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Abstract. In the untacted era of the recent COVID-19 virus outbreak,
the pedagogic value of Capture the Flag (CTF) has grown even more
as an effective means for students to learn knowledge about the overall
computer system and information security through active participation
without facing the teacher. However, in the process of successfully intro-
ducing CTF into the classroom, educators may suffer a high burden due
to factors such as time and economy in the process of crafting problems
and operating CTFs. Accordingly, various studies have been conducted
to reduce this burden. On the other hand, in introducing CTF to the
classroom, the burden of educators also exists in the aspect of an in-
depth evaluation of students’ academic achievement. This means that
educators need to evaluate students’ academic abilities in-depth so that
educators can provide clear feedback on the factors that caused students
to fail. Through this, educators can effectively increase student learning
efficiency by helping students correct their own weaknesses. The need for
such detailed evaluation can be said to be quite high in the pwnable field,
one of the representative fields of CTF. This is because pwnable requires
participants to have a comprehensive understanding of overall program
analysis, vulnerability, mitigation bypassing techniques, systems, and so
on. However, the evaluation manner of the existing CTF is not suitable
for an in-depth evaluation of students’ academic ability because they
simply measure whether or not they solve problems in a pass and/or
non-pass manner. Therefore, we designed a fine-grained evaluation CTF
platform that aims to help educators provide precise evaluation and feed-
back on learners’ failure factors in an attempt by educators to introduce
CTF into the classroom to educate pwnable to reduce the burden on
educators in properly evaluating student’s Academic achievement.

Keywords: Capture the flag - CTF - Pwnable - Control flow hijack -
Exploit

1 Introduction

Recently, various studies are attempting to increase the effectiveness of informa-
tion security education [3,14,16]. Accordingly, pedagogics using the CTF (Cap-
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ture the Flag) manner in information security education has been recognized as
a new paradigm. Besides, in the present era of the recent outbreak of COVID-
19 virus, CTF is more valuable in that it is a pedagogical way of an untacted
manner that enables active participation of students in a non-face-to-face. As
the pedagogical value of CTF increases, various research and education plat-
forms are being developed to help educators increase student access to CTF and
increase learning efficiency [2,4,5,7,15,16].

Representatively, some recent studies on CTFs suggest a manner such as
automated problem creation to reduce the burden required for educators to
introduce CTFs into the classroom [1,8,17]. However, the burden of educators
in introducing CTF into the classroom also exists in the process of carefully
evaluating students. This means that if an educator can evaluate a student’s
academic ability in detail, the educator can provide clear feedback on the fac-
tors that caused the student to fail in learning, and effectively improves the
student’s learning efficiency in a manner that corrects the student’s weaknesses
[14]. However, the evaluation manner of the CTF platform, which is used for the
competition, evaluates the competency of participants in a pass and/or non-pass
manner. For example, in CTF competitions, CTF organizers use some kind of
computer science and information security knowledge to make problems. When
the organizer makes a problem system. The flag (generally in the form of a string)
is hidden so that it cannot be read without specific knowledge of programs and
files. The participant successfully acquires the flag hidden by the organizer using
the knowledge required by the problem and then submits it to the flag certifica-
tion server of the CTF competition. At this time, whether or not the participant
solves the problem is determined as whether or not the corresponding flag is
successfully acquired.

As such, the CTF for existing competition purposes only evaluates the partic-
ipant’s problem-solving capacity in a pass and/or non-pass manner. Therefore,
for problems that require comprehensive knowledge to solve a specific problem,
it is difficult to identify the participant’s failure point in this evaluation manner.
These features can be burdensome for educators attempting to introduce CTF
as an educational tool in the classroom. This is because if students are evaluated
only in a pass and/or non-pass manner, educators must invest additional time
and money to analyze the causes of learners’ failures and provide appropriate
feedback. A representative example of a field where the burden of educators is
prominent is the pwnable field that requires a comprehensive understanding of
binary and system knowledge and exploit technology and so on. For example,
the control flow hijack type of problem frequently asked in pwnable is solved
through the following complex process. First, the vulnerability of the program
must be identified through static and dynamic analysis of the problem provided
in the form of source code or binary file. Next, if you have successfully identified
the vulnerability, you need to create the input data of the program that allows
the program to trigger the vulnerability. Also, depending on the type of problem,
a single and/or multiple vulnerabilities might be utilized to hijack the control
flow of a program, and an appropriate payload must be configured to allow an
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Fig. 1. Comparison of existing CTF and fine-grained CTF.

attacker to craft or execute existing code in the application address space. In
some cases, when the mitigation policy is applied to the system and binary, a
bypassing technique is used to bypass it. As such, pwnable problems generally
require comprehensive knowledge of coding, system, attack, and defense, and
program analysis skills, so learners need a comprehensive understanding of the
overall process to solve single pwnable problem (see Table1).

The existing CTF’s pass and/or non-pass evaluation manner has limitations
in accurately judging the learner’s failure factors because it is judged that the
problem itself has not been solved when a learner fails at some points in these
processes. Therefore, this paper helps educators to accurately evaluate learners’
failure factors in introducing CTF to the classroom, thereby reducing the burden
on educators in appropriately evaluating student capabilities. To achieve this,
we have defined a general problem solving process for control flow hijack type
problems, and based on this, we designed a pwnable CTF platform that aims to
enable precise evaluation and feedback on learners’ failure factors.

The rest of this paper is organized as follows. Chapter 2 describes the gen-
eral knowledge required to solve pwnable problems. Chapter 3 draws detailed
evaluation points for the overall composition of a pwnable problem. Chapter 4
describe the design and implementation of fine-grained pwnable CTF. Finally,
Chap. 4 presents the conclusions of this study.
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Table 1. Example of required knowledge for pwnable learning according to Evaluation
Points(EP)

EP

Required Skills

Example

Description

Epl

Program
Analysis

Static Analysis

It is a technology that analyzes a program without
actually executing the program When the CTF
competition provides solvers with source code for
vulnerable programs, solvers need to understand the
programming language of the programs provided to
analyze them. Also, if the competition only provides
binaries instead of source code, the solver needs
knowledge of reverse engineering skills and system
architecture to analyze the program

Dynamic
Analysis

This is a method to dynamically analyze a program by
executing the program in a real or virtual environment.
Participants in CTF competitions use a debugger to
analyze the program during the execution process, and
may also use Fuzzing and Symbolic Execution
techniques to identify vulnerabilities in the program

Vulnerability
Identification
& Vulnerability
trigger

Stack Overflow

Stack overflow is a vulnerability that can inject data
across the boundaries of variables allocated to the
process’ stack memory area. In the stack memory area,
information including the return address of the
function is stored, which can result in manipulating
arbitrary indirect calls

Integer
Overflow

In certain languages, including C/C++, when the
expression range of an integer data type is exceeds,
undefined behavior such as a change in the sign of the
data may occur. If the variable is used in conditional
expressions or memory allocation size, it may cause
fatal results

Use After Free
(UAF)

Most operating systems use their own memory
management policy to reduce fragmentation of heap
area. The UAF vulnerability can lead to information
leaks, code execution, etc., depending on conditions
when reusing freed memory

EP2

Control-Flow
Hijacking

Indirect Call
Overwrite

A skill that handles the program’s control flow by
manipulating data associated with the program’s
indirect call. The return address, function pointer,
global offset table, etc. are subject to tampering

Shellcoding

The skill of creating a small-sized program that
executes specific instructions in the system, usually in
machine code

EP3

Mitigation
Bypassing

Return to
Library

A method that bypasses protection by modulating the
execution flow into a library code area that has
execution authority. It is mainly used in situations
where there is no write permission for the stack or heap
area due to the protection techniques such as NX

Return
Oriented
Programming

This method is used to bypass protection techniques
such as NX, DEP, and ASLR. This skill uses a gadget
in the program code area to control the call stack

2 Pwnable CTF Problem-Solving Workflow

In this study, we divide the required knowledge of the general pwnable problem
into four stages based on the overall stage for exploitation: program analysis, vul-
nerability identification, control flow hijacking, and mitigation bypassing. This
chapter describes the typical required knowledge for each step of solving pwnable
problems (see Table1).
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2.1 Program Analysis

In general, pwnable systems are configured to acquire a flag by hijacking system
permissions using a security vulnerability in a program running on a remote
server. Accordingly, the attacker analyzes the program to identify the vulnera-
bilities of the program. Therefore, the knowledge required to solve the problem
varies depending on the architecture of the server on which the vulnerable pro-
gram is running. The process of analyzing the program is provided in competition
problems. This process requires skills such as reverse engineering depending on
whether the source code is provided and whether symbols and obfuscation are
present [6,9,11,12].

2.2 Vulnerability Identification

Once the solver has successfully analyzed the program, the single and/or multiple
vulnerabilities that exist within the given program are then identified to create
the appropriate program inputs to trigger it. Therefore, at this stage, the solver
must understand the various security vulnerabilities and sufficient programming
knowledge to trigger the vulnerability [13].

2.3 Control Flow Hijacking

Most pwnable problems aim to hijack the control flow of the program as a final
goal. To achieve this goal, attackers usually use the skill of manipulating areas
where arbitrary manipulation is possible because write permission remains in the
memory of application. For example, the return address of the function, function
pointer, vtable, Global Offset Table (GOT) area, etc. can be a target. Therefore,
the learner should understand the memory space and various techniques for
handling control flow.

2.4 Mitigation Bypassing

The final step for the exploit is to take control of the program on the remote
server. However, owing to mitigation policies developed over a long period of
time, many CTF competitions require participants to understand the methods
for bypassing these protection techniques. Accordingly, after control flow hijack-
ing, it is necessary to understand the protection techniques applied to systems
and binaries and various skills to bypass them.

3 Evaluation Point Derivation

The main idea of this study is as follows. If it is possible to automate and measure
the main steps for solving typical pwnable problems, the cause of failure can
be analyzed also through the learner’s failure point. Therefore, in this study,
four evaluation points were derived based on the general process of a control
flow hijacking attack, which uses the memory corruption exploit to derive clear
points of failure for learners: crash, control flow handling, mitigation bypassing,
and full exploit.
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Fig. 2. Design concept comparison of existing CTF and fine-grained CTF.

3.1 Evaluation Point 1 — Crash Check

In the pwnable CTF competition, a program containing a vulnerable is generally
provided to the solver by default, and in some cases, the source code of the
corresponding program is also provided. Therefore, the student first goes through
the static and dynamic analysis process in the problem solving process to identify
the vulnerability of the program. Evaluation Point 1 evaluates students’ ability
to analyze programs and identify vulnerabilities. To cause a crash associated with
a vulnerability in a running program for the solver, they must analyze the given
program, find the vulnerability in that program, and craft an appropriate input
payload that can trigger the vulnerability through programming. Accordingly,
in this study, a student who can cause a crash related to a vulnerability in a
running program is considered capable of analyzing basic problems. That is, if a
student successfully passes Evaluation Point 1, the educator can judge that the
student has the ability to analyze the program that contains the vulnerability,
identify the program’s vulnerability, and craft the input value that can trigger
it through programming. At this stage, the student can identify bugs in the
program by performing a source code auditing or reversing process to precisely
analyze the program. In addition, bugs in the program can be identified by using
dynamic testing techniques such as fuzzing and symbloic execution. Meanwhile,
students who do not pass Evaluation Point 1 can be judged to have insufficient
knowledge. Thus, educators can provide appropriate feedback to users to help
students overcome this learning hurdle.

3.2 Evaluation Point 2 — Control Flow Handling Check

The pwnable problem usually requires the solver the ability to craft an exploit
by exploiting single or multiple vulnerabilities in the program. To measure this,
evaluation point 2 checks students’ ability to exploit the program’s vulnerability
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to manipulate the program’s control flow. In other words, the evaluation point
is a step of measuring the user’s exploit capability in an environment where
mitigation techniques are not applied. At this point, the student that success-
fully handles the instruction pointer of the program as an arbitrary value has
successfully passed Evaluation Point 2. Such a student is judged to not only has
knowledge of the preceding steps (program analysis), but also skills that can trig-
ger potential vulnerabilities related to the instrument pointer by combining the
vulnerabilities that exist within the program. Meanwhile, a student who passed
Stage 1 but failed to pass the Evaluation Point 2 has the knowledge required in
the previous stage, but he or she has insufficient knowledge for manipulating the
instruction pointer as needed.

3.3 Evaluation Point 3 — Mitigation Bypassing Check

In the control flow hijacking scenario, a difference is observed between modulat-
ing the instruction pointer and seizing the complete control flow. This difference
depends on whether the program and system are mitigated, so passing this stage
requires the ability to bypass various mitigation techniques. For example, if a
stack canary protection technique is applied to a program, the solver may need
to utilize an information disclosure vulnerability such as leaking canary data
inserted in the program stack to avoid the exploit code failure. In addition,
when the program is executed in a system environment to which ASLR miti-
gation is applied, the solver can utilize an attack technique that can craft an
exploit by using a code gadget with a fixed address such as ROP. To check this,
evaluation point 3 reconstructs a given problem by partially applying various
mitigation techniques applied to the problem. To sum up, evaluation point 3
measures whether a user has the ability to bypass exploit mitigation configured
in various ways. Therefore, educators can judge that students who do not pass
Evaluation Point 3 have insufficient understanding of protection techniques and
the techniques to bypass them. Also, as with the previous evaluation point 2, if
the student successfully passes the level, the student is considered to have the
knowledge required for the previous evaluation point. Students who pass the
evaluation point 2 but do not pass evaluation point 3 may be considered to have
the necessary knowledge in previous steps, but not enough knowledge to bypass
certain mitigation techniques.

3.4 Evaluation Point 4 — Full Exploit Check

Evaluation Point 4 verifies whether the student has succeeded in obtaining a
flag of the remote system through a control flow hijacking exploit. This step
is the same as the scoring method in the general CTF platform. Students who
have completely passed the final evaluation point can be judged to have all the
knowledge required for the problem.



186 S.-K. Kim et al.

Container 1 (EP1, 2)

Deploy Engine @ F

.
S * PBuggy +F[ag1
== rogram
_.1?3 __(P3)Deploy
=] (P.1) Submit Build Option & Build Script -7 | Build  Deploy [ Container 2 (EP3) |
“ | /// | (P.2) Save Deploy @ F
i s | Infomation {HOST, PORT, ..} |=—=——=2 Buggy +

Educator e v Program  Flag2
e C \
\ 1 Container3 (EP3)

o | Wt
/676, (E.3) Load Deploy Buggy
Infomation Program  Flag3
{HOST, PORT, ..}

Judge Container| (E.4) Try Exploit
) —_—

Container x (EP4)
m' (E.5) Get Result
- L | T@®

Exploit Code Buggy +
Program Flag x

— — — P : Preparation Phase ———— E : Exercise Phase
* EP : Evaluation Points

EP1 : Crash Check EP3 : Mitigation Bypassing Check
EP2 : Control Flow Handling Check EP4 : Full Exploit Check
(Not Mitigated)

Fig. 3. Design of the fine-grained CTF.

4 Design and Implementation of the Fine-Grained CTF

In this section, we describe the design for implementing fine-grained pwnable
CTF. Figure 3 shows the overall design overview of our fine-grained CTF archi-
tecture. The fine-grained CTF aims to automatically transform the evaluation
of the pass/non-pass manner of the existing jeopardy-style pwnable CTF into a
more fine-grained evaluation method. To achieve this, we used a method to build
a separate evaluation container environment for each evaluation point derived in
Sect. 3. For example, we configure a separate evaluation container environment
that measures whether control flow has been tampered with in order to evaluate
the user’s control flow handling capabilities. We also constructed each evaluation
container environment for all subsets of the mitigation technique applied to the
pwnable problem, to verify the user’s ability to bypass the various protection
techniques used in the problem. Our evaluation system is largely composed of a
preparation phase in which educators distribute problems and an exercise phase
in which students solve problems. The rest of this section describes the process
of deploying the pwnable problem by the educator in the preparation phase, and
the process by which the user’s exploit code is evaluated in our fine-grained CTF
during the exercise phase.
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Fig. 4. Change of code address offset according to the application of the code instru-
mentation protection technique.

4.1 Preparation Phase

In the preparation phase, the educator first submits the source code of the pwn-
able problem, the build script which builds the source code, and the mitigation
type to be applied to the problem through the web interface. Next, the Deploy
Engine checks the available port information of the system and constructs an
evaluation container corresponding to each port number. The container created
in the process consists of a power set for mitigation specified by the user. For
example, when the mitigation set for a specific container is {#} (least mitigated),
the container corresponds to Evaluation Point 2, which evaluates a user’s con-
trol flow handling capability. In addition, when the mitigation is the same as
the mitigation set specified by the user (most mitigated), the container refers to
Evaluation Point 4. It means evaluating whether the user can bypass all mitiga-
tion techniques applied to the problem.

In each fine-grained evaluation container configuration, we reconstruct the
binary file so that the built binary file always has the same code address offset
and memory layout. A lot of memory corruption exploit techniques use code
address offset and memory layout information of binary files in exploit code
construction. The ROP is a representative exploit technique that uses a code
gadget which is in the binary file. However, the binary file applied with mitigation
technique through binary instrumentation such as stack canary has a difference
in code address offset in the program as shown in (a) and (b) of Fig. 4. Also, in
many exploit techniques such as buffer overflow and UAF, the memory layout
of the program has an important effect on exploit reliability. For this reason,
in a fine-grained evaluation system, it is necessary to reconstruct the problem
binary files executed in each evaluation container to have the same code offset
and memory layout. To achieve this, we implemented the dummy StackProtector
Pass by modifying the code that generates the canary check instruction of the
StackProtector Pass in the LLVM project [10]. As shown in Fig.4, LLVM’s
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StackProtector pass inserts an arbitrary stack canary during the source code
build process, and inserts code that checks it during execution. Based on this, we
used the method to modify the instruction that the StackProtector pass checks
in the function epilogue for the stack canary inserted in the function prologue.
The assembly code of the binary file generated through this is as shown in Fig. 4
(b) and (c).

The host ip address, port number and evaluation type used in the process
of deploying the evaluation container are stored in the database. This data will
be used in the execution and judgment process of the exploit code submitted by
the user in the future exercise phase.

Also, during the deployment of our fine-grained CTF evaluation container, a
randomly generated flag is stored in each container. If the same flag is used in
each evaluation container, the user may maliciously bypass the high stage prob-
lem by simply printing the flag obtained through solving the low stage problem.
For example, consider the case where a malicious user submits exploit code that
causes a program crash to the judgment server. Then the user successfully passes
the evaluation point 1. Subsequently, a malicious scenario in which a malicious
user simply prints the flag data string of evaluation point 1 obtained through
the exploit code targeting evaluation point 1 to evaluation points other than
evaluation point 1 may exist. Because of the existence of this malicious scenario,
the flags existing in the containers constituting each evaluation point should not
only be difficult for the user to infer, but also must use different flag values for
each container. The flag strings of each evaluation container are also stored into
the database for the user’s exploit code judgment at a future exercise phase.

4.2 Exercise Phase

In the exercise phase, students submit exploit code through a web interface in
the form of an online judge system. Unlike the usual jeopardy-style CTF method,
which transmits an exploit payload over the network to remote servers where the
vulnerable binaries are operating, our proposed fine-grained CTF gets an exploit
code from users. This is because our fine-grained CTF is a system designed with
educators as the main target. Our fine-grained CTF system allows educators
to provide detailed feedback by investigating the exploit code written by the
student, as well as the point of failure of the student derived through a series of
evaluation processes.

Next, the exploit code submitted by the user is executed in an isolated con-
tainer environment. This is to restrict malicious behavior that can occur when
the user’s code is executed directly in the host environment of the system where
the fine-grained CTF is hosted. For example, if the exploit code uploaded by
the user is not isolated and operates directly in the host environment, the user
can directly perform various malicious actions such as reading flag information
stored in the database directly on the host computer. Because of the high risk
of executing code directly in the host computing environment, our fine-grained
CTF design forces user-submitted code to run only in an isolated environment.
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ALGORITHM 1: Evaluation process of the judgment container.

Input : N - problem number

E — exploit code submitted by the student

D — database

C — crash identifier ("SIGABRT”, ”SIGSEGV”)
Output: S — exploit status

1 P « getPortNums (D, N) /* get the port numbers of evaluation containers. */
2 H« getHost (D, N) /* get the host IP of evaluation containers. */
s for p— Pdo

4 F«— getFlags (p) /* read the flag stored in the evaluation container. */
5 s «+— tryExploit (E, H, p) /* try exploit and save output stream */
6 if isContain (s, F) then

7 ‘ S+ updateExploitState (S, D, p) /* Update Exploit status. */
8 end

B if isContain (s, C) then

10 ‘ S+ updateExploitState (S, D, p) /* Update Exploit status(Crashed). */
1 end

12 end

The exploit code submitted by the user in the judgment container is executed
with the host ip address and port number stored in the database as arguments.
Therefore, the exploit code submitted by the student must be crafted with the
host ip address and port number as system arguments in our fine-grained CTF
system.

The process in which the exploit code submitted by the student in the judg-
ment container is evaluated in detail in a fine-grained manner is described in
detail in Algorithm 1. At this stage, our fine-grained system was built in the
ubuntu environment, so the characters “SIGABRT” and “SIGSEGV” are used
as identifier strings to identify crash in the linux system. Also, deploying a sep-
arate container for crash check, which is the purpose of evaluation point 1, can
cause unnecessary system overhead, so we have inserted a string matching pro-
cess for crash check into the evaluation process without constructing a separate
container.

5 Conclusions

Recently, CTF, which was mainly used for hackers to exchange technical exper-
tise and engage in competition, has now been widely implemented as an educa-
tional platform in the field of information security. Accordingly, various research
approaches have been applied to improve learning efficiency for beginners. In
addition, research has been conducted to reduce the costs and educators’ bur-
dens for operation of a CTF. This study subdivides the pwnable CTF, which
requires a comprehensive understanding of the entire system, into distinct eval-
uation points to improve the ability of educators to identify the failure factors of
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learners. However, for this approach to successfully relieve the educators’ burden,
it is necessary not only to propose evaluation points but also to automate the
detection of these points. Therefore, we design a CTF platform that can auto-
mate the detection of learner failure points based on these evaluation points.
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