
The 4th International Conference on Next Generation Computing 2018

Sharing Experience and Knowledge: How to verify

Secure Boot against Modify Attack

Yangjae Lee

SysCore Lab.

Sejong University

Seoul, South Korea

leelambjae@gmail.com

Keon-Ho Park

SysCore Lab.

Sejong University

Seoul, South Korea

imguno0629@naver.com

Daeseon Choi

Dept. Department of

Medical Information

Kongju National

University

Kongju, South Korea

sunchoi@kongju.ac.kr

Ki-Woong Park*

Dept. Information

Security

Sejong University

Seoul, South Korea

woongbak@sejong.ac.kr

Abstract― To enhance the mobility of embedded devices,

the board has become smaller. However, this characteristic

makes the board to be stolen easier. In this case, when the board

which contains critical information is stolen, the attacker can

steal the data easily because they can conduct every attack from

physical attack to cyber-attack. Therefore, implementing the

secure boot is an indispensable thing for embedded system

security. However, does secure boot can really recognize the

modify attack? In this paper, we detail our experiences which

building and executing verification model to test the secure boot

against modify attack. We expect that these experiences serve

two benefits for readers. First, readers can get the knowledge of

T2080 RDB which we used for exemplary, Second, it can raise

questions about what verification model is the best for verifying

the secure boot against modify attack.

Keywords― verification method; embedded system; secure

booting; security methodology

I. Introduction

 To protect boot procedure, many kinds of secure boot
have released [5-7]. However, we can’t really be sure that the
secure boot can protect the modify attack. Therefore, we
make a verification model against modify attack to verify the
secure boot. In our experiences which building and executing
verification model, we expect that readers to obtain the two
benefits. The first benefit is knowledge of T2080RDB which
we used for exemplary. Because our verification model
requires prior knowledge of the service, readers can obtain
the information about T2080RDB which we have
investigated. The second benefit is that readers can raise
questions which verification model is the best for verifying
the secure boot against modify attack. Because we
investigated some verification model for other service and
analyzed each verification model, readers can raise the
question which verification model is the best.

II. What Verification Model Most Suitable for Secure Boot

Against Modify Attack?

 In order to make most suitable verification model for the

secure boot against modify attacks, we analyzed other
verification models for other services. The detailed procedure
of each verification model is listed in Table Ⅰ.
 SiChoon Noh et al. proposed verification method of
ensuring web application security [1]. To protect the threats,
they present the verification model for web application
security, the verification model procedure is consisting of
four steps. Myong-Yeal Lee et al. proposed a safe smart car
application plan [2]. They look at types of smart car and
deriving the security threats based on various scenarios. Jeom
Goo Kim. proposed an automatic method which verifies the
network security system and verification method based on
scenarios [3]. To verify the network security system, they
found the problems of current networks system based on
scenarios. Balzarotti, Davide, et al. describe the testing
methodology that used in testing the security of real-world
electronic voting system [4].
 By analyzing the other verification model for other
services, we found that there are some common features. First,
most of the verification model gathered information about the
services to protect. After that, they analyzed the information.
For example, in the verification model of web application [1],
they set the scope to protect and analyzed the target
application. Second, most of the verification model find
threats to the service. In the verification model for smart car
[2], the anticipated threats and risks are analyzed based on
existing attack cases and information about services. Third,
they make the attack scenarios by linking the threats. In the
verification model for real-world electronic voting systems
[4], they made realistic attack scenarios according to the
procedure of the voting system. Finally, they verify the
security by executing the attack scenarios or attacks. In the
evaluation technique of network security system, they
experimented and analyzed in a small school network
according to scenario-based verification method. Some
verification models additionally proposed countermeasures
in verification model. Analyzing the several verification
models and investigating the secure boot, we draw one
verification model for secure boot against modify attack. In

*: Corresponding author

This work was supported by the National Research Foundation of Korea

(NRF) grant funded by the Korea government (MSIP) (NRF-
2017R1C1B2003957, NRF-2016R1A4A1011761).

199

The 4th International Conference on Next Generation Computing 2018

our verification model, to find the attack surface we analyzed

the secure boot first. After finding the attack surface against
modify attack, we found risks that can occur if attack surfaces
are modified. Combining these risks, we made scenarios.
Executing these scenarios, we try to verify the security of
secure boot.

III. Design of Verification Model

 To test the secure boot, we use T2080 RDB, which
supports secure boot and be used for military application [8-
10]. To make the verification model for T2080RDB secure
boot, we form the verification model in four steps. First, to
define which components to protect, the boot process should
be analyzed. After analyzing the boot process, components to
protect should be defined. Second, found the risk that can
occur if components are modified. Third, make the attack
scenarios that can exploit the system by combining the risk.
When we make scenarios based on risks and components,
numerous scenarios were derived. But verifying all the
scenarios manually consumes a lot of resources. In this paper,
we make two attack scenarios for the case study, which steal
the data and get the total access based on the attacker’s
primary goal. At the last, scenarios are actually executed on
the T2080 secure boot to determine whether the attack
succeed or fail. If it fails, by analyzing which function of
T2080 secure boot is able to defend, assure the safety of
T2080 secure boot.

A. Defining and analyzing the components to protect

 In this paper, we divided secure boot process of T2080 into
three steps based on the secure boot phase. The first step is the
Pre-Boot Phase. When the power is applied to the system, Pre-
Boot Phase checks the security status of the system. Also, Pre-
Boot Phase uses Security Fuse Processor (SFP) and Pre-Boot
Loader (PBL). SFP physically burn fuses during device
provisioning and send One Time Programmable Master Key
(OTPMK) and Super Root Key Hash (SRKH) to other
hardware securely. PBL reads a command file from a location
determined by the Reset Configuration Word (RCW) and
performs a store of a value to the ESBC pointer register within
the SoC. In the case study, because SFP is programmed in
hardware, we assume that to modify the SFP is impossible
[11].
 The second step is the Internal Secure Boot Code (ISBC)
Phase. In the ISBC Phase, check the integrity of U-boot,

Barker Code of CSF Header, and public key.
 The third step is the External Secure Boot Code (ESBC)
Phase. The ESBC Phase checks the integrity of the Boot Script,
the Root File System (Rootfs), the Device Tree Blob (DTB),
and the Linux kernel.
 According to the T2080 secure boot process, we can
define 8 components to protect. Table Ⅱ shows a description
of components to protect.
 The components of Table Ⅱ are used to validate the boot
images in T2080RDB secure boot. By defining the which
components to protect, attack points can be specified, and
attacks can be blocked effectively.

TABLE Ⅱ. Description of Components to Protect

Components A Description of

Components

Elements related to

Security

U-boot

U-boot is bootloader, and

there are secure U-boot

and normal u-boot.

Secure U-boot checks

the integrity of uImage,

Rootfs, and DTB.

Rootfs

The filesystem that

contains a program that

supports the system
operating.

Rootfs can be

superseded to other

Rootfs which have
viruses.

DTB (Device

Tree Blob)

The data structure which

describes the hardware

components of the
system.

DTB can be superseded

to other DTB which

recognize illegal
hardware.

uImage

uImage is a compressed

kernel image.

To load another kernel,

uImage can be
superseded to other

uImage.

Bootscript

Contain commands

which u-boot supports

Define the address of

uImage, rootfs, DTB,
and CSF Header

RSA Key Pair

Using the OpenSSL RSA

function, make the public
key and private key.

RSA public key is used

to sign the signature of
boot images. RSA

private key is used

decrypt the signature to
verify the integrity.

CSF Header

Contain Barker Code,

public key, private key,

the signature of boot
image.

To verify the integrity

of the boot image,

compare booted image
and decrypted signature

of CSF Header.

Memory

Mapping

Address where the boot
images are saved when

porting the boot images

to T2080RDB.

User can store boot
images at any address.

TABLE Ⅰ. The Procedure of Each Verification Model

Target

Applicatio

n

Step 1 Step 2 Step 3 Step 4

[1]
Set the scope of security
verification

Analyze the target application Select the security checklists Verify the proof of security

[2]
Look at types and policies of

smart car

Make scenarios which can

occur

Analyze the smart car security threats

based on scenarios

Propose the countermeasures

[3]
Build the database for
security checklists

Define and grade the risks of
security

Establish a verification environment
based on the scenario

Test the automatic verification
tool and proof security

[4]

Information gathering such as

copy machine, source code,
and documentation.

Analysis the system. Such as

information flow and
vulnerability

Draw the attack scenarios according to

the procedure

Execute attack and report the

results

200

The 4th International Conference on Next Generation Computing 2018

B. Risks to Components to Protect

 The previously defined components to protect may be
modified by the physical attack such as JTAG and insertion of
the external media device and cyber-attack such as viruses,
worms, and trojan horses. Table Ⅲ shows the risk that could
arise if the components to protect were modified.

TABLE Ⅲ. Risk of Attack of Components

C. Drawing Attack Scenario

 When we generate attack scenarios based on components,
there were several cases such as scenarios which only one
component is modified or a scenario which various
components were simultaneously modified. Therefore, there
are many attack scenarios which can occur. If all the images
simply substituted to another image, 28 scenarios can be
derived as shown in Fig. 1.

Fig. 1. Attack Scenario That Can Be Derived

 If configurations of the image are changed or substituted
with other images, there will be more scenarios. In this section,
according to the attacker’s primary goal, we make two attack
scenarios for the case study.
 One of the attacker’s goal is to steal the data in T2080RDB.
To steal the data, the attacker needs to turn off the secure boot
of T2080RDB by substituting the secure U-boot to normal U-
boot and delete the validate command in Bootscript. It can be
expected that secure boot is turned off. Because secure boot is

turned off, the attacker can modify the kernel and steal data as
shown in Fig. 2.

Fig. 2. Data Steal Scenario

 Another attacker’s goal is to get access. To get the access,
the attacker needs to create new RSA key pair and modified
CSF Headers on every image such as uImage, DTB, Rootfs,
and Bootscript. Because every image is substituted to the
attacker’s image, it can be expected that the attacker can get
the total access as shown in Fig. 3.

Fig. 3. Access Acquisition Scenario

Verification of security based on Scenarios

 We got the two attack scenarios in the previous section.
When we test the data steal attack, the attack was prevented in
the RCW. Because once the RCW is programmed into ITS, it
is impossible to reprogram it. Therefore, even if secure U-boot
is substituted to normal U-boot and Bootscript is modified,
secure boot does not turn off. As shown in Fig. 4 when we
execute the attack scenario, the error message shows us that
there is an error in SEC dequeue.

Fig. 4. Error Message of Data Steal Scenario

 When we test the access acquisition attack, the attack was
prevented in SRKH. This is because once the SRKH is
programmed into the security fuse processor, it is impossible
to reprogram it. Therefore, even if a new CSF Header is
created for the modified image, it cannot be decrypted because
RSA public key which used to create the modified image has
not been programmed into the SFP which has SRKH. As
shown in Fig. 5 when T2080 secure boot verifies the images,
error message was printed because the public key hash and
SRKH are different.

Components Risk of modifying

U-boot

If U-boot is modified to normal U-boot, it cannot

check the integrity even DTB, uImage, Rootfs is
modified.

Rootfs
The modified Rootfs which contain virus can be

mounted.

DTB
The modified DTB would recognize the
unexpected device.

uImage

The modified uImage would disable every

security solutions running on the kernel level.

Allow attackers to access the stored data without
any authentication.

Bootscript

The modified Bootscript can turn off the secure

boot.
Allow attackers to boot arbitrary boot images by

modifying the address of images.

RSA key Pair
Allow attackers to generate the CSF Header

using the modified private key.

CSF Header
Generate the CSF Header of the modified image

for verification.

Memory

Mapping

Attacker can store the modified image to any

address.

201

The 4th International Conference on Next Generation Computing 2018

Fig. 5. Error Message of Access Control Acquisition Scenario

IV. The Future of Verification Model

 In this paper, we shared our experiences which building
and executing verification model to test the secure boot
against modify attack. We constructed the verification model
in four steps of data collection, risk identification, scenario
generation, and scenario verification. In our verification
model, we could find numberless scenarios and verify the
scenarios. However, this verification model is restricted to
modify attack. Therefore, the verification model should be
constructed according to services. Because the verification
model has many forms and every service has its own
verification model. If services find its own suitable
verification model, it can enhance the security level of the
service.

References

[1] SiChoon Noh, IkSoo Jun, Kuinam J. Kim, Verification Method
of Insuring Web Application Security. Journal of Information
and Security, 3(2), pp. 11-20. 2003.

[2] Myong-Yeal Lee and Jae-Pyo Park, An analysis on invasion
threat and a study on countermeasures for Smart Car. Journal of
the Korea Academia-Industrial Cooperation Society, Vol. 18,
No. 3, pp. 374~380, 2017.

[3] Jeom Goo Kim, A Study on Evaluation Technique of Network
Security System. Journal of Information and Security, 9(2), pp.
33-39. 2009.

[4] Balzarotti, D., Banks, G., Cova, M., Felmetsger, V., Kemmerer,
R., Robertson, W., ... & Vigna, G. “Are your votes really
counted?: testing the security of real-world electronic voting
systems. “In Proceedings of the 2008 international symposium
on Software testing and analysis July 2008, pp. 237-248, ACM.

[5] NXP Semiconductors, QorIQ T2080 Reference Manual, 2016.

[6] XILINX, Zynq-7000 All Programmable SoC Technical
Reference Manual, 2018.

[7] Qualcomm Technologies, Secure Boot and Image
Authentication Technical Overview, 2017.

[8] Curtis-Wright, VPX3-133-3U-VPX-NXP-T2080-Single-
Board-
Computer-product-sheet, 2013.

[9] Curtis-Wright, VPX3-152-3U-VPX-NXP-T2080-Single-
Board-
Computer-product-sheet, 2013.

[10] Curtis-Wright, VPX6-195-6U-VPX-Freescale-T2080-SBC-
product-
sheet, 2013.

[11] NXP Semiconductors, QorlQ SDK v2.0-1703 Documentation,
2017.

202

