®

Check for
updates

Reduction of Data Leakage Using
Software Streaming

Sung-Kyung Kim!'@®, Eun-Tae Jang!®, Seung-Ho Lim?®,
and Ki-Woong Park!(®)

! Department of Information Security, Sejong University, Seoul, South Korea
jotun99350gmail.com, euntaejang@gmail.com , woongbak@sejong.ac.kr

2 Hankuk University of Foreign Studies, Yongin, South Korea
1lim.seungho@gmail.com

Abstract. With the increase in threats to IoT devices, interest in pro-
tecting sensitive data within such devices has intensified. For devices
holding sensitive data and intellectual property software, such as mil-
itary equipment, leakage of the confidential data contained within the
device can cause catastrophic damage. Therefore, it is important to pre-
vent such leakage of sensitive data. In this paper, we propose a method
for reducing data leakage from military devices by minimizing the quan-
tity of data that exist within the non-volatile memory of the device. To
achieve minimization of the data loaded in non-volatile memory, we run
the software in a streaming manner. However, as the execution of soft-
ware over a network can result in suspension of the software depending on
the state of the network, this approach can have a critical impact on sys-
tem stability. Therefore, we also present a scheme to apply multi-channel
communication to reduce software suspensions caused by network delays
when the software is run in a streaming manner for the purpose of miti-
gating damage to the data leakage.

Keywords: Software streaming - Network channel scheduling -
On-demand computing - Self destruction - Disposable computing *
Muti-network channel

1 Introduction

Mobile devices used for various purposes have increased with the development of
IoT technology. The military industry is one of the leading areas that has been
affected by the development of IoT technology. Many advanced military equip-
ment, including reconnaissance drones and information gathering equipment,

This work was supported by the National Research Foundation of Korea (NRF) (NRF-
2020R1A2C4002737) and the Institute for Information and Communications Technol-
ogy Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2018-0-
00420).

(© Springer Nature Singapore Pte Ltd. 2020

I. You et al. (Eds.): MobiSec 2019, CCIS 1121, pp. 99-111, 2020.
https://doi.org/10.1007/978-981-15-9609-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9609-4_8&domain=pdf
http://orcid.org/0000-0003-2782-271X
http://orcid.org/0000-0002-7368-551X
http://orcid.org/0000-0003-3096-0785
http://orcid.org/0000-0002-3377-223X
https://doi.org/10.1007/978-981-15-9609-4_8

100 S.-K. Kim et al.

use computing systems. However, these military devices may contain confiden-
tial data, and the leakage of such data can cause significant losses. For example,
in 2008, Iraqi militants bought a hacking program from a Russian hacking site
and hacked the US recon drone RQ-170 modeled predator [1]. They hacked and
leaked video footage that showed the predator shooting. In December 2011, a
UAV stealth RQ-170, co-produced by US Lockheed Martin (USA) and Israel,
was captured by Iran’s GPS-managed attacks while scouting Iranian territory
[2]. The Iranian government reverse-engineered the captured drones, and after
two years they replicated and tested a similar drone. The above examples show
that defensive techniques are required to minimize the risk of information leak-
age, when operating a device that can store sensitive data. Therefore, there is a
need for secure disposable computing, which can guarantee complete erasure of
data from state-of-the-art devices where data leaks can lead to significant losses.
In this study, we propose a secure system framework that prevents data leaks
through the concept of Disposable Computing to protect sensitive data in mili-
tary mobile devices. In order to effectively and safely apply disposable comput-
ing to devices that require real-time computing, such as military equipment, it is
necessary to minimize non-volatile and volatile memory, which contain sensitive
information. We utilized software streaming technology, which is a method to
use software in real-time by sending segmented software over a network. Figure 1
shows an overview of the software streaming technology to prevent exposure of
sensitive information on embedded devices by minimizing the non-volatile and
volatile memory.

— Minimized Non-volatile Memory
Data is retained in the non-volatile memory even when the power is cut off;
hence, it must be minimized to reduce the size so that sensitive data do no
remain in the device. In the event that this information is captured, it will
be limited.

Software Streaming Agent

Restoration Failed Entire Executable File

00000000: 0000 0000 r 00000000: 7645 4c46 0201 0100 0000 0000 0000 0000 ELF......
00000010: 0000 e00a 4000 > 00000010: 0200 3600 0100 000D e00a 4000 0000 0000 > @
00000020: 4000 0000 0000 0000 1041 0000 0000 0000 @...._A- 00000020: 4000 0000 0000 0000 1041 0000 0000 0000 @.....A
00000030: 0000 0000 4000 00000030: 0000 0000 4000 3800 0900 4000 1100 1c00 @ 8..@.

ALl AV
[. [p

N\
Block1 M Block3 | e e e ‘u | Block1 | | Biockz | | Biocks [e e e | BlockN |
,

ﬁ (‘>Block Swap

Memory for state(t) Memory for state(t)

Attack Device
Block1

-
e

Memory Leak for
state(t)

Fig. 1. Overview of software streaming that can prevent the leaking or disclosure of
sensitive information in a device

Reduction of Data Leakage Using Software Streaming 101

— Minimized Volatile Memory

Even if the memory state is leaked by the attacker at one point, the size of
the volatile memory should be minimum so that the device can operate to
minimize the sensitive data on the volatile memory. Figure 1 shows a scenario
in which the block information state(t) loaded into the device’s volatile mem-
ory at time t is leaked. If a block is leaked, it is difficult to infer the whole
program through it. In addition, since the blocks loaded in the volatile mem-
ory are continuously alternated, it is difficult to obtain the entire program
through the nonvolatile memory dump even if execution continues to the end
of the program.

However, the primary limitation of the existing software streaming technol-
ogy is that it has execution delays due to network transmission. Therefore, when
applying the technology to a real-time system that requires real-time responses,
such as a military device, it is necessary to minimize the challenges posed by the
execution overhead. To overcome this challenge, we used streaming data sched-
uled through multiple streaming channels and a pre-generated software profile
data. The contributions of our research can be summarized as follows:

1. Software streaming for intellectual property (IP) protection. Our
approach on software streaming technology was from the perspective of pro-
tecting software intellectual property. Various techniques have been studied
to prevent the leakage of sensitive information and software in embedded sys-
tems. Software streaming technology can also be used as a leakage prevention
method. This is because when software is transmitted through the streaming
method, information in the memory can be minimized in the situations where
the target system is hijacked.

2. Identification of bottlenecks in previous software streaming. We
identified a bottleneck caused by the complexity of function call in the existing
software streaming techniques. Therefore, we proposed a software streaming
method that can be applied to a real-time system by minimizing the bottle-
necks, as described in detail in Sect. 3.

The rest of this paper is organized as follows: Section 2, examines existing
software protection work and related research on software streaming. In Sect. 3,
we propose a method for efficient software streaming that applies the concept of
Disposable Computing to secure a Real-time Embedded System safely. Section 4,
proposes network channel scheduling based on a round-robin for efficient software
streaming. We propose areas of further research for framework development in
Sect. 5 and the conclusions are presented in Sect. 6.

2 Related Work

Researchers have developed various methods to prevent the leakage of sensitive
data from desktop and mobile environments, include anti-analysis techniques
and encryption methods. Analysis prevention techniques include obfuscation [3],

102 S.-K. Kim et al.

Server Side Client Side

Shared lib

[7] Executable File | | Partial Executable File /™

S

E- e

Blocks of Executable File |

| Blocks of Executable File

AN --EN------- EE:--EER

Fig. 2. Software streaming between server and client

instruction virtualization [4,5], anti-debugging [6, 7], and binary code packing [8].
All these features make software difficult to analyze, but it can be analyzed by a
skilled analysts [9,10]. The file system encryption method [11] is a representative
example of the encryption method, a method of protecting important data by
encrypting the file system itself in which data is stored. However, decryption
results in a system overhead making it challenging for it to be used in real-
time embedded devices. In this study, we overcame this challenge by utilizing
software streaming technology which partially receives and executes software in
the network.

Kuacharoen et al. used Block Streaming for software Streaming [12]. Their
work uses binary rewriting technology to ensure that the transmitted software
could be executed continuously. The method inserts a code that requests the
server for the next code to be executed as it not present in the memory of the
partitioned block following partitioning by executable file in the server. If the
system executes all the code within the block or enters the off-the-block position
by the jmp/ret command, the code for that part is transmitted on the network.
We also investigate the PoC of real-time code execution by applying software
streaming to embedded devices. However, its primary limitation is that it causes
high execution time overhead that results in continuous application suspension
until the code is sent remotely when it is not located in memory. This approach
is therefore difficult to apply in embedded system environments that require
real-time response, such as real-time systems.

Kuacharoen et al. developed a previous study to devise a way to increase effi-
ciency by sending blocks from single block unit transmission to function units
[13]. They increased the transmission efficiency by repositioning functions within
the blocks so that associated functions could be in a single block, and by remov-
ing unused blocks from memory, they were more efficient than reported in previ-
ous studies on memory management. However, in our study, bottlenecks occurred
depending on the complexity of the function call and resulted in the suspension
of applications.

Reduction of Data Leakage Using Software Streaming 103

Choi, Jeong-dan et al. designed a method [14] to add pre-processing steps
of code clustering & pre-fetched map generation to change the application to a
form that could be streamed. This is because code clustering is based on function
unit blocks, and the pre-fetched map is the result of the PPM (prediction by
partial matching) algorithm that generates many of the code cluster transmission
histories.

3 System Architecture

Most execution delays in streaming software execution are caused by applica-
tion suspension, which results in a waiting period while receiving code to be
executed remotely [12]. In systems that require immediate response, such as real-
time embedded systems, this waiting period/suspension can have a devastating
effect on the stability of the entire system. Therefore, to minimize application
suspension, research on background streaming, software profile [12], block relo-
cation [13], and pre-fetched map [14] have been conducted. In general, in these
studies code was divided into functions and classes. However, the partitioning
method takes a long time when receiving and executing a complex function, and
a network delay occurs that delays the reception of a function to be executed
next, resulting in application suspension. Figure 3 shows the bottleneck that can
occur when the function call complexity is high in an existing software streaming
method. If the function Func() is executed, the actual software execution is exe-
cuted sequentially by the Subl(), Sub2(), and Sub3() functions inside the Func()
function according to the function call relationship. However, when streaming
it uses a single network channel, Func() does not end until Sub3() is received
and execution is completed; hence, a delay occurs in the execution of the next
function.

Need to Request Need to Request
1. Fune()} 1. Subi()(1. Sub2()
2. Sub1(; 2 Sub20; 2 Sub3(;
3. % 3 sue 3
i .- . k1
n. } m } k)
Call Sub1() Call Sub2() Call Sub3()
<'_‘] l Func() Sub1() . Sub2() | Sub3()
VA t 7
T T
ay by ca

Bottleneck (Code Currently Not Need)

Fig. 3. Bottleneck challenges in a single-channel software streaming via block streaming

It can be expressed by the following formula. The size of the n*" sending
block (size,) can be expressed as a code before the call-routine (a,), a call
routine code (by,), and a code to be executed after the function call returns (c;,).

104 S.-K. Kim et al.

The cost of executing the n'"* block in the nested call routine is the accumulated
value of the n — 1** block size from the beginning of the block plus the size of
the code from the beginning of the nth block to the call-routine.

n—1

cost,, = Z sizey, + a, + by,
k=1

Sizen = an + by + ¢ (0 < ap, by, ¢, < MAX _BLOCK _SIZE)

Where, ¢, is executed after a series of call routines are completed in a sequen-
tial execution structure. Therefore, the method of receiving ¢, by lowering the
priority of transmission a, and b, can improve execution efficiency in software
streaming. Therefore, our aim was to design a software streaming that mini-
mizes the overhead of ¢, transfers when transferring blocks that have nested call

routines.
n

ideal_cost = Z(sizek — ck)
k=1

3.1 Network Multi-channel for Software Streaming

When using only one channel for software streaming, as shown in Fig. 4, when
a large size function is received from the server, there is a network delay and it
does not receive the next function to be executed until the current function is
completed. For systems that require real-time response, such as real-time sys-
tems used in the military, execution delays can be fatal in that they can cause
an overall system failure. One of our objectives was to minimize execution delay.
As shown in Fig. 4, we propose a multi-channel configuration consisting of main

Server Side Components Network Layer Client Side Components

Software Streaming Agent

Main Channel

Receiver
|

[Boc | [(mockz | [Bocka | o o [mioc |
_—

o
{}

Partial Executable File ﬁ

B

Blocks of Executable File

[Symbolic Execution Table
CallTrees [A B D G N
CallTrees2 | A B D F H J L M
Call Trees3 | - - - - - - - -
Call Trees 4 -

Sub Channels

Reservation Stations

Function Busy Size Fall-Back Stage
B yes N-kb D 2
D no M-kb G(Request) 3
GorF - - -

Fig. 4. Overview of the concept of multi-channel software streaming

Reduction of Data Leakage Using Software Streaming 105

and sub-channels to minimize delays by scheduling to other data channels imme-
diately when a streaming delay occurs. In addition, we developed a method for
the function to occupy the channel efficiently.

Main Logic Streaming Channel. The server separates the software requested
from the client into functions and sends them in blocks. A network channel
between the server and the client is used when sending a block and this referred
to as the Main Channel. In case of a delay, a standby on the Main Channel, it
transmits it using another channel (Sub Channel).

Sub Logic Streaming Channel. This channel is a type of sub-channel estab-
lished to reduce network overhead and delay. When the server sends the software,
block requested by the client, it uses the Main Channel to send it to the client in
real-time. However, if the block size requested by the client is large, the waiting
time of the next block to be received is increased. Thus, we proposed a method
for building a sub-channel in addition to the main channel. Therefore, if the size
of the block received from the client is large and the waiting time increases, the
task continues by moving the block to the Sub Channel, and the main channel
becomes free to receive the next request block from the client.

JMP main ¢

END

|«

Fig. 5. The process of finding the function N requested by the client using symbolic
execution

3.2 Symbolic Execution

The client must request the server for streaming the next block to be executed.
Symbolic Execution for efficient software streaming was used and the results

106 S.-K. Kim et al.

were saved in a table to enable efficient communication between server and
client. The process of identifying all the paths from the main function to the
destination function N requested by the client using symbolic execution when
the client requests Function N is shown in Fig. 5. Symbolic Execution can be used
to identify a successful path condition (e.g. A, B, D, G, L) for the destination
and write the results in the Symbolic Execution Table. The key to Symbolic
Execution is to run it in multiple ways. Thus, when the program runs, it will
follow every branch statement and generate inputs until the user meets the path
condition. The software was divided into functions in the server, the table for
the Call Tree was created using symbolic execution and the data required for
the function corresponding to the client’s request were sequentially provided.

The Tomasulo algorithm places Reservation Stations to create information
about the commands that should be executed per CPU cycle [15]. The Toma-
sulo algorithm eliminates WAR/WAW hazards through Register Renaming and
allows for sequential execution of instructions. Register Renaming is a method
used by Tomasulo’s Algorithm to perform out-of-order execution.

Function scheduling was based on the Register Renaming used in the Call-
Tree-Table of the software obtained using Symbolic Execution and Reservation
Stations of the Tomasulo algorithm. Reservation Stations consult the Symbolic
Execution Table for information on the next functions to be sent. The Reser-
vation Stations element contains the function to be processed, Busy (State),
Function Size, Fall-Back, and the current progress. A fall-back field was placed
in the reservation station to minimize the hazards that could occur in software
streaming. A table for software streaming based on the Tomasulo algorithm is
given in Table 2. For example, when a client requests function N, such as shown
in Fig. 5, two Call Trees are created, as shown in Table 1. Therefore, we proposed
that function B, function D, must be transmitted one after the other, and that
the failure cost for function G and function F must be prioritized to the lesser
value.

Table 1. Symbolic execution table for Function N

Symbolic execution table

Call Trees1|/A B D G L

Call Trees2|A B D F HI K L
Call Trees 3|- - - - - - - -
Call Trees 4 |- - - - - - - -

Reduction of Data Leakage Using Software Streaming 107

Table 2. Reservation station for software streaming

Reservation stations

Function | Busy | Size | Fall-Back Stage
B Yes |N-kb |D 2
D No |M-kb|G (Request) |3
GorF |- - - -

Ready State
/”\ Execution

— maa s {]

Process CPU
| Time Out

Fig. 6. Round Robin process scheduling

3.3 Network Scheduling for Software Streaming

When divided software is transmitted to the client through the network channel
according to the client’s request, multi-channel can be used instead of the single
channel to reduce network overhead and delay. In this case, efficient scheduling is
applied to the network channel to facilitate interactions between the main chan-
nel and the sub-channel, thereby enabling real-time software streaming between
the server and client. Our network scheduling scheme for software streaming was
based on the round-robin process scheduling scheme. The round-robin scheduling
method executes all processes running at regular time intervals regardless of the
termination of the process. However, its disadvantage is that context exchange
occur frequently and overhead also occur frequently if the time interval is short.
This because the Round Robin method uses a single queue. We proposed a multi-
channel implementation for real-time software streaming between a server and

Server Side Main Channel 1. Main Streaming Block 4. Main Streaming Block Client Side
FL Executable File!
{/ Executable File 3. Move to Sub Channel I'l {}
for streaming IL Time Out |
Blocks of Executable File Blocks of Executable File

Sub Channel

Fig. 7. Network scheduling scheme in multi-channel based on Round Robin process
scheduling

108 S.-K. Kim et al.

a client. In addition, we proposed a scheduling scheme in multi-channel to over-
come the disadvantages of the round-robin method. The round-robin scheduling
method is presented in Fig. 6.

If the server sends the software block requested by the client in real-time, the
client should receive and execute the block. The requested software blocks are
sent at regular time intervals, like the process of round-robin process scheduling.
However, unlike the existing conventional round-robin method, if a block is not
processed for a certain time, the transmission of the block is not interrupted, and
it is not sent as the last operation. We proposed a method of moving the a block
in progress with a time delay to a Sub Channel to allow for it continued execution
and for the next requested block to be executed using the Main Channel. If the
scheduling method is used, streaming can be performed without moving the
blocks to the sub-channel even if the receiving time of the function requested
from the client increases. In addition, the main channel can stream the next block
to minimize the overhead and delay of work. The process of applying network
scheduling to multi-channel software streaming is presented in Fig. 7.

4 Implementation

In this paper, we propose a multi-channel scheme to minimize application sus-
pension that can occur in software streaming. As mentioned above, existing
works that transmit software in a streaming manner generally perform software
streaming in units of functions and classes. In this case, application suspension
increases when a software block containing a function with a high call depth is
transmitted. In order to minimize this application suspension, we present a proof
of concept of network scheduling for effective software streaming in the manner
specified in Algorithm 1.

Algorithm 1: pseudo code for scheduling of soft-
ware streaming

1 while client_request do

2 main_channel «— request_block;

3 if block_receive_time > set_time then

4 sub_channel «— request_block;

5 main_channel < next_request_block;
6 end

7 end

When a client requests software blocks, the server transmits the requested
block through a main channel that uses a relatively high network bandwidth at
a set time interval. When the transmission time specified in the main channel
expires, the server transmits the software block through a sub channel that uses
a relatively low network bandwidth. If there is a new block request from the

Reduction of Data Leakage Using Software Streaming 109

client, the block is assigned to the main channel. This is because the scheme
we propose gives the highest possible transmission priority for the latest request
from the client. If there is no new request from the client, the server transmits the
block allocated to the sub channel for transmission through the main channel.

5 Future Works

We proposed Disposable Computing using software streaming technology to pro-
tect important data in the Real-time system. However, research should be con-
ducted on how to safely destroy internal data in cases of system intrusion in order
to minimize internal data leaks cases where all the contents of the real-time sys-
tem’s memory can be recorded. Therefore, we would like to study the Rapid
Self-Destruction method for secure data protection of future software stream-
ing systems. A summary of some related research studies and techniques are
presented in Table 3 [20].

The Rapid Self-Destruction method presented in this paper is an electronic
destruction technology. In cases where multiple devices operating in the central
system are compromised the power supplied by the device itself through power
supply interruption (Switch off) serves a deletion order and it is issued after the
central system recognizes it. It is designed to allow for Rapid Self-Destruction
by not storing anything in the volatile memory.

Table 3. Self-destruction Methods and Classification

Type Self-destruction
Electronic Power supply interruption (Switch Off)
destruction

Method and apparatus for fast self-destruction of a
CMOS integrated circuit [16]

Device Directed fragmentation for unmanned airborne
fragmentation vehicles [17]

Integrating chemical | From chips to dust: The MEMS shatter secure chip
substances [18]

Simulation research on a novel micro-fluidic
self-destruct device for microchips [19]

6 Conclusion

The military is one of the areas that has been impacted by technological develop-
ment of IoT’s. Military-purpose reconnaissance drones or intelligence-gathering
devices mostly operate using built-in computing systems to conduct their mis-
sions. However, there have been various cases in which the sensitive data built

110 S.-K. Kim et al.

into these devices has been leaked and used. Therefore, we proposed a frame-
work that can be applied even for the real-time systems, that which requires
real-time execution among IoT devices, in order to prevent the leaking or loss
of sensitive data through the use of on-demand computing technology. However,
due to the high network overhead of the existing software, real-time execution
techniques were appropriate for systems that were less impacted by the delay
in running the software and there are challenges in applying them to systems
that need to be ensured in real-time. We proposed efficient software streaming
in multi-channel using three methods, i.e., symbolic execution, Tomasulo algo-
rithm, and Round Robin. We created a call tree table for a function that was
streamed by symbolic execution. Reservation stations and register renaming in
Tomasulo algorithm, were used to refer to the Call Tree, and the function blocks
were efficiently sent to the client through the Main Channel. The method used a
scheduling technique that transferred a function block to a network channel and
moved it from the main channel to the sub-channel over time by Round Robin.
In our future work, we intend to introduce the concept of Disposable Computing
for self-destruction capability.

References

1. Iraqg-RQ-170 Homepage. https://www.wired.com/2011/12/iran-drone-hack-gps/.
Accessed 22 Jan 2020

2. Iran-RQ-170 Homepage. https://www.csmonitor.com/World/Middle-East/2011/
1215 /Exclusive-Iran-hijacked- US-drone-says-Iranian-engineer. Accessed 22 Jan
2020

3. Banescu, S., Collberg, C., Ganesh, V., Newsham, Z., Pretschner, A.: Code obfus-
cation against symbolic execution attacks. In: Proceedings of the 32nd Annual
Conference on Computer Security Applications, pp. 189-200 (2016)

4. Fang, H., Wu, Y., Wang, S., Huang, Y.: Multi-stage binary code obfuscation using
improved virtual machine. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS,
vol. 7001, pp. 168-181. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-24861-0-12

5. Xue, C., et al.: Exploiting code diversity to enhance code virtualization protection.
In: 2018 IEEE 24th International Conference on Parallel and Distributed Systems
(ICPADS), pp. 620-627. IEEE (2018)

6. VMProtect Homepage. https://vmpsoft.com/. Accessed 22 Jan 2020

Themida Homepage. https://www.oreans.com/themida.php. Accessed 22 Jan 2020

8. Kim, M.-J., et al.: Design and performance evaluation of binary code packing
for protecting embedded software against reverse engineering. In: 2010 13th IEEE
International Symposium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing, pp. 80-86. IEEE (2010)

9. Suk, J.H., Lee, J.Y., Jin, H., Kim, L.S., Lee, D.H.: UnThemida: commercial obfusca-
tion technique analysis with a fully obfuscated program. Softw. Pract. Exp. 48(12),
2331-2349 (2018)

10. Yadegari, B., Johannesmeyer, B., Whitely, B., Debray, S.: A generic approach to

automatic deobfuscation of executable code. In: 2015 IEEE Symposium on Security
and Privacy, pp. 674-691. IEEE (2015)

=

https://www.wired.com/2011/12/iran-drone-hack-gps/
https://www.csmonitor.com/World/Middle-East/2011/1215/Exclusive-Iran-hijacked-US-drone-says-Iranian-engineer
https://www.csmonitor.com/World/Middle-East/2011/1215/Exclusive-Iran-hijacked-US-drone-says-Iranian-engineer
https://doi.org/10.1007/978-3-642-24861-0_12
https://doi.org/10.1007/978-3-642-24861-0_12
https://vmpsoft.com/
https://www.oreans.com/themida.php

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Reduction of Data Leakage Using Software Streaming 111

Hasan, S., Awais, M., Shah, M.A.: Full disk encryption: a comparison on data
management attributes. In: Proceedings of the 2nd International Conference on
Information System and Data Mining, pp. 39-43 (2018)

Kuacharoen, P., Mooney, V.J., Madisetti, V.K.: Software streaming via block
streaming. In: Jerraya, A.A., Yoo, S., Verkest, D., Wehn, N. (eds.) Embedded
Software for SoC, pp. 435-448. Springer, Boston (2003). https://doi.org/10.1007/
0-306-48709-8_32

Kuacharoen, P., Mooney III, V.J., Madisetti, V.K.: Efficient execution of large
applications on portable and wireless clients. In: Proceedings of the Mobility Con-
ference & Exhibition (2004)

Choi, J., Kim, J., Jang, B.: A software wireless streaming architecture supporting
telematics device. In: 2007 Digest of Technical Papers International Conference on
Consumer Electronics, pp. 1-2. IEEE (2007)

Tomasulo, R.M.: An efficient algorithm for exploiting multiple arithmetic units.
IBM J. Res. Develop. 11(1), 25-33 (1967)

Shield, D.J., Davis, D.L.: Method and apparatus for fast self-destruction of a
CMOS integrated circuit. U.S. Patent 5,736,777, issued 7 April 1998

Mishra, P.K., Goyal, D.: Directed fragmentation for unmanned airborne vehicles.
U.S. Patent 9,828,097, issued 28 November 2017

Banerjee, N.,; Xie, Y., Rahman, M.M., Kim, H., Mastrangelo, C.H.: From chips to
dust: the MEMS shatter secure chip. In: 2014 IEEE 27th International Conference
on Micro Electro Mechanical Systems (MEMS), pp. 1123-1126. IEEE (2014)

Gu, X., Lou, W., Song, R., Zhao, Y., Zhang, L.: Simulation research on a novel
micro-fluidic self-destruct device for microchips. In: 2010 IEEE 5th International
Conference on Nano/Micro Engineered and Molecular Systems, pp. 375-378. IEEE
(2010)

Kim, S.; Youn, T.-Y., Choi, D., Park, K.-W.: UAV-undertaker: securely verifiable
remote erasure scheme with a countdown-concept for UAV via randomized data
synchronization. Wirel. Commun. Mob. Comput. 2019, 1-11 (2019)

https://doi.org/10.1007/0-306-48709-8_32
https://doi.org/10.1007/0-306-48709-8_32

	Reduction of Data Leakage Using Software Streaming
	1 Introduction
	2 Related Work
	3 System Architecture
	3.1 Network Multi-channel for Software Streaming
	3.2 Symbolic Execution
	3.3 Network Scheduling for Software Streaming

	4 Implementation
	5 Future Works
	6 Conclusion
	References

