
GHOST: GPGPU-Offloaded High Performance Storage I/O
Deduplication for Primary Storage System

Chulmin Kim
KAIST, Electical Engineering

Daejeon, South Korea
cmkim@core.kaist.ac.kr

Ki-Woong Park
KAIST, Electical Engineering

Daejeon, South Korea
woongbak@core.kaist.ac.kr

Kyu Ho Park
KAIST, Electical Engineering

Daejeon, South Korea
kpark@kaist.ac.kr

ABSTRACT
Data deduplication has been an effective way to eliminate
redundant data mainly for backup storage systems. Since
the recent primary storage systems in cloud services are ex-
pected to have the redundancy, the deduplication technique
can also bring significant cost saving for the primary storage.
However, the primary storage system requires high perfor-
mance requirement about several GBs per second. Most
conventional deduplication techniques targeted the perfor-
mance requirement of 200-300MB/s.

In an attempt to achieve a high performance storage dedu-
plication system at the primary storage, we thoroughly an-
alyze the performance bottleneck of previous deduplication
systems to enhance the system to meet the requirement of
the primary storage. The new performance bottleneck of
deduplication in the primary storage lies on not only key-
value store lookup, also computation for data segmentation
and fingerprinting due to recent technology improvement
of flash devices such as SSD. To overcome the bottlenecks,
we propose a new deduplication system utilizing GPGPU.
Our proposed system, termed GHOST, includes the follow-
ings to offload and optimize the deduplication processing in
GPGPU: (1) In-Host Data Cache, (2) Destage-aware Data
offloading to GPGPU and (3) In-GPGPU Table Cache of
key-value store. These techniques improve the offloaded
deduplication processing about 10-20% on the reasonable
workload of the primary storage compared to the naive ap-
proach. Our proposed deduplication system can achieve
1.5GB/s in maximum which is about 5 times of the dedu-
plication systems used CPU only.
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1. INTRODUCTION
Cloud computing [1, 26, 16] is an evolving computing

paradigm that is being a trend of the recent computing in-
dustry. Basically, the cloud system earns its profit by deliv-
ering resources such as computing and storage to customers
on demand. Among the computing resources, storage space
is becoming the most serious problem due to its mainte-
nance cost. Whole storage space should be maintained even
during the users are offline while other resources of the of-
fline users can be passed to other online users. Moreover,
MTTF(Mean Time To Failure) of storage devices such as
HDD is very short compared to other resources [25].

Storage deduplication [22] maintains only one unique copy
of same data chunks. It can bring huge benefit to the cloud
providers with large primary storage servers suffering the
storage cost problem. However, existing deduplication sys-
tems [29] have targeted mainly the backup storage so far.
There were two reasons. First, the overhead of storage dedu-
plication was not negligible. Storage deduplication system
should maintain a table called key-value store [6]. Due to
the big table size which does not fit into the main memory,
table lookups required burden disk accesses. This problem
limits the maximum performance of the entire system. Even
though there was trials to reduce this overhead [29, 15], they
report 200-300MB/s as the maximum throughput of the sys-
tem which is less than the maximum write throughput of just
one recent SSD device about 320MB/s [24]. Second, the ben-
efit of deduplication on the primary storage was forecasted
not to be high enough. Before the cloud system, the primary
storage was used for the databases of services which are ori-
ented more on read operations and have less possibility of
duplicated data. In that kind of systems, the deduplication
is expected only to save little storage space costing huge part
of the throughput.

Currently, the reasons in the past have resolved almost by
the significantly evolved technology and computing trend.
The main memory size of server systems for the primary
storage usually reaches to tenth GBs in these days. It will
decrease the possibility of disk accesses due to the table
lookup. Appearance of Flash-based device such as SSD with
fast random read latency also mitigated the time taken for
disk accesses during table lookups. Not only it mitigated
the overhead, also it makes the deduplication more precious
in the primary storage where adopted SSDs as the storage
media for the performance reason. Since the cost of SSD

17



is higher than that of HDD, the amount of cost reduced by
the saved space will get larger. Cloud computing trend in
which an individual user rents the virtual machine from the
cloud system is enlightening the possibility of high dedupli-
cation rate in storage system of the cloud system. Multiple
individual users will probably install same OSes and appli-
cations, and share the same files such as document, music
or video files. The recent observation [18] about the practi-
cal deduplication in the individual computing environment
shows the high deduplication rate within a set of multiple
users (50% deduplication rate in a set of 819 users).

In the phase of writing to the storage media, adoption of
only four SSDs can achieve the performance of the primary
storage up to several GBs per second since each SSD can
perform above 320MB/s for sequential write and 520MB/s
for sequential read [24]. However, during the deduplication
processing, the system meets the bottlenecks again from the
data segmentation and fingerprinting. This computational
overhead was also existed in the past , but it was hidden by
the bottleneck in the table lookup. Now, it is being unveiled
because the table lookup overhead is mitigated by SSD and
enlarged main memory space. The data segmentation and
fingerprinting of the deduplication processing can be exe-
cuted in parallel. Therefore, multi-threaded processing will
be the solution for these bottlenecks. As known generally,
there are two choices of multithreaded processing: Multi-
core CPUs and GPGPU(General Purpose Graphic Process-
ing Unit). By comparing both approaches through the pre-
liminary experiments, we figured out that GPGPU is more
favorable to the deduplication in the perspective of cost ef-
fectiveness.

In this paper, we propose a GPGPU offloaded dedupli-
cation system, termed GHOST. To design it, we examine
whether each part of typical deduplication processing fits
into GPGPU or not. Following the examination, our sys-
tem fully offloads the deduplication processing to GPGPU
to utilize its computing power and broad memory access
bandwidth.

First of all, we suggest the system with In-Host Data
Cache (IHD-Cache) to enable the offloading without loss of
performance. It is responsible for being the buffer of data
to be offloaded rapidly and the traditional functionality of a
write/read cache for the primary storage.

Due to the long latency of parallel deduplication opera-
tions offloaded to GPGPU(though the throughput is incred-
ible), our system in the primary storage might suffer inval-
idation of deduplication processing due to the events such
as frequent write cache hits. To avoid the deduplication re-
sult being useless due to such events, our system includes
Destage-aware Data Offloading to GPGPU. It selects data
from the collaboration with the employed destaging algo-
rithm which forecasts the data not to have write cache hit
based on the spatial and temporal locality [11, 10]. (destage
: write data from cache to underlying disks)

Moreover, we maintain In-GPGPU Table Cache (IGT-
Cache) which is the hot part of the whole table entries with
more possibility of deduplication to utilize the broad mem-
ory access bandwidth of GPGPU. It can reduce much of
table lookup overhead in proportional to the deduplication
ratio in an optimistic view. In addition, we adopt summary
vector [29] for IGT-Cache to mitigate the overhead of the
table cache lookup. It reduces uncoalesced memory access
pattern caused by the unnecessary lookups on IGT-Cache.
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Figure 1: Typical Deduplication Processing

GHOST is a part of our development project for a manycore-
based cloud computing platform, called MN-MATE [21]. In
our platform, GHOST is integrated into storage layer as the
key primitive for a high performance storage deduplication.
Consequently, GHOST can also be extended to cloud-based
services such as an outsourced storage service and a content
delivery service over the Internet.

2. BACKGROUND

2.1 Storage Deduplication
Generally, the deduplication process consists of the steps

shown in Figure 1. First of all, an largely chunked incoming
data stream is divided into multiple pieces of data segments.
The size of each piece can be variable or fixed. Variable-
length segmentation [23] needs more computation, instead,
it brings higher deduplication rate than those of fixed-length
segmentation [18].

Secondly, each segment should have its own fingerprint
to verify the uniqueness. For the purpose, one of various
hash algorithms [7, 17] can be adopted to generate the fin-
gerprint. The goal of the hash algorithms in fingerprinting
is to avoid fingerprint collision between different data seg-
ments. Usually, the hash algorithm with low collision rate
such as SHA1 [7] results in more complexity during the hash
computation.

In the third step, the deduplication process should look
up the table called key-value store [6]. During the lookup,
disk accesses can occur due to the oversized table which is
lying on both main memory space and disk space. Finally,
the deduplication process decides whether to store the data
segments to the underlying storage system or not depending
on the result of the lookup in the key-value store.

2.2 GPGPU Characteristics
GPGPU is the abbreviation of general purpose graphic

processing unit. The recently released GPU products sup-
port not only the primitives specialized for the graphic pro-
cessing, but also the execution of general instructions used in
the CPU. Heterogeneous computing model such as CUDA [20]
makes existing programs run on GPGPU with maximized
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Table 1: Specification of GTX480
Core Clock Frequency 1,401 MHz

Max.number of threads 23,040
Memory Size 1,535 MB

Memory Transfer Bandwidth
(Host to Device)

2,756 MB/s

Memory Transfer Bandwidth
(Device to Host)

3,198 MB/s

Memory Transfer Bandwidth
(Device to Device)

121,000 MB/s

Cost (in dollars) 390$*
*Amazon.com, December, 2011

parallelism.
To use the computation power of GPGPU, the user should

follow the specific sequence: (1) put data to be calculated
from the host to GPGPU, (2) execute the GPGPU kernel
and (3) return the result data from GPGPU to the host.
Since GPGPU can only access the memory space of itself,
memory transfer between the host main memory and the
GPGPU memory is unavoidable. After transferring the ker-
nel code and data region, GPGPU can execute its kernel
code in parallel. In the end of the parallel computation, the
data region with computation results should be transferred
to be used in the host later.

Depending on the products, the specifications such as
maximum number of threads GPGPU can execute are dif-
ferent. Table 1 shows the specifications for GTX480 [19] of
our target system.

3. ANALYSIS
In this section, we analyze the performance overhead of

each step in typical deduplication processing shown in Fig-
ure 2. Mainly, we compared the deduplication overhead
appeared in the past machine specification to that in the
primary storage system [2] expected to be relatively high-
cost system. During the comparison, we assume the high-
cost system can equip with Flash devices, enlarged memory
space and GPGPU. As a result, we expect to see what was
and what will be the crucial bottleneck in the past and the
future, respectively.

3.1 Key-value Store Lookup
Key-value store table was the most time consuming part

of typical deduplication processing. The result of the table
lookup decides the uniqueness of a certain data segment.
The size of this table varies depending on the average seg-
ment size and the total amount of data stored. For example,
the table size is about 10GB if the average data segment size
is 8KB and the amount of stored data is 4TB [29]. In the
past, the major part of the table resides in the disk space
since the size is over the small main memory size. A table
lookup mostly resulted in one disk access in case of hash
table data structure. This overhead was the outstanding
problem which leads to low bandwidth of the deduplication
system.

Figure 2 shows the calculated performance result of the
table lookup in different specifications. Commonly, the stor-
age size of both specifications is set to 20TB. We assume that
one specification has HDD(10ms latency [5]) and 8GB Mem-
ory(1us latency [5]) as shown in the experiment of the pre-
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Figure 2: Comparison of Index Table Lookup in Dif-
ferent Specifications varying Average Segment Size

vious work [29]. Another specification includes SSD(12.5us
latency [24]) and 16GB Memory(1us latency) due to the as-
sumption for the primary storage server. In addition, we
applied 81% of disk access rate to the calculation while the
number of disk accesses is equal to the number of table en-
tries lying on the disk space. The previous work [29] in-
sists that it improves 99% of disk accesses by its techniques.
Among them, only one technique named Summary Vector
is available for our target system since other techniques are
based on the assumption that the target system is a backup
system. According to the experiment in that work, the avail-
able technique reduces 19% of disk accesses in the large sized
table. The metric for the throughput is the amount of data
which fingerprints have looked up the table per second.

As a result, we can see that the performance saturation
is about 1GB/s even though when the data segment size is
8KB which is relatively small. Moreover, we did not calcu-
late any performance advantage from prefetching and spatial
or temporal locality of table entries. From these factors, the
overhead of key-value store lookup is mitigated a lot com-
pared to that in the past though it is not eliminated.

Since we assumed that the primary storage server has
GPGPU also, we can have a question how much performance
improvement of the table lookup there is in GPGPU. To an-
swer the question, we did the table lookup experiment on
Intel Xeon 3.00GHz CPU and GTX480 GPGPU as illus-
trated in Table 2. The size of the table was set to 500MB
for both. Also, we assumed that all the data segments al-
ready have been transferred to GPGPU memory, and each
data segment already has its fingerprint. According to the
graph, GPGPU also can improves the table lookup func-
tion compared to the capability of CPU. It is due to not
only broaden memory bandwidth of GPGPU, also massive
thread-level parallelism of GPGPU though it is not propor-
tional to the number of threads which GPGPU has.

3.2 Segmentation
There are two ways of data segmentation, fixed and variable-

length segmentation. Fixed-length segmentation segments a
largely chunked data stream(usually about 1-64MB [9, 27])
into fixed-length blocks so that it does not incur any compu-
tation overhead. Variable-length segmentation divides the
stream into variable sized segments [23]. To decide the seg-
mentation boundary, the sliding window of certain bytes
seeks the data stream. Sliding the window, the data within
the window is hashed and the hash result is compared with
the magic number of the variable-length segmentation al-
gorithm. If it matches, the data stream is chopped at the
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Table 2: Comparison of Index Table Lookup in CPU
and GPGPU

# of Table Lookups
Time Consumed for Table Lookups

CPU
(Intel Xeon
3.00GHz)

GPGPU
(GTX480)

40,000 30ms 1ms
80,000 98ms 1ms

160,000 160ms 1ms
320,000 370ms 3ms
640,000 649ms 4ms

1,280,000 1,452ms 8ms
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Figure 3: Comparison of Segmentation in CPU and
GPGPU

current location of the sliding window’s endpoint.
In previous works [18, 29], variable-length segmentation

brought definitely better deduplication rate due to the ca-
pability detecting shifted data. However, in the most dedu-
plication systems, it was not used due to the high computa-
tion overhead. The comparison result of segmentation per-
formance in CPU and GPGPU is shown in Figure 3. The
y-axis of the graph indicates the amount of segmented data
per second. Each segmentation operation divides a large
data chunk of 128KB into data segments with the average
size of 4KB while the window size of the segmentation al-
gorithm is set to 63 bytes. In case of the single threaded
CPU result, it is limited to 25MB/s while GPGPU result
approaches 2.6GB/s in maximum. Since it is able to par-
allelize, multiple number of cores about 100 also can in-
crease the performance up to that of GPGPU. However, even
though the performance is approached, GPGPU is still bet-
ter for this functionality in the perspective of cost since the
cost of GTX480 is almost equal to that of Intel Xeon E5620
CPU with only 4-cores and 2.4GHz clock frequency [19, 13].

3.3 Fingerprinting
Fingerprinting is equal to hashing since the fingerprint is

obtained by hashing certain data segment. Figure 4 shows
the comparison of hashing capability in CPU(Intel Xeon
3.0Ghz) and GPGPU(GTX480) which generate fingerprints
for 4KB data segments. Of course, massively parallelized
GPGPU earned much higher throughput than CPU. The
saturation shown in case of GPGPU is also the memory
transfer bottleneck between GPGPU memory and host main
memory in Table 1. According to the graph, the maximum
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Figure 4: Comparison of Fingerprinting in CPU and
GPGPU

throughput can be achieved by parallel hashing for 128MB
of data which is similar with the amount of data needed for
the maximum segmentation throughput in Figure 3.

Comparison of 1 CPU and 1 GPGPU might be not fair
enough. In the perspective of cost, CPU chip with 4 cores is
equal to 1 GPGPU as mentioned in [19, 13]. According to
the comparison result, 7 times of CPU result would approach
to the GPGPU result. GPGPU has better cost efficiency
even only for fingerprinting.

Moreover, GPGPU will be used also for the functionality
of segmentation which requires same data set with finger-
printing as mentioned previously. It means only one memory
transfer to GPGPU will be required for 2 kinds of function-
ality. The graphs shown in Figure 3, 4 for segmentation
and fingerprinting include the overhead of GPGPU mem-
ory transfer in each throughput result. Thus, efficiency of
GPGPU will be much better than what the graphs indicate,
so that the use of GPGPU for the segmentation and finger-
printing is not comparable with the use of multiple CPUs.

3.4 Summary
Through the analysis so far, we reviewed the bottleneck of

typical deduplication processing in the past, and forecasted
how each bottleneck is going to be mitigated or unveiled in
the primary storage server system employed GPGPU, en-
larged main memory space and Flash based device.

In summary, we can achieve the throughput of several GB
per second by offloading the entire steps of the deduplica-
tion processing to GPGPU. We have verified that each step
of the deduplication processing shows better performance in
GPGPU. Moreover, not only achieving the high through-
put, the deduplication processing with GPGPU can bring
more deduplication rate and low collision rate by dedicat-
ing GPGPU’s remaining computation power for better seg-
mentation and hashing algorithms with more complexity in
computation.

4. DESIGN OF GHOST
Based on the results shown in the analysis section, we pro-

pose a complete deduplication system which offloads most of
functionalities to GPGPU, called GHOST. Our design is ex-
pected to fully exploit the computational power and the wide
memory access bandwidth of GPGPU. For the purpose, we
propose the system architecture with In-Host Data Cache
(IHD-Cache) which interacts with GPGPU. The deduplica-
tion processing in the system follows the sequence of data
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offloading, deduplication, and result reporting. We explains
each part of the system and its related operations. In the
last part of this section, we describes how the whole dedupli-
cation processing works for certain offloaded data depending
on the decisions made during the deduplication processing.

4.1 IHD-Cache
In our proposed system, the cache structure inside the

system is required due to multiple reasons. First of all,
without the cache, the data segment inserted into GPGPU
should be popped out again if the negative deduplication de-
cision is made. This will almost double the memory transfer
overhead between host and GPGPU. Second, since we as-
sume the system to be a primary storage, the cache structure
can obtain the traditional benefit such as better destaging
throughput which is crucial in the high performance storage
system.

Figure 5 describes our proposed deduplication system ar-
chitecture with GPGPU. For the listed reasons, we inserted
the cache structure named IHD-Cache into the system. In
relation with IHD-Cache, the following operations will si-
multaneously runs on the system: (1) the cache receives
requests from the clients of the storage, (2) the destaging
algorithm sends the data segments in IHD-Cache which is
not able to deduplicate to the underlying storage, and (3)
GPGPU proceeds the deduplication for large amount of data
transferred from IHD-Cache. The unique part of our system
is the part that offloads data to GPGPU, executes the dedu-
plication processing and returns the result back to host. In
the below, we describe this part in detail.

4.2 Destage-aware Data Offloading to GPGPU

4.2.1 Amount of Data Offloaded at Once
The performance benefit of GPGPU is obtained when the

data is processed in parallel. The execution time of the par-
allel jobs is usually same regardless of the number of threads
if the number is below the maximum. Figure 4 of the analy-
sis section showed the hash throughput varying the amount
of data. Since the data segments to be hashed is fixed to
4KB in this case, larger data size indicates there are more

thread-level parallelism for data hashing. The throughput
of the hashing in GPGPU is saturated to 2.6 GB/s which
is the bottleneck of the memory transfer to GPGPU when
the amount of data offloaded is above 128MBs (similar re-
sult obtained for the segmentation in Figure 3). From the
results, we can set the amount of data to be offloaded at
once to 128MBs.

Also, we can set the appropriate size of IHD-Cache from
the offloading data size. To do the role of buffer for the
offloading, the cache size should exceed the offloading size.
However, too large IHD-Cache size only uses up the main
memory space without precious benefit which should be re-
served for key-value store. In our prototype system, we set
the size of IHD-Cache to be two times of the data offloading
size.

4.2.2 Selection of Data Offloaded
What data should be offloaded is closely related with the

efficiency of deduplication in GPGPU. Since we are targeting
the primary storage, there are expected user operations such
as modification. Traditionally, destaging algorithms [11, 10]
in the cache structure were aware of them, and took ad-
vantage from them by relying on the spatial and temporal
locality. By not destaging the data expected to have mod-
ification, it reduced the number of write operations sent to
the underlying storage. It is called write cache hit [11]. Dur-
ing the deduplication processing, the same phenomenon can
occur. When a data segment is modified, the previous dedu-
plication result or the result currently being generated of the
data segment becomes useless.

When such case appears many times, the efficiency of
deduplication processing gets lower. In other word, the data
expected not to have modification soon should be offloaded
to GPGPU in our system. Fortunately, the algorithm for
destaging can be applied to the selection of data to be of-
floaded in the same manner. The destaging algorithm main-
tains its own data structure such as doubly linked list sorted
by the order of destaging [11, 10]. The early entries of the
list are expected not to have modification soon by the algo-
rithm. During the data offloading phase, the offloading part
is permitted to look up and pick the data from the early
entries of the list.

We call this collaboration scheme with the destaging al-
gorithm as Destage-aware Data Offloading (Data Offloading
in Figure 5). The system might have the different result
depending on the capability of destaging algorithms, but it
is clear that it can take advantage from the destaging algo-
rithms to reduce the problem cases.

4.3 Key-value Store Management

4.3.1 IGT-Cache by Hot/Cold Separated Table En-
tries

In the comparison shown in Table 2, key-value store lookup
in GPGPU is also better than that in CPU due to the broad
memory access bandwidth and parallel memory access of
GPGPU. Our system maintains the part of the key-value
store in GPGPU named In-GPGPU Table Cache (IGT-Cache)
to utilize this aspect of GPGPU. However, GPGPU memory
has limited size about 1.5GB in case of GTX480 which is not
available to contain all of the table. 128MB among the lim-
ited GPGPU memory space is already used for the buffer for
the segmentation and fingerprinting. When the system let
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all the data segments look up IGT-Cache, only part of the
table can be looked up so that the missed lookup will result
additional overhead for a certain data segment(two times
lookup, once in GPGPU and another in the host table).

To avoid such duplicated lookup cases, first of all, the sys-
tem should increase the hit ratio in GPGPU table lookup.
For the purpose, we maintain the table cache of the whole ta-
ble which is constructed by hot/cold separation in GPGPU.
From the history, the table entries are sorted by the dedupli-
cation count per each entry. Upper entries among the entire
table filling approximately 1.2GB of memory are selected for
IGT-Cache entries. They are periodically transferred into or
evicted out from IGT-Cache during the system idle time to
avoid the interrupt on the deduplication processing(Table
Entry Update in Figure 5).

Once an entry is placed in IGT-Cache, the data segment
with the same fingerprint of the entry should hit in the table
cache since all of data segments are given the chance to look
it up. Therefore, the entries in IGT-Cache and the host
table are explicit in our prototype system to utilize the main
memory space efficiently.

4.3.2 Summary Vector for IGT-Cache
Unfortunately, IGT-Cache can not avoid major part of

host table lookup because of the deduplication rate which is
usually below 50%. For those who will miss the table cache,
it is better not to look up the table cache at all since the
unnecessary lookups only make the memory access pattern
more uncoalesced as shown in Figure 6.

In our proposed system, Summary Vector concept [29]
is applied to IGT-Cache to resolve the uncoalesced GPGPU
memory access problem in Figure 6. Originally, this concept
is adopted to reduce the unnecessary disk access during key-
value store lookup. When an entry is inserted into the table,
a key is hashed by several simple hash functions. The results
of those hashing decides the offset in a vector of certain
bytes, and the bits on the offsets of the vector are set to
1. During the lookup, the offsets are generated in the same
manner, and the bits on the offsets are read. If any of the
bits have the value of 0, the key definitely does not reside
in the table since it guarantees that the key was never been
inserted into the table.

Applying the concept of the summary vector to IGT-
Cache, the deduplication system can avoid most of IGT-
Cache lookups which will miss the cache. One might doubts
why the summary vector in GPGPU is only for the cache
of the table, not the whole table. For the proper operation
of the summary vector concept, only one summary vector
should exist for a table. As mentioned earlier, we cannot
contain whole table in GPGPU which means that a consis-
tent set of the table should reside in the host space. If the
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Figure 7: Deduplication Flows of Proposed System

location of the summary vector for whole table is GPGPU,
every table lookup should refer GPGPU memory which is
not acceptable due to the overhead.

The summary vector of IGT-Cache only can be looked
up by the deduplication thread of GPGPU. Updates of the
summary vector should be done at certain time since the
hot entries according to the hot/cold separation policy may
changes after certain time. Our system updates IGT-Cache
entries periodically while the system is idle. The update of
the summary vector is also done at this moment. For the
accuracy of the summary vector, it should be built from the
bottom by scanning the all entries residing in IGT-Cache.

4.4 Parallel Execution of GPGPU
After a number of data streams are offloaded to GPGPU,

the deduplication processing will be done for those data.
As explained previously, our system offloads whole steps of
deduplication to GPGPU: segmentation, fingerprinting and
key-value store lookup.

The discussion on segmentation and fingerprinting in GPGPU
is trivial. They are almost unlimitedly executed in parallel.
Any combination of previous works of hashing algorithms
and variable-length segmentation algorithms such as [7, 17]
and [23] can be adopted in this system. The algorithm with
better functionality is recommended since the computation
overhead will be hidden by the thread-level parallelism. In
our prototype system, we used Rabin’s Chunking [23] and
SHA1 [7] for segmentation and fingerprinting, respectively.
During these steps, the deduplication report per data seg-
ment shown in Figure 7 is updated. The segmentation up-
dates the segmentation information such as the endpoint of
certain segment, and the fingerprinting records the finger-
print of the data segment in the report.

After the segmentation and fingerprinting, GPGPU dedu-
plication processing tries to look up IGT-Cache first before
the complete table image in the host. Figure 7 explains
the key-value store lookup procedure in detail. Assume that
there are four threads (T1,T2,T3,Tn) as shown in the figure.
All of them firstly check the summary vector of IGT-Cache.
Among them, T1 and T2 hits the summary vector. They
can look up IGT-Cache at this point. According to the de-
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Figure 8: Deduplication Throughput of Proposed
System varying Size of Offloaded Data

cision of the table cache, T1 which hits the table cache can
be deduplicated while T2 should look up the table in the
host again. T3 and Tn which missed the summary vector
of the table cache directly look up the table in the host. Ac-
cording to the decision of the summary vector, IGT-Cache
and the host table, each segment is branched to the one
of the three flows as explained. When each flow ends up
with GPGPU, the result of the deduplication processing in
GPGPU is reported to IHD-Cache so that the data segment
can be destaged or deduplicated. (Dedup-Reporting in Fig-
ure 5)

5. EXPERIMENTS
In this section, we examine how much performance im-

pact each part of our GPGPU offloaded deduplication sys-
tem has. For the purpose, we assumed that the underly-
ing storage provides enough throughput by doing memory
copy instead of disk write. The prototype of our GPGPU-
offloaded deduplication system is implemented in the user
level. The part of inside architecture implementation is bor-
rowed from LORE [3]. Our test machine equipped with
GTX480, Intel Dual-core Xeon 5160 CPU and 4GB of main
memory. We assume the table resides on only main memory
space, not in the disk space. Also, the segmentation in the
system chops the stream into fixed-length segments. These
features will be included in our further works.

5.1 Tuning Data Offloading Parameters

5.1.1 Varying Amount of Offloaded Data at once
In the experiment shown in Figure 8, we measure the sys-

tem throughput of our prototype system varying the amount
of data per GPGPU dedup-operation. We generate all the
segments of the workload to be unique. Segment size, and
cache size are set to 32KBs and 256MB. The elapsed time
for the throughput measurement is stopped when there is
no dirty data left in the cache. In similar with the results in
Figure 3, 4 of the analysis section, this result also gives us
the lesson that 128MBs is the appropriate size for the data
offloading. Exceeding the best point results in the perfor-
mance degradation since GPGPU deduplication processing
waits for a while till the timeout when the offloading size is
not fully filled.

5.1.2 Varying Selection Policy of Offloaded Data
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Figure 9: Deduplication Throughput of Proposed
System varying Data Offloading Policy

Our data selection policy for offloading to GPGPU is col-
laboration with the employed destaging algorithm. To verify
how much it is effective, we measured the system through-
put varying the rewrite ratio. The rewrite ratio means the
possibility that a certain request with unique ID is written
again into the system in the specific time period (1 second
for the prototyped system).

In Figure 9, we compared Destage-aware Offloading with
the worst case while our prototype implementation used
Least-Recently-Written(LRW) algorithm for the destaging
policy. The worst case indicates the offloading which follows
the reverse order of the destaging algorithm’s order. While
the worst case remains at the similar throughput level re-
gardless of the rewrite ratio, Destage-aware Offloading shows
the increasing throughput result. The main difference is
how much of deduplication processing have been invalidated.
This difference tells how much the offloaded deduplication
works efficiently depending on the data selection policy.

In the real system, the rewrite ratio might not be always
high over 50%. However, our deduplication system is af-
fected by relatively low rewrite ratio since GPGPU offload-
ing brings long latency per each data segment. Thus, the
data selection policy is treated as one of the essential part
of our system.

5.2 Impact of IGT-Cache

5.2.1 Existence of IGT-Cache
Though key-value store lookup overhead is mitigated by

SSD and enlarged memory space as mentioned in the anal-
ysis section, its portion among the total time consumed for
the deduplication processing is still not negligible. To en-
hance this overhead, we suggested IGT-Cache. According
to the explanation in the design section, the system can take
advantage from it when the deduplication rate gets higher.

To verify the effect, we measured the throughput varying
the deduplication rate of the workload, and compared the re-
sults of the systems with and without IGT-Cache. Figure 10
illustrated the results. In this results, the summary vector
on IGT-Cache is disabled to examine the effect of only IGT-
Cache existence. The x-axis of the bar graph indicates the
deduplication rate on IGT-Cache. To compare with the sys-
tem without IGT-Cache, we assumed that the deduplication
rate on IGT-Cache is equal to the deduplication rate of the
entire system. As expected, the time consumed for key-value
store lookup is reduced in proportional to the deduplication
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IGT-Cache
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Figure 11: Effect of Summary Vector on IGT-Cache

rate. When a data segment finds its identical entry in IGT-
Cache, it can avoid to look up the host table which takes
more time than that in IGT-Cache lookup.

This result is a bit optimistic since we assumed the dedu-
plication rate of the system is equal to the hit ratio in IGT-
Cache. However, according to the result, it definitely brings
the improvement of key-value store lookup even for the work-
load with low deduplication rate.

5.2.2 Existence of Summary Vector on IGT-Cache
Though we verified the advantage of IGT-Cache, it also

has the performance overhead in the worst case such as the
0% deduplication rate shown in Figure 10. To mitigate the
overhead when there is no chance for the deduplication, we
adopted Summary Vector on IGT-Cache.

Figure 11 illustrates the effect of the summary vector. The
y-axis of this graph indicates the time consumed for IGT-
Cache lookup while the y-axis of Figure 10 was the time
consumed for overall key-value store lookup. With the sum-
mary vector, the time taken for the lookup on IGT-Cache is
reduced from 5.6ms to 1.6ms when the deduplication rate is
0%. Since the summary vector prohibits the data segments
which will miss the table cache to look up the table cache,
the rest of data segments can access the table cache with less
uncoalesced memory access pattern in GPGPU. It reduces
the time for the table cache lookup.

Though it cannot obtain the same performance advantage
when the deduplication rate is high, it is acceptable since
the existence of IGT-Cache is already obtaining the huge
amount of performance benefit as shown in Figure 10.

Figure 11 additionally shows the line graph indicating the
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Figure 12: Comparison of CPU-Based Deduplica-
tion and GHOST varying Deduplication Rate

hit ratio of the summary vector on IGT-Cache. The hit ratio
means the possibility to allow the table cache lookup. All
the value of the line graph were achieved in the following
environment: vector size of 22.5MB, Bloom Filter with four
hash functions and 500MB of IGT-Cache. The values have
the difference from the deduplication rate less than 10%. It
is the pretty accurate rate, thus, we can obtain the perfor-
mance advantage shown in the bar graph of Figure 11.

5.3 Macro Throughput

5.3.1 Varying Deduplication Parameters
So far, we have measured the performance of each part of

the design we proposed. In Figure 12, we compare the over-
all throughput result with CPU-based deduplication system.
For the fair comparison, we replaced the GPGPU offloading
part to CPU-based fingerprinting, and disabled IGT-Cache.

To see the effect of the deduplication rate, we includes the
throughput result of GHOST with the various deduplication
rate on IGT-Cache. CPU-based deduplication system in
the graph has the deduplication rate of 100%. We exclude
the result of CPU-based deduplication system with other
deduplication rates since they are almost same with that of
100% shown in the graph.

As shown in the figure, our GHOST system achieved about
1.5GB/s in maximum. Due to IGT-Cache, the graph of
GHOST with 100% IGT-Cache Hit shows the regular per-
formance with the maximum value while others show the
degradation when the segment size gets smaller. In com-
parison with CPU-based deduplication system, the through-
put of GHOST is six-times better that that of CPU-based
deduplication system which is much above the border line
of GPGPU cost effectiveness.

In addition, our prototype does not contain yet the variable-
length segmentation which can earn much benefit from GPGPU.
After including the feature, the difference between our GHOST
system and CPU-based system will get larger.

6. RELATED WORKS
Dutch et al [18] investigated 857 desktop computers to

study the practical deduplication. They showed the dedu-
plication rate of the individual desktop users’ filesystems ap-
proaching below 50% in the set of 857 filesystems regardless
of the average data segment size or segmentation algorithm.
The result enlightened the future of deduplication in the
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primary storage of cloud environment.
There was a trial to utilize multicore CPU to accelerate

the deduplication by Guilherme et al [4]. They suggested
how the deduplication process can be executed in parallel
using parallel programming model, however, the bottleneck
of the deduplication such as table lookup or computational
overhead was out of the scope of their work.

As the capability of GPU is extended to the area of CPU,
lots of works to utilize the strength of GPGPU have re-
searched recently. Packet Shader [12] is the representative
of them, and it uses GPGPU to the packet forwarding of
software router. They improved the software router perfor-
mance more than four times by massive thread-level paral-
lelism of GPGPU and several optimization schemes.

There were two works [8, 28] to utilize GPGPU in the
deduplication category. The first one [8] suggested GPU
accelerated storage system. Within the suggested system,
it includes the deduplication feature and GPGPU is used
for the feature to calculate fingerprint of data segment. Al-
though the purpose of GPGPU usage is simliar with ours
partially, their work assumed that GPGPU resides in client
side and clients have responsibility to calculate the finger-
print while we let clients do nothing. Another work in [28]
concentrates on how efficiently segmentation and fingerprint-
ing can be done in CPU and GPGPU heterogeneous archi-
tecture. Though they suggested the rule for the offloading
in the heterogeneous architecture in the perspective of seg-
mentation and fingerprinting, their work did not consider
the whole deduplication processing while our proposed sys-
tem deals with the whole steps.

7. DISCUSSION

7.1 SandyBridge Architecture vs. GPGPU Ar-
chitecture

Currently, Intel shipped the new type of CPU which code-
name is SandyBridge [14] to face GPGPU architecture of the
companies such as NVIDIA. SandyBridge has heterogeneous
architecture of multicore CPU and GPU. Though the GPU
inside the chip is much stronger than previous inner GPU
of motherboard chipset, it has less thread-level parallelism
than GPGPU. However, its strength is not on the compu-
tation power. SandyBridge can share the memory and even
L3 cache with the host system while GPGPU cannot.

The degree of thread-level parallelism which our system
needs does not reach to the maximum capability of GPGPU.
More importantly, the performance of the proposed system
is limited by the bandwidth of memory transfer between host
and GPGPU. These two factors forecast SandyBridge can
be a replacement of GPGPU in our proposed deduplication
system. We are currently working on the development of
the deduplication system on SandyBridge architecture, and
waiting for the relase of SDK from Intel.inc.

7.2 Fault Tolerance
Since the proposed system is using IHD-Cache which bor-

rows the memory space from the volatile DRAM, the fault
tolerance can be an essential issue. Moreover, because we
maintain IGT-Cache and a part of the host table in volatile
memory of GPGPU, the table management is also related
with the same issue. So far, our prototype system is not
tolerable for the sudden power failure. However, there are
several plans to be tolerable enough.

For IHD-Cache, battery-backed DRAM or non-volatile
RAM can be used since the cache space is relatively small(about
256MB). Asynchronous write due to the cache structure
makes a user believe his data is stored well. Losing data
due to the power failure will destroy the trust of the sys-
tem. Unfortunately, without them, our system can face the
problem of losing data.

As mentioned in the context, IGT-Cache is generated us-
ing the system idle time. It means that the system can have
enough time to back up the generated IGT-Cache into the
somewhere of the permanent disks.

Most of the host table in the memory space also can be
backed up periodically. Small amount of table entry up-
dates within the backup period can be managed in the small
scratch pad with battery-backed DRAM or non-volatile RAM.

8. CONCLUSION
To provide high performance storage deduplication for pri-

mary storage system, we thoroughly reviewed conventional
deduplication systems. We consequently showed the new
bottleneck of deduplication processing in the primary stor-
age system with Flash-based devices and enlarged memory
space. Based on the result, the deduplication processing of-
floaded to GPGPU, called GHOST, is proposed to perform
the high throughput to be used in the primary storage sys-
tem.

Our deduplication system features three remarkable achieve-
ments: First, we developed the full deduplication processing
system which is optimized for offloading the deduplication
functionality to GPGPU. Second, destage-aware Data Of-
floading enhanced the efficiency of deduplication processing
in GPGPU especially for the primary storage. Third, IGT-
Cache mitigated the remaining overhead of key-value store
lookup by placing the hot table entries in GPGPU. To opti-
mize the table lookup in GPGPU, we also adopted Summary
Vector for IGT-Cache.

Our experiments prove that the proposed deduplication
can perform about 1.5GB/s while the deduplication without
GPGPU offloading can have 300MB/s in maximum. Though
spending large cost on multicore CPUs can bring the close
throughput, the adoption of GPGPU is better in the per-
spective of cost effectiveness. Moreover, it can be adopted
the existing system the system provider has without massive
system upgrade.
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