured GEMS so

that a processor consists of 8 cores, core-private L1 caches,
and a shared L2 last level cache (LLC). All cores in the
processor share same LLC. Access to the caches for any task
is delayed in accordance with the memory timing model.

5.1.2 Timing-aware simulation
The goal of a timing-based simulation is to get results

of both the execution result and the latency generated by
event handling. GEMS basically provides timing-based sim-
ulation modules with the timing parameters from on-chip
DRAM [31] and off-chip DDR2 SDRAM. We built another
timing-based simulation module for the timing parameters
of NVRAM and added a request controller to both of mem-
ories.

The overall procedure for the timing-aware memory access
timing simulation is shown in Figure 12. If a task accesses
memory, a memory access request is generated and issued
to the request controller. The issued request is inserted into

90

Figure 12: Internal procedure of timing-aware sim-
ulation

one of two controllers according to the target memory type
of the request. In the request controller, requests are sorted
so that requests with the highest priority are issued first. If
issued, the state of the issued request is changed to issued
and waits for the specified time. When the request is done,
a response is sent back to the requester.

5.1.3 Performance monitoring of tasks
The memory access pattern of a task is one of the most

useful hints to predict future memory contention when sched-
uled simultaneously with other tasks. We added a PMU to
the hybrid main memory and the caches in the processor to
monitor per-task access patterns. With a number of counter
registers, it monitors the occurrence of concerned events
such as LLC misses, cache line fills, DRAM reads/writes,
and NVRAM reads/writes. When an administrative task in
the hypervisor, guest OS, or any application needs to get
values from the PMU, it executes a magic instruction. The
magic instruction pauses the current simulation and copies
values from the PMU to the predetermined memory loca-
tion. Then, the simulation resumes and the caller can access
the collected data.

5.2 Current Status and Next Steps
We are still in the phase of accelerating simulation speed

to prove our idea regarding resource management for the
MN-MATE project. Once the simulator is ready to execute
fast enough, we plan to investigate performance bottlenecks
to exhibit our motivation and to prove the efficiency of our
solution regarding resource management.

6. CONCLUSIONS
In this paper, we presented MN-MATE platform includ-

ing a hierarchical and a hybrid main memories and man-
agement techniques for highly utilizing the proposed archi-
tecture. As memory management techniques, we presented
the hierarchical main memory management and the power-
aware hybrid main memory management, which shows good
performance and energy-efficiency. In addition, we deal with
the file caching on the hybrid memory. We presented the
proper caching algorithm based on the hybrid memory. Al-
though some hardware devices on the MN-MATE platform
are not manufactured in the field, we designed the full sys-
tem simulator, MN-GEMS, for the study on the manycore
system and its management technique. We are currently im-
plementing MN-MATE hardware and software components
including memory managements and MaaS application. We
will soon have complete design and implementation about
managements of the proposed memory architecture and the
MaaS service.

7. ACKNOWLEDGMENTS
The work presented in this paper was supported by MKE

(Ministry of Knowledge Economy, Republic of Korea), Project
No. 10035231-2010-01.

8. REFERENCES
[1] Hp. memory technology evolution: an overview of

system memory technologies.,
http://tinyurl.com/ctfjs2.

[2] Oltp application i/o and search engine i/o. umass
tracerepository,
http://traces.cs.umass.edu/index.php/storage/storage.

[3] Spec’s benchmark, http://www.spec.org/cpu2006.

[4] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi,
and S. Reinhardt. The m5 simulator: Modeling
networked systems. Micro, IEEE, 26(4):52 –60,
july-aug. 2006.

[5] S. Borkar. Thousand core chips: a technology
perspective. In Proceedings of the 44th annual Design
Automation Conference, DAC ’07, pages 746–749,
New York, NY, USA, 2007. ACM.

[6] J. H. Choi, K.-W. Park, S. K. Park, and K. H. Park.
Multimedia matching as a service: Technical
challenges and blueprints. In The 26th International
Technical Conference on Circuits/Systems, Computers
and Communications, 2011.

[7] A. Dan and D. Towsley. An approximate analysis of
the lru and fifo buffer replacement schemes.
Proceedings of the 1990 ACM SIGMETRICS
conference on Measurement and modeling of computer
systems, pages 143–152, April 1990.

[8] G. Dhiman, R. Ayoub, and T. Rosing. Pdram: A
hybrid pram and dram main memory system. In
Design Automation Conference, 2009. DAC ’09. 46th
ACM/IEEE, pages 664 –669, july 2009.

[9] W. Hwang, K.-W. Park, and K. H. Park. Mn-gems: A
timing-aware simulator for a cloud node with
manycore, dram, and non-volatile memories. In Cloud
Computing (CLOUD), 2011 IEEE International
Conference on, pages 734 –735, july 2011.

[10] S. Jiang and X. Zhang. Lirs: An efficient low
inter-reference recency set replacement policy to
improve buffer cache performance. In Marina Del Rey,
pages 31–42. ACM Press, 2002.

[11] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer,
S. Makineni, D. Newell, Y. Solihin, and
R. Balasubramonian. Chop: Adaptive filter-based
dram caching for cmp server platforms. In High
Performance Computer Architecture (HPCA), 2010
IEEE 16th International Symposium on, pages 1 –12,
jan. 2010.

[12] T. Johnson and D. Shasha. 2q: A low overhead high
performance buffer management replacement
algorithm. In Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB ’94,
pages 439–450, San Francisco, CA, USA, 1994.
Morgan Kaufmann Publishers Inc.

[13] T. Kgil, S. D’Souza, A. Saidi, N. Binkert,
R. Dreslinski, T. Mudge, S. Reinhardt, and
K. Flautner. Picoserver: using 3d stacking technology
to enable a compact energy efficient chip
multiprocessor. In Proceedings of the 12th

91

international conference on Architectural support for
programming languages and operating systems,
ASPLOS-XII, pages 117–128, New York, NY, USA,
2006. ACM.

[14] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger.
Architecting phase change memory as a scalable dram
alternative. In Proceedings of the 36th annual
international symposium on Computer architecture,
ISCA ’09, pages 2–13, New York, NY, USA, 2009.
ACM.

[15] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min,
Y. Cho, and C. S. Kim. Lrfu: A spectrum of policies
that subsumes the least recently used and least
frequently used policies. IEEE Transactions on
Computers, 50(12):1352–1361, December 2001.

[16] C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari.
Bridging the processor-memory performance gap with
3d ic technology. Design Test of Computers, IEEE,
22(6):556 – 564, nov.-dec. 2005.

[17] G. H. Loh. 3d-stacked memory architectures for
multi-core processors. In Proceedings of the 35th
Annual International Symposium on Computer
Architecture, ISCA ’08, pages 453–464, Washington,
DC, USA, 2008. IEEE Computer Society.

[18] G. L. Loi, B. Agrawal, N. Srivastava, S.-C. Lin,
T. Sherwood, and K. Banerjee. A thermally-aware
performance analysis of vertically integrated (3-d)
processor-memory hierarchy. In Proceedings of the
43rd annual Design Automation Conference, DAC ’06,
pages 991–996, New York, NY, USA, 2006. ACM.

[19] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation,
PLDI ’05, pages 190–200, New York, NY, USA, 2005.
ACM.

[20] P. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35(2):50 –58, feb 2002.

[21] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.
Hill, and D. A. Wood. Multifacet’s general
execution-driven multiprocessor simulator (gems)
toolset. SIGARCH Comput. Archit. News, 33:92–99,
November 2005.

[22] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap:
eliminating server idle power. In Proceedings of the
14th international conference on Architectural support
for programming languages and operating systems,
ASPLOS ’09, pages 205–216, New York, NY, USA,
2009. ACM.

[23] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The lru-k
page replacement algorithm for database disk
buffering. In Proceedings of the 1993 ACM SIGMOD
international conference on Management of data,
SIGMOD ’93, pages 297–306, New York, NY, USA,
1993. ACM.

[24] H. Park, S. Yoo, and S. Lee. Power management of
hybrid dram/pram-based main memory. In Design

Automation Conference (DAC), 2011 48th
ACM/EDAC/IEEE, pages 59 –64, june 2011.

[25] K. H. Park, Y. Park, W. Hwang, and K.-W. Park.
Mn-mate: Resource management of manycores with
dram and nonvolatile memories. In High Performance
Computing and Communications (HPCC), 2010 12th
IEEE International Conference on, pages 24 –34, sept.
2010.

[26] Y. Park, D.-J. Shin, S. K. Park, and K. H. Park.
Power-aware memory management for hybrid main
memory. In Next Generation Information Technology
(ICNIT), 2011 The 2nd International Conference on,
pages 82 –85, june 2011.

[27] S. J. Performance and S. Jiang. Clock-pro: An
effective improvement of the clock replacement. In
Proceedings of USENIX Annual Technical Conference,
2005.

[28] M. K. Qureshi, V. Srinivasan, and J. A. Rivers.
Scalable high performance main memory system using
phase-change memory technology. In Proceedings of
the 36th annual international symposium on Computer
architecture, ISCA ’09, pages 24–33, New York, NY,
USA, 2009. ACM.

[29] J. T. Robinson and M. V. Devarakonda. Data cache
management using frequency-based replacement. In
Proceedings of the 1990 ACM SIGMETRICS
conference on Measurement and modeling of computer
systems, SIGMETRICS ’90, pages 134–142, New York,
NY, USA, 1990. ACM.

[30] H. Seok, Y. Park, K.-W. Park, and K. H. Park.
Efficient page caching algorithm with prediction and
migration for a hybrid main memory. SIGAPP Appl.
Comput. Rev., 11(4):38–48, Dec. 2011.

[31] D. H. Woo, N. H. Seong, D. Lewis, and H.-H. Lee. An
optimized 3d-stacked memory architecture by
exploiting excessive, high-density tsv bandwidth. In
High Performance Computer Architecture (HPCA),
2010 IEEE 16th International Symposium on, pages 1
–12, jan. 2010.

[32] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and
Y. Xie. Hybrid cache architecture with disparate
memory technologies. In Proceedings of the 36th
annual international symposium on Computer
architecture, ISCA ’09, pages 34–45, New York, NY,
USA, 2009. ACM.

[33] W. A. Wulf and S. A. McKee. Hitting the memory
wall: implications of the obvious. SIGARCH Comput.
Archit. News, 23:20–24, March 1995.

[34] Z. Zhang, Z. Zhu, and X. Zhang. Design and
optimization of large size and low overhead off-chip
caches. Computers, IEEE Transactions on, 53(7):843 –
855, july 2004.

[35] L. Zhao, R. Iyer, R. Illikkal, and D. Newell. Exploring
dram cache architectures for cmp server platforms. In
Computer Design, 2007. ICCD 2007. 25th
International Conference on, pages 55 –62, oct. 2007.

[36] Y. Zhou, J. Philbin, and K. Li. The multi-queue
replacement algorithm for second level buffer caches.
In Proceedings of the General Track: 2002 USENIX
Annual Technical Conference, pages 91–104, Berkeley,
CA, USA, 2001. USENIX Association.

92

