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ABSTRACT
Deep neural networks (DNNs) provide good performance in image
recognition, speech recognition, and pattern analysis. However,
DNNs are vulnerable to backdoor attacks. Backdoor attacks allow
attackers to proactively access DNN training data to train it on
additional data that are malicious, including a specific trigger. Nor-
mally, DNNs correctly classify normal data, but malicious data with
a specific trigger trained by attackers can cause misclassification by
DNNs. For example, if an attacker sets up a road sign that includes
a specific trigger, an autonomous vehicle equipped with a DNN
may misidentify the road sign and cause an accident. Thus, an at-
tacker can use a backdoor attack to threaten the DNN at any time.
However, in certain cases, when an attacker wants to perform a
targeted attack, it may be desirable for the data introduced through
the backdoor to be misrecognized as a particular class chosen by
the attacker according to the position of a trigger. For example, if a
specific trigger is attached to the top right side of the road sign, it
may be misunderstood as a left-turn sign; if a specific trigger is at-
tached to the top left side of the road sign, it may be misunderstood
as a right-turn sign; and if a specific trigger is attached to the bot-
tom left side of the road sign, it may be misunderstood as a U-turn
sign. In this paper, we propose the TargetNet backdoor, which is
designed to be misidentified as a particular target class chosen by
the attacker according to a specific trigger location. The proposed
method additionally trains the target classifier on the TargetNet
backdoor data so that data with a trigger at a specific location will
be misidentified as the target class selected by the attacker. We used
MNIST and Fashion-MNIST as experimental datasets and Tensor-
flow as a machine learning library. Experimental results show that
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the proposed method applied to MNIST and Fashion-MNIST has
a 100% attack success rate for the TargetNet backdoor and 99.17%
and 91.4% accuracy rates on normal test data, respectively.
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1 INTRODUCTION
Deep neural networks (DNNs) [16] provide good performance for
machine learning challenges such as image recognition, speech
recognition, pattern analysis, and intrusion detection. However, the
DNN has a vulnerability in that misclassification by the DNN can be
caused through an adversarial example [17], poisoning attack [3],
or backdoor attack [7]. An adversarial example attack [17] that adds
some distortion to the input data can cause misclassification by the
DNN without affecting the DNN. However, this attack requires a
separate module, time, and a generation sequence to add the distor-
tion in real time. The poisoning attack [3] is a method for reducing
the accuracy of the model by adding training data that are mali-
cious during the training process. However, this method reduces
the overall accuracy of the model, which prevents attackers from
choosing when and what specific data they want. To overcome this
problem, the backdoor attack [7] is used; it is a method that causes
misclassification by the DNN when the attacker wants, by using
data that include a specific trigger. Backdoor attacks allow attackers
to proactively access DNN training data to train it on additional
data that are malicious, including the specific trigger. Normally,
DNNs correctly classify normal data, but the malicious data with
the specific trigger trained by attackers can cause misclassification
by DNNs.

In certain cases, however, it may be desirable for the data intro-
duced through the backdoor to be misrecognized as a specific class
selected by the attacker, according to the position of the trigger.
For example, if a specific trigger is attached to the top right side
of a road sign, it may be misunderstood as a left-turn sign; if a
specific trigger is attached to the top left side of the sign, it may
be misunderstood as a right-turn sign; and if a specific trigger is
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attached to the bottom left side of the sign, it may be misunderstood
as a U-turn sign.

In this paper, we propose the TargetNet backdoor, which is de-
signed to be misidentified as the target class chosen by the attacker
according to the trigger position. The proposed method additionally
trains the target classifier on the TargetNet backdoor so that the
data with the trigger at a specific location will be misidentified as
the target class selected by the attacker. Thus, an attacker can set
the desired time and target class by using positional triggers. The
contributions of this paper are as follows.

• We propose the TargetNet backdoor method, which induces
misclassification as the target class chosen by the attacker.
We describe the systemic principles of the proposed method.
• We analyze the attack success rate and target class according
to the location of the trigger for the TargetNet backdoor
attack. We also analyze the performance of the proposed
method based on the number of TargetNet backdoor samples.
• We verify the performance of the proposed method using
MNIST [11] and Fashion-MNIST [19] datasets.

The rest of the paper is organized as follows. Section 2 describes
related work. The proposed scheme is explain in Section 3. Sec-
tion 4 describes the experiment setup and evaluates the results. A
discussion of the proposed method is given in Section 5. Finally,
Section 6 concludes the paper.

2 RELATEDWORK
Barreno et al. [2] first classified security issues for machine learning
into two categories: exploratory attacks and causative attacks. Ex-
ploratory attacks are a method of causing misclassification by mod-
ulating test data, without needing access to training data. An exam-
ple of an exploratory attack is an adversarial example. A causative
attack is an attack method that affects model learning by accessing
training data. Typical examples of a causative attack are poisoning
attacks and backdoor attacks.

2.1 Adversarial example
The adversarial example was first introduced by Szegedy et al.
[17]. The adversarial example attack adds some distortion to the
input value such that it is difficult for humans to identify but will
cause misclassification by the DNN. As misclassification by a DNN
in autonomous vehicles and medical services is a serious threat,
research on adversarial examples is being actively conducted. Ex-
amples of ways to generate an adversarial example include the
fast gradient sign method (FGSM) [6], iterative FGSM (I-FGSM)
[9], Deepfool [13], the Jacobian-based saliency map attack (JSMA)
[15], and Carlini–Wagner (CW) [4]. These methods compute the
gradient for the output of the DNN to produce adversarial noise.
The gradient is computed through backprogation, and in order to
generate adversarial noise, the attacker must know the DNN’s struc-
ture and parameters. The gradient calculation process is repeated to
find the optimal adversarial noise by calculating the probability at
the output layer. The CW method [4] is the state-of-the-art attack
method and shows better performance than FGSM or I-FGSM. This
method controls the distortion and attack success rate and shows a
100% attack success rate as a white-box attack.

2.2 Poisoning attack
A poisoning attack is an attack method that reduces the accuracy
of the model by accessing the model’s training process and adding
data that are malicious. Biggio et al. [3] first proposed a poisoning
attack method that adds malicious data to the training process on
a support vector machine (SVM). This method aims to generate
malicious data that can greatly reduce the SVM’s accuracy, by
calculating the gradient descent based on the characteristics of the
SVM. Yang et al. [20] proposed a poisoning attack that reduces
the accuracy of a neural network rather than that of an SVM. This
method generates malicious data using a generative adversarial net
(GAN). The target model is a discriminator, and the generator is a
zero-sum method that finds the optimal malicious data by using
the feedback from the discriminator. Mozaffari-Kermani et al. [14]
proposed a systematic poisoning attack method in the medical
domain. This method was used to demonstrate practical poisoning
attacks using health-related datasets.

2.3 Backdoor attack
The backdoor attack trains certain patterns of triggers to be mis-
classified by a DNN if a specific trigger is added to the input data.
As the backdoor does not affect the DNN when there is no trigger,
normal input is correctly classified by the DNN. Gu et al. [7] pro-
posed BadNets to inject such a backdoor into the training process.
This attack method injects the backdoor in addition to the training
data by creating the backdoor desired by the attacker with a trigger
pattern and target label. This attack method demonstrates an attack
success rate of about 99% on MNIST. Liu et al. [12] proposed the
creation of a specific trigger that causes the largest misclassification
by an internal neuron of the DNN without accessing training data.
This method uses a strong association between a specific trigger
and an internal neural net to attack the DNN even when training
on a small quantity of backdoor data. Wang et al. [18] proposed an
attack and a defense that could hide the trigger in the DNN. They
used various image sets to demonstrate the attack success rate
and the defense method. Clements and Lao [5] tampered directly
with the hardware of the DNN to affect the running process. Their
method degrades the model when it is triggered through backdoor
circuits.

3 PROPOSED SCHEME
3.1 Threat model
The target model is a deep neural network [16] such as those used in
autonomous vehicles, drones, image recognition, and voice recogni-
tion. We assume a white-box attack and that the attacker has access
to training datasets for the target classifier. This is because it is
necessary to additionally train the target classifier on the proposed
backdoor dataset without accessing the existing normal training
dataset. Under these assumptions, the proposed method can affect
the training process using data and labels with specific triggers for
the target classifier.

3.2 Proposed method
The purpose of the proposed method is to generate a backdoor,
called TargetNet, that will induce misrecognition as a target class
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Figure 1: Overview of proposed backdoor attack. The trigger pattern is a white square. Target class “1” is labeled with the
trigger pattern in the top left corner, target class “2” is labeled with the trigger pattern in the bottom left corner, target class
“5” is labeled with the trigger pattern in the bottom right corner, and target class “8” is labeled with the trigger pattern in the
top right corner.

chosen by the attacker. The proposed method additionally trains
the target classifier with a TargetNet backdoor that includes trig-
gers with different locations and different labels. Fig. 1 shows an
overview of the proposed method. It consists of two steps: training
the proposed backdoor during the training process and attacking
during the inference process. In the process of training the back-
door, the target classifier additionally trains on the backdoor dataset
during the training process. At this time, the trigger pattern, po-
sition, and target class of the proposed backdoor can be selected
by the attacker. The target classifier trains by matching the target
class corresponding to the backdoor data. The TargetNet backdoor
data include triggers that have different positions and labels.

This method is mathematically expressed as follows. The opera-
tion function of a target classifierM is denoted as f (x). The target
classifier trains on the normal training dataset and the backdoor
data. Given the normal training data x ∈ X , original class y ∈ Y ,
TargetNet backdoor data xtr iддer ∈ X tr iддer−i , and target class
y
tarдet
i ∈ Y , the target classifier trains on x with y and xtr iддer−i

with ytarдeti to satisfy the following equation:

f enemy(x) = y and f (xtr iддer−i ) = y
tarдet
i .

In the attack during the inference process, the original class is
correctly recognized for data that do not include a trigger. How-
ever, in the case of backdoor data that include a trigger, the target
classifier incorrectly classifies the backdoor data as the target class
chosen by the attacker. The mathematical expression is as follows.
Let xv be the new validation data. In the case of new validation
data xv without a trigger, the target classifier correctly recognizes
them as the original class as follows:

f (xv ) = y.

However, in case of new validation data xv−tr iддer−i with a trigger,
the target classifier misclassifies them as the target class chosen by

Algorithm 1 TargetNet Backdoor
Description: Original training dataset x j ∈ X , TargetNet back-

door data xtr iддer−ik ∈ X tr iддer , original class yj ∈ Y , target
class ytarдeti ∈ Y , validation data t

TargetNet Backdoor:
1: X ←Matching dataset (x j , yj )
2: X tr iддer ←Matching dataset (xtr iддer−ik , ytarдeti )
3: Train the target classifierM ← X + X tr iддer

4: Record classification accuracy on the validation dataset t
5: returnM

the attacker as follows:

f (x
tr iддer−i
v ) = y

tarдet
i .

Details of the procedure for generating the proposed backdoor are
given in Algorithm 1.

4 EXPERIMENT AND EVALUATION
This section shows the experimental configuration, experimental
procedure, and experimental results to demonstrate the perfor-
mance of the proposed method.

4.1 Experimental configuration
We used MNIST [11] and Fashion-MNIST [19] as datasets. MNIST
is a representative handwriting dataset with 10 classes of black and
white images of the numbers from 0 to 9. The number of pixels per
image is 784 (28 × 28 × 1). This dataset has the advantage of being
easy to trainwith. There are 60,000 training data and 10,000 test data.
Fashion-MNIST, on the other hand, is more complex than MNIST; it
is composed of 10 classes, including T-shirt, trouser, pullover, dress,
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Table 1: Comparison of class results and classification scores for a TargetNet backdoor sample (“6”). Target class “1” is labeled
with the trigger pattern in the top left corner, target class “0” is labeled with the trigger pattern in the bottom left corner, target
class “2” is labeled with the trigger pattern in the bottom right corner, and target class “4” is labeled with the trigger pattern
in the top right corner.

Description Trigger at top left (“1”) Trigger at bottom left (“0”) Normal sample (“6”)

Classification
scores

[ -3.63 24.5 5.07 2.81 0.12 -7.74
2.84 -7.33 7.75 -17.5 ]

[ 20.1 -1.62 -1.86 3.04 -7.06 -3.4
3.18 1.46 -1.35 -1.09 ]

[ 2.02 -0.56 1.01 -0.39 -0.07 0.43
13.6 -7.52 3.61 -8.23 ]

Description Trigger at bottom right (“2”) Trigger at top right (“4”)

Classification
scores

[ 0.91 1.25 18.6 -3.61 1.97 -3.95
8.47 -12.6 2.25 -7.07 ]

[ -6.34 -3.18 0.97 -8.51 22.02 -3.21
3.85 -2.96 1.53 -10.8 ]

sneaker, etc. The number of pixels per image is 784 (28 × 28 × 1).
There are 60,000 training data and 10,000 test data.

In the experiment, the target classifier M used convolutional
neural network (CNN) models [10] for MNIST and Fashion-MNIST.
Table 4 in the appendix shows the CNN architecture. Table 5 in the
appendix shows the parameters necessary for the training process
for MNIST and Fashion-MNIST. Adam [8] was used as the optimizer.
The initial constant ofM was 0.01. As measured using normal test
data, the friendly classifier and the enemy classifier have 99.25%
accuracy on MNIST. On Fashion-MNIST, the friendly and enemy
classifiers have 92.34% accuracy. In addition, we used the Tensorflow
library [1], widely used formachine learning, and an Intel(R) i5-7100
3.90 GHz server.

4.2 Experimental procedure
To ascertain the performance of the proposed method, we trained
the target classifier by adjusting the ratio between the normal
training data and the TargetNet backdoor data. We trained the
target classifier using 10%, 33%, and 50% TargetNet backdoor data
for all training datasets. The target class was set to a random one
in the target classifier. As validation, we analyzed target classifiers
with new test data with and without triggers. The positions for
triggering TargetNet were set to the top left, top right, bottom left,
and bottom right corners. The trigger pattern was a white square.

4.3 Experimental results
Table 1 shows a comparison of class results and classification scores
for a TargetNet backdoor sample (“6”). In terms of recognizing
the TargetNet backdoor, the class result depends on the trigger
position. Thus, the attacker can determine the target class based
on the trigger position.

Table 2 shows image samples for a TargetNet backdoor using
MNIST. The trigger pattern was set to a rectangle of 7 × 7 pixels.
The method can be applied by changing a rectangular sticker in
the test data to the top left corner, bottom left corner, bottom right
corner, or top right corner.

Table 2: Examples of TargetNet backdoor samples added to
MNIST.

Proposed

Figure 2: Accuracy and attack success rate on target classi-
fier by proportion of TargetNet backdoor samples added to
MNIST.

Fig. 2 shows the accuracy on normal samples in MNIST and
the attack success rate of the TargetNet backdoor according to the
number of TargetNet backdoor samples. In the figure, it can be seen
that the accuracy for the normal test data remains nearly constant
because the target classifier displays an accuracy of greater than
99% on the normal test data. For the TargetNet backdoor, the attack
success rate against the target classifier is over 97%. Overall, as
the number of TargetNet backdoor samples increased, the attack
success rate increased and the accuracy decreased slightly. However,
when the proportion of TargetNet backdoor samples was about
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33%, the attack success rate on the target classifier was 100% and
the accuracy on normal test data was maintained at 99.17%.

Table 3: Examples of TargetNet backdoor samples added to
Fashion-MNIST.

Proposed

Figure 3: Accuracy and attack success rate on target classi-
fier by proportion of TargetNet backdoor samples added to
Fashion-MNIST.

Table 3 shows samples generated by the TargetNet backdoor for
Fashion-MNIST. The trigger pattern consists of a rectangle (7 × 7).
The trigger position of the TargetNet is set to the top left, bottom
left, bottom right, and top right. The method can be applied by
moving a sticker in the test data to the desired corner.

Fig. 3 shows the accuracy on normal samples in Fashion-MNIST
and the attack success rate of the TargetNet backdoor according to
the number of TargetNet backdoor samples. Similar to the results
in Fig. 2, the target classifier displays an accuracy of greater than
91% on the normal test data, and it remains nearly constant. The
reason that the accuracy is lower than that in Fig. 2 is that the model
originally had about 92% accuracy for Fashion-MNIST. Similar to
the results in Fig. 2, the proposed method displays an attack success
rate of 100% on the target classifier, and the accuracy on the normal
test data was maintained at 91.4%.

5 DISCUSSION
Attack considerations. Unlike the existing backdoor method, the
proposed method has the advantage of inducing misidentification
of a particular target class chosen by the attacker, according to
the location of the trigger. It is also possible to attack using the
proposed method if the trigger method changes only in a certain
area of the test data, such as when using a sticker. For the trigger
pattern, in this study a rectangle was used, but the attacker can set
the trigger pattern as desired. Another advantage is that even if we
train the TargetNet backdoor with a small quantity of data (about

33%), we can attack a target classifier with a success rate of greater
than 99% while maintaining the accuracy on the normal test data.
Applications. This type of attack can be useful in military situa-
tions with enemy forces. For example, the proposed method can
generate road signs modified by the attachment of a sticker with
a specific trigger so that it will be misclassified as the target class
chosen by the attacker. In addition, by the attachment of a specific
trigger in the vehicle’s camouflage or facial recognition system, the
enemy can be misidentified as the target class.

6 CONCLUSION
In this paper, we have proposed the TargetNet backdoor, which
is designed to be misidentified as a particular target class chosen
by the attacker according to the location of a specific trigger. The
proposed scheme additionally trains the target classifier on the Tar-
getNet "backdoor data so that the data with the trigger at a specific
location will be misidentified as the target class selected by the
attacker. Experimental results show that the proposed method has
a 100% attack success rate on the target classifier and an accuracy
of 99.17% and 91.4% on the normal test data in MNIST and Fashion-
MNIST, respectively. The proposed concepts can be applied to the
audio and video domains in future studies. The topic of defense
mechanisms for TargetNet backdoors remains as a challenge for
future research.
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APPENDIX

Table 4: M model architecture for MNIST and Fashion-
MNIST.

Layer type Shape

Convolutional+ReLU [3, 3, 32]
Convolutional+ReLU [3, 3, 32]
Max pooling [2, 2]
Convolutional+ReLU [3, 3, 64]
Convolutional+ReLU [3, 3, 64]
Max pooling [2, 2]
Fully connected+ReLU [200]
Fully connected+ReLU [200]
Softmax [10]

Table 5: M model parameters for MNIST and Fashion-
MNIST.

Parameter Value

Learning rate 0.1
Momentum 0.9
Batch size 128
Epochs 50
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