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Abstract—Deep neural networks (DNNs) provide good perfor-
mance for image recognition, speech recognition, and pattern
recognition. However, a poisoning attack is a serious threat to
DNN’s security. The poisoning attack is a method to reduce the
accuracy of DNN by adding malicious training data during DNN
training process. In some situations such as a military, it may be
necessary to drop only a chosen class of accuracy in the model.
For example, if an attacker does not allow only nuclear facilities
to be selectively recognized, it may be necessary to intentionally
prevent UAV from correctly recognizing nuclear-related facilities.
In this paper, we propose a selective poisoning attack that reduces
the accuracy of only chosen class in the model. The proposed
method reduces the accuracy of a chosen class in the model by
training malicious training data corresponding to a chosen class,
while maintaining the accuracy of the remaining classes. For
experiment, we used tensorflow as a machine learning library and
MNIST and CIFAR10 as datasets. Experimental results show that
the proposed method can reduce the accuracy of the chosen class
to 43.2% and 55.3% in MNIST and CIFAR10, while maintaining
the accuracy of the remaining classes.

Index Terms—Poisoning attack, machine learning, deep neural
network, chosen class.

I. INTRODUCTION

Deep neural networks (DNNs) [11] provide excellent perfor-

mance for machine learning tasks such as image recognition,

speech recognition, and pattern recognition. However, there

are two attack methods [2] that threaten the security of DNNs:

causative attack [3] and exploratory attack [14]. A causative

attack is an attack that degrades the accuracy of the model by

approaching the training process of the model. On the other

hand, exploratory attack exploits misclassification of models

without affecting the training process. A causative attack has

the advantage of directly attacking the model rather than an

exploratory attack.

There is a poisoning attack [3] which is a typical attack in

a causative attack. The poisoning attack reduces the accuracy

of the model by adding malicious data to the training process

of the model. This attack is a critical threat to the medical

field and autonomous vehicles where the accuracy of the

model is important. Conventional studies on this poisoning

attack have focused on reducing the overall accuracy of the

model. However, it may be necessary to reduce the accuracy

of the chosen class in certain situations, such as in military

situations. For example, an attacker would need to prevent

UAV from detecting only nuclear-related facilities, except at

other facilities. In such cases, it is important to ensure that

only the intended nuclear facilities are misrecognized and the

remainder are correctly recognized.

In this paper, we propose a selective poisoning attack

that reduces the accuracy of a chosen class in the model.

When the training data is accessed, the proposed method

intentionally adds malicious data corresponding to a chosen

class to decrease the accuracy of the chosen class and maintain

the accuracy of another classes. The contribution of this paper

is as follows.

• To the best of our knowledge, this is the first study that

proposes a selective poisoning attack. We systematically

organize the framework and principle of the proposed

scheme.

• We analyze the selective accuracy depending the number

of selective malicious data. We also analyze the iteration,

distortion, and accuracy for selective malicious data.

• Through experiments using MNIST [8] and CIFAR10 [6],

we show the effectiveness of the proposed scheme.

The remainder of this paper is as follows. Section 2 in-

troduces the related research, and Section 3 introduces the

proposed method. The experiment is described and evaluted in

Section IV. A discussion of the proposed scheme is presented

in Section V. Finally, we draw our conclusions in Section VI.

II. RELATED WORK

We describe the neural network in general and introduce

poisoning attack method..

A. Neural networks

A neural network [12] is a machine learning algorithm that

models the brain’s learning method mathematically; it refers

to the overall model that forms a network by the combining

of neurons and synapses. The structure of the neural network

consists of an input layer, a hidden layer, and an output layer.

At the input layer, there is a neuron for each input variable,

matched 1:1 . In the hidden layer, there are neurons generated

by the combination of neurons and weights of the input layer;

the complexity of the model is determined by the number of
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layers within the hidden layer. In an output layer, neurons are

generated by combining neurons and weights in the hidden

layer; the number of output layers is determined by the type

of output to be predicted. The neurons in the hidden layer and

the output layer perform the function of calculating the sum of

the input values and weights in the previous layer. These also

execute an activation function that outputs the weighted sum

of the neurons as the input value for the next layer. The neural

network learns through learning data and sets the parameters

of each layer by selecting parameters with optimal loss values

using backpropagation and gradient descent.

B. Poisoning attack

A poisoning attack [3] [15] [9] is a causative attack method

that reduces the accuracy of a model by adding malicious

data between processes in the training of the model. There

is a strong assumption that this attack will have access to

the training process of the model, but it has the advantage of

effectively reducing the accuracy of the model. Biggio et al. [3]

were the first to propose a poisoning attack against a support

vector machine (SVM). This method reduces the accuracy of

an SVM machine by injecting malicious data into the training

data. In this method, the aim is to calculate a gradient descent

based on the characteristics of the SVM to generate some point

samples that can be dropped by maximizing the accuracy of

the SVM. Yang et al. [15] proposed a method for a poisoning

attack against neural networks (NNs) rather than SVM models.

Their method uses a direct gradient method to generate data by

a generative adversarial net (GAN) through an auto-encoder.

This method sets the target model as a discriminator, and

the generator searches for optimal malicious data from the

discriminator by a zero-sum method. In addition, Mozaffari-

Kermani et al. [9] proposed systematic poisoning attacks in

healthcare. With their method, they demonstrated a poisoning

attack on a healthcare dataset by extending the domain to the

medical domain.

III. PROPOSED SCHEME

The purpose of the proposed scheme is to add selective

malicious data between training process as a poisoing attack

which lowers the accuracy of a chosen class. Fig. 1 shows

an overview of the proposed method. As shown in Fig. 1,

malicious data corresponding to a chosen class by the attacker

is added to the training data.

Fig. 1: A overview of the proposed scheme

The procedure of the proposed method is divided into

two processes: a process of generating malicious data and

malicious data addition to training data. First step, the process

of generating malicious data x
′
i ∈ X

′
(1 ≤ i ≤ N

′
) is as

follows. Given the original training data xi ∈ X with a chosen

class y
′
, it generates the malicious data x

′
i with the smallest

probability to be recognized as a specific class y
′

by the model.

To generate the malicious data x
′
i with the smallest probability

of a specific class y
′
, loss must be minimized:

loss = Z(x
′
i)y′ −max

{
Z(x

′
i)i : i �= y

′}
(1)

where Z(·) [10] represents the pre-softmax classification result

vector of model M . The malicious data can make the the lower

probability of specific class y
′

by optimally minimizing loss.

By minimizing loss during a given iteration l, the proposed

method generate malicious data x
′
i that modulates the original

training data xi and lowers the accuracy of the chosen class

y
′

in model M .

Second step, given original training data xj ∈ X(1 ≤ j ≤
N) with N instances and malicious data x

′
i ∈ X

′
with N

′

instances corresponding to a chosen class y
′
, the model M

has the training process of both xi and x
′
i. Then we use the

test dataset to measure the accuracy of the model M . The

detailed procedure for proposed scheme is given as Algorithm

1.

Algorithm 1 Selective poisoning attack

Description: Original training dataset xj ∈ X with N in-

stances, maliciously manipulated training data x
′
i ∈ X

′

with N
′

instances, number of iterations l, test data t,
chosen class y

′

Selective poisoning attack: (xi, y
′
i, l, N

′
)

1: for i =1 to N
′

do
2: Find xi with selective class y

′

3: x
′
i ← Generation malicious instance (xi, y

′
, l)

4: Assign x
′
i to X

′

5: end for
6: A temporary training set XT ← X + X

′

7: Bulid the model M training XT

8: Record its classification accuracy on the test dataset t
9: return M

Generation malicious instance: (xi, y
′
, l)

10: x
′
i ← xi

11: for l step do
12: loss← Z(x

′
i)y′ −max

{
Z(x

′
i)i : i �= y

′
}

13: Update x
′
i by minimizing the gradient of loss

14: end for
15: return x

′
i

IV. EXPERIMENT AND EVALUATION

Through experiments, the proposed method shows a selec-

tive poisoning attack to reduce the accuracy of a chosen class

in model. We used Tensorflow [1] as the machine learning

library and Intel(R) i5-7100 3.90-GHz server.
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A. Datasets

MNIST [8] and CIFAR10 [6] were used in the experiment.

MNIST contains handwritten images of the digits from 0 to

9 and is a standard dataset. MNIST is composed of (28, 28,

1)-pixel matrices. It has the advantages of fast learning time

and ease of use in experiments due to the one-dimensionality

of the images. With MNIST, 60,000 training data and 10,000

test data were used. CIFAR10 contains color images in 10

classes: planes, cars, birds, cats, deer, dogs, frogs, horses,

ships, and trucks. CIFAR10 is composed of (32, 32, 3)-pixel

matrices that are three-dimensional images; it is widely used

in machine learning experiments. CIFAR10 consists of 50,000

training data and 10,000 test data.

B. Pretraining of models

The model M pretrained on MNIST and CIFAR10 were

common convolutional neural network [7] and a VGG19

network [13], respectively. Their configuration and training

parameters are shown in Tables III, IV, and V of the Appendix.

For MNIST, 60,000 training data were used to train the

target model. In the MNIST test, the pretrained target model

correctly classified the original MNIST samples with 99.25%

accuracy. For CIFAR10, 50,000 training data were used to

train the target model. In the CIFAR10 test, the pretrained

target model correctly classified the original CIFAR10 samples

with 91.24% accuracy.

C. Generation of malicious training data

To show the performance of the proposed method, the

proposed scheme was used to generate 2500 malicious training

data on 2500 random training data. In the poisoning process,

we used the box constraint method and Adam [5] as an

optimizer. For MNIST, the number of iterations was set to

400, the learning rate was set to 0.1, and the initial value was

set to 0.01. For CIFAR10, the number of iterations was set to

6000, the learning rate was set to 0.01, and the initial value

was set to 0.01.

D. Experimental results

Table I shows an example of selective poisoning data when

the chosen class is 5 for MNIST and is dog for CIFAR10. In

the figure, noise is added to the original training data in order

to reduce the accuracy of chosen class in model M . However,

since CIFAR10 is a color image, noise can not be detected

clearly compared to MNIST.

TABLE I: Sampling of selective posioing examples with

chosen class ”5” in MNIST and ”dog” in CIFAR10.

MNIST

CIFAR10

Fig. 2 shows the chosen class accuracy of the model accord-

ing to the number of selective malicious data. The chosen class

Fig. 2: Chosen class accuracy of the model M according to

the number of the selective malicious data.

TABLE II: The iteration, average distortion, total accuracy, and

chosen class accuracy of M when the number of the selective

malcious data is 2500.

Description MNIST CIFAR10

Iteration 400 6000
Average distortion 3.56 67.24

Total accuracy 89.7% 80.9%
Accuracy of chosen class 43.2% 55.3%

was randomly selected. In the figure, selective class accuracy

decreases as the number of selective malicious data increases.

In particular, this figure shows that as the number of relatively

malicious data increases, the rate of decrease is faster. Also,

the accuracy of the chosen class is different for each dataset,

as MNIST is reduced faster than CIFAR10.

Table II shows the iteration, average distortion, total accu-

racy, and chosen class accuracy when the number of malicious

data is 2500. Distortion is the root sum of the square root of

the difference between the original training sample and the

malicious data in the L2 distortion measure. In the table, it

can be seen that the total accuracy is reduced as the selective

accuracy is reduced. However, it can be seen that the chosen

class accuracy decreases significantly. In terms of iteration and

distortion, MNIST is relatively smaller than CIFAR10.

V. DISCUSSION

Assumptions. The proposed method assumes that the at-

tacker can have access to the model by white box access. This

method assumes that the attacker knows about the structure,

parameters, and output classification for the output classifica-

tion. It also assumes that additional malicious training data on

training data can be provided.

Applications. The proposed method can be used in military

applications. If an attacker needs to recognize a particular

class incorrectly, it can be used to lower the accuracy of the

particular class without compromising the overall accuracy.

Dataset. According to MNIST and CIFAR10, the selected

class accuracy, iteration, and distortion in the proposed method

are different. CIFAR10 is a three-dimensional image with a

3072 (32, 32, 3) pixel metrix and MNIST is a one-dimensional
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image with a 784 (28, 28, 1) pixel metrix. Therefore, since

the number of pixels is relatively large, CIFAR10 has more

iteration and distortion than MNIST.

Attack considerations. From the model side, the chosen

class accuracy can be changed according to the accuracy of the

model. The accuracy of the model is affected by the poisoning

attack with the classification result of the existing model. Also,

since the accuracy of a particular class depends on the amount

of malicious data, the attacker needs to consider the amount

of malicious data.

VI. CONCLUSION

In this paper, we propose a selective poisoning attack

method that reduces the accuracy of chosen class. This method

reduces the accuracy of chosen class by adding malicious data

of a chosen class. Experimental results show that the proposed

method can reduce the accuracy of chosen class by 43.2% and

55.3% in MNIST and CIFAR10. As a future study, generative

adversarial net method [4] can be used to generate malicious

data. It would also be a future study to suggest a defense

method against this method.
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APPENDIX

TABLE III: M model architecture for MNIST.

Layer type Shape

Convolutional+ReLU [3, 3, 32]
Convolutional+ReLU [3, 3, 32]
Max pooling [2, 2]
Convolutional+ReLU [3, 3, 64]
Convolutional+ReLU [3, 3, 64]
Max pooling [2, 2]
Fully connected+ReLU [200]
Fully connected+ReLU [200]
Softmax [10]

TABLE IV: M model parameters.

Parameter MNIST CIFAR10

Learning rate 0.1 0.001
Momentum 0.9 0.9
Batch size 128 128
Epochs 50 50
Dropout / Delay rate - 0.5 / 10

TABLE V: M model architecture [13] for CIFAR10.

Layer type CIFAR10 shape

Convolution+ReLU [3, 3, 64]
Convolution+ReLU [3, 3, 64]
Max pooling [2, 2]
Convolution+ReLU [3, 3, 128]
Convolution+ReLU [3, 3, 128]
Max pooling [2, 2]
Convolution+ReLU [3, 3, 256]
Convolution+ReLU [3, 3, 256]
Convolution+ReLU [3, 3, 256]
Convolution+ReLU [3, 3, 256]
Max pooling [2, 2]
Convolution+ReLU [3, 3, 512]
Convolution+ReLU [3, 3, 512]
Convolution+ReLU [3, 3, 512]
Convolution+ReLU [3, 3, 512]
Max pooling [2, 2]
Convolution+ReLU [3, 3, 512]
Convolution+ReLU [3, 3, 512]
Convolution+ReLU [3, 3, 512]
Convolution+ReLU [3, 3, 512]
Max pooling [2, 2]
Fully connected+ReLU [4096]
Fully connected+ReLU [4096]
Softmax [10]
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