
Toward Software-Defined Moving Target Defense for Secure
Service Deployment Enhanced with a User-Defined Orchestration

Ki-Wan Kang
Department of Computer and Information Security, Sejong

University
Seoul, Republic of Korea
kkwan0226@gmail.com

Ki-Woong Park∗
Department of Computer and Information Security, Sejong

University
Seoul, Republic of Korea
woongbak@sejong.ac.kr

ABSTRACT
In recent years, cloud native computing, which involves the de-
ployment of scalable applications enhanced with containers, mi-
croservices, and serverless functions, has been actively studied to
maximize its efficiency, flexibility, and economic feasibility. In this
regard, studies on the security of the cloud native computing en-
vironment have been conducted. Among various studies on the
security of these systems, moving target defense (MTD), which
is an area of research that blocks various security threats in ad-
vance by actively changing the main properties of the protected
target to deceive attackers, has been actively studied and devel-
oped. However, cloud native computing is highly dynamic; it is
difficult to apply MTD technologies that actively change static sys-
tem properties. Therefore, a software-defined MTD framework was
designed for easier application of MTD technology to the cloud
native environment. In this study, the user-defined adaptability of
the software-defined MTD framework was implemented, and it
was verified that the properties of the target service were changed
according to previously defined mutation properties.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
moving target defense, software-defined, cloud native computing,
user-defined adaptability

ACM Reference Format:
Ki-Wan Kang and Ki-Woong Park. 2020. Toward Software-Defined Mov-
ing Target Defense for Secure Service Deployment Enhanced with a User-
Defined Orchestration. In 2020 ACM International Conference on Intelligent
Computing and its Emerging Applications (ACM ICEA ’20), December 12–15,
2020, GangWon, Republic of Korea. ACM, New York, NY, USA, Article 4,
5 pages. https://doi.org/10.1145/3440943.3444725

∗Corresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM ICEA ’20, December 12–15, 2020, GangWon, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8304-2/20/12.
https://doi.org/10.1145/3440943.3444725

1 INTRODUCTION
In recent years, cloud native computing, which combines container
technologies and microservice architectures in a cloud computing
structure, has been recognized as an excellent technology to maxi-
mize the efficiency, flexibility, and economic feasibility of computing
processes [7, 19]. As such, studies on the security of cloud native
computing environments have been actively conducted [8, 9, 20].
Because cloud native computing maintains the initial system prop-
erties, attackers may be given enough time to obtain information re-
quired to analyze the vulnerability of the target system. To mislead
the attacker, research and development of moving target defense
(MTD) systems are being actively conducted, which is a method
that proactively blocks various security threats by actively chang-
ing the main properties (e.g., network, platform, runtime environ-
ment, software, and data) of the protected system [12]. In particular,
among various MTD technologies, network-based MTD technol-
ogy is known to be very effective because it can reverse the at-
tack–defense asymmetry by making the first reconnaissance step
of the attack difficult. As a result, this technology is emerging as a
very effective defense technology [23].
Cloud native computing can provide high efficiency compared to the
existing cloud by combining container technology and microser-
vice architecture [14, 21]. However, it is difficult to apply MTD
technology to a highly dynamic cloud-native environment as it
changes the main properties of the system in which a target is op-
erating. Furthermore, there is a limit to the applications of existing
MTD technologies due to the interactions between independent
microservices in the cloud native environment.
Therefore, in this study, the requirements of a software-defined
MTD framework were derived to facilitate the application of ex-
isting and future MTD technologies. First, this framework should
easily accommodate and consider current and future MTD stud-
ies. Second, the administrator must be able to define the mutation
elements of the system to be protected, and they must be able to
actively redefine the mutation elements according to the situation.
Third, the software-defined MTD technology should not be depen-
dent on a specific system but must be compatible with and possess
the ability to be used in various systems. Based on the derived
requirements, a software-defined MTD framework consisting of an
MTD repository for a deployable MTD, a mutation master module
for user-defined adaptability, mutation connector module for an
interoperable MTD, and a designed mutation agent module.
Among the software-defined MTD frameworks designed using an
effective defense technique (a network-based MTD technology),
the accuracy of user-defined adaptability was verified. A dashboard
was developed for verification, and the Apache service was used for

https://doi.org/10.1145/3440943.3444725
https://doi.org/10.1145/3440943.3444725


ACM ICEA ’20, December 12–15, 2020, GangWon, Republic of Korea Ki-Wan Kang and Ki-Woong Park

the accuracy verification of user-defined adaptability through the
dashboard. As a result of this verification, it was confirmed that the
properties of the service change according to the defined mutation
elements, network class, and hopping cycle. Furthermore, it was
confirmed that the request was not made to the existing IP and
ports after the mutation.
The remainder of this paper is structured as follows. Section 2 sum-
marizes the background knowledge and presents the limitations of
existing studies through the analysis of MTD-related studies. Sec-
tion 3 describes the derivation of the requirements for and design of
a software-defined MTD framework. Section 4 verifies the accuracy
of the proposed framework in terms of user-defined adaptability. Fi-
nally, in Section 5, the conclusions of this study and future research
directions are presented.

2 BACKGROUND AND RELATEDWORK
In this section, background knowledge on the cloud native envi-
ronment and MTD technology to which the software-defined MTD
framework is applied is explained, and the existing research and
development MTD technology is examined. Thus, the limitations
of existing studies are presented.

2.1 Background
2.1.1 Cloud Native Computing. In recent years, cloud native com-
puting, which combines container technologies and microservice
architectures in a cloud computing structure, has been recognized
as an excellent technology to maximize the efficiency, flexibility,
and economic feasibility of cloud computing processes [13]. Com-
pared to virtual machines (VMs), containers require fewer system
resources to execute services, demonstrate faster startup times, and
provide excellent input/output (I/O) throughput [16]. At the same
time, by packaging the application code and the property of depen-
dency together, container management platforms (e.g., Docker [16]
and Kubernetes [3]) can provide a consistent environment for appli-
cation development, testing, and production [4]. Because of these
properties, containers are not dependent on any particular environ-
ment and can be operated in various environments. Microservice
architectures can make the target system very efficient by reducing
unnecessary resource use because the entire application does not
have to be scaled out for specific and load-intensive services. In par-
ticular, because resources can be allocated and scaled out according
to the properties of a service, efficient resource use is possible [2].

2.1.2 MTD. MTD technology prevents various security threats in
advance by actively changing the main properties of the protected
target system (such as the network, platform, runtime environment,
software, and data) to reverse the attack–defense asymmetry [22].
In 2009, the Networking and Information Technology Research
and Development (NITRD) program explicitly emphasized the con-
cept of MTD because it can utilize existing resources to increase
effectiveness and efficiency [10]. Since this time, the MTD research
community has been formed and has attracted attention due to the
approach it utilizes, as well as its advantages [5]. The objective of
the MTD research community is to increase the uncertainty and
complexity of the system for the system attacker such that the
chances of target identification (e.g., vulnerable system elements)
are reduced, as well as to increase expenses for initiating attacks

or scans (e.g., reconnaissance attacks). The MTD can be classified
according to the system properties, as shown in Figure 1 [17].

Figure 1: Apply MTD to cloud native environment

2.2 Related Work
2.2.1 Random Port and Address Hopping (RPAH). Luo et al. [15]
proposed a mechanism that constantly changes the IP addresses
and communication ports for unpredictability.

2.2.2 Random Host Mutation (RHM). Al-Shaer et al. [1] proposed
a mechanism that assigns a virtual IP address using low-frequency
mutation (LFM), which actively changes the range of the virtual IP
addresses for the protected target system. High-frequency mutation
(HFM) is also utilized, which allocates IP addresseswithin the virtual
IP address range specified by the LFM.

2.2.3 Decoy-Based MTD. Clark et al. [6] introduced an approach
involving the use of numerous decoy systems to prevent attackers
from targeting the actual system. They also proposed a method to
change the network addresses of the decoy systems along with the
system network.

2.2.4 Host IDEntify (HIDE) Anonymization. Jafarian et al. [11] pro-
posed an additional honeypot cloud operation to the RHM model
proposed by Al-Shaer et al. [6]. A mechanism was proposed to
prevent attackers from identifying the network properties of the
target system. The honeypot cloud and the attacker’s target system
are located in different networks, and if suspicious traffic is found
through the MTG in the external network, the proposed system
redirects the corresponding traffic to the honeypot cloud.

2.2.5 Ghost MTD (gMTD). Park et al. [18] proposed a protocol mu-
tation mechanism using a previously shared one-time bit sequence
(OTBS). Only users who are aware of the protocol variation pattern
can communicate with the service module of the server system.
Other user messages are redirected to the decoy-hole module to
mislead the attacker’s successful system penetration.

Among various MTD technologies, network-based MTD technol-
ogy is one of the most effective defense methods. Analyzing the
existing network-based MTD technologies reveals limitations when
these technologies are applied to actual systems. First, it is neces-
sary to implement additional functions and introduce systems for
each MTD technology. With the development of MTD technology,



Toward Software-Defined Moving Target Defense for Secure Service Deployment Enhanced with a User-Defined OrchestrationACM ICEA ’20, December 12–15, 2020, GangWon, Republic of Korea

each time a newly researched and developed MTD technology is
applied, the implementation of the additional functions and intro-
duction of a new system are very inefficient. Second, it is difficult to
apply MTD technology to a system because of the dynamics of the
cloud native environment. In the case of existing MTD technologies,
only the interactions between the user and the server system is
considered; the interactions between independent microservices is
not considered.

3 SOFTWARE-DEFINED MTD FRAMEWORK
In this section, the software-defined MTD framework requirements
are derived, and the software-defined MTD framework is designed
based on the derived requirements.

3.1 Derived Requirements
3.1.1 Deployability of MTD. The existing and future MTD studies
and technologies should be easily accommodated and applied to the
cloud native computing environment through the use of software-
defined MTD.

Figure 2: Deployment guarantee through MTD Repository

3.1.2 User-Defined Adaptability. The administrator must be able to
define the mutation elements of the system to be protected, and they
must be able to actively redefine the mutation elements according
to the situation. In addition, the user can define a valid range for
the defined mutation element, and the mutation element must be
continuously changed according to a certain period or a randomly
defined period.

Figure 3: Module management through Mutation Master

3.1.3 Interoperability of MTD. The MTD technology defined by
software is not dependent on a specific system and must be compat-
ible with and able to be used in various systems. The system should
be able to apply and manage various MTD technologies defined by
the software.

Figure 4: MTD technology developed in a specific system can
be used in various systems

3.2 Software-Defined MTD Framework Design
3.2.1 Design for EnsuringMTDDeployment. The framework should
be designed such that existing and future MTD technologies can
be easily accommodated and applied in cloud native computing
systems. To achieve this, the MTD technology that will be applied
to a module performing mutation on various mutation elements is
software-defined and stored in the MTD repository

3.2.2 Design for Ensuring User-Defined Adaptability. The manager
should be able to define the appliedMTD technology, effective range
for the mutation elements, and mutation cycle. To achieve this, a
dashboard was developed through which the MTD mechanism
to be applied was defined via a mutation master module, and the
effective range and mutation cycle for mutation elements were
defined. Furthermore, the MTD technology defined in two modules
between the service user and the protected target system (mutation
connector module and mutation agent module), the effective range
for the mutation elements, and the mutation cycle are transmitted
to enable continuous communication.

3.2.3 Design for Ensuring Interoperability. The software-defined
MTD framework should not be dependent on a specific system and
should be compatible with different types of systems. To this end,
two modules (a mutation connector module and a mutation agent
module) are deployed between the service user and the protected
target system. As a result, the software-defined MTD framework
applies and manages the MTD technology stored in the MTD repos-
itory existing in each module.

4 IMPLEMENTATION AND EXPERIMENT
In this section, the accuracy of the user-defined adaptability of the
proposed software-defined MTD framework is verified. For verifi-
cation, a dashboard is developed and an experiment is conducted.



ACM ICEA ’20, December 12–15, 2020, GangWon, Republic of Korea Ki-Wan Kang and Ki-Woong Park

Figure 5: An example of software-defined MTD framework

4.1 Implementation
The accuracy of the proposed MTD framework in terms of user-
defined adaptability was verified through network-based MTD tech-
nology. For verification, a dashboard was developed, and the fea-
tures of this dashboard are:

• To define mutation properties (including the mutation ele-
ments, network class, and hopping cycle) of existing network-
based MTD technologies

• To evaluate the situation and status of currently operating
services

• To evaluate the results of applying the MTD and the corre-
sponding logs through a terminal

Figure 6: Dashboard of mutation master module

4.2 Experiment
4.2.1 Experiment Environment. Experiments were conducted using
a server equipped with an Intel (R) Core ™ i7-8700 and 32GB RAM.
For this experiment, a virtual machine consisting of 2 vCPUs, 4.0
GB RAM, and Ubuntu 18.04 LTS was created.

4.2.2 Verification of User-Defined Adaptability. Using the devel-
oped dashboard, the accuracy of the user-defined adaptability of
the Apache service was verified. Through the dashboard, after in-
putting Seed for IP and Port mutation of Apache service, network
class selection and mutation cycle were specified. The results of the
experiment confirmed that the properties of the service changed
according to the defined mutation elements, network class, and

hopping cycle. Moreover, it was confirmed that the request was not
made to the existing IP and ports after the mutation.

5 CONCLUSION
In recent years, cloud native computing, which combines container
technologies and microservice architectures in a cloud computing
structure, has been recognized as an excellent technology to maxi-
mize the efficiency, flexibility, and economic feasibility of computing
processes. However, as the dynamics of cloud native computing
are increased due to the container technologies and microservice
architectures, it is difficult to apply MTD technologies as an active
defense mechanism. Therefore, this paper presented a software-
defined MTD framework to easily apply existing and future MTD
technologies to cloud native computing environments.
The proposed software-defined MTD framework is composed of
an MTD repository, mutation agent module, mutation connector
module, and mutation master module.
The MTD repository stores existing and future MTD technologies.
The mutation agent module and mutation connector module are
located between a user and a service to accommodate the MTD
technologies targeting various system properties. They enable the
mutation of various system properties without being dependent on
a specific environment. The mutation master module enables the
system to be deployed within a valid range of system properties,
and it can actively change the system properties by considering
limited resources.
Among various MTD technologies, network-based MTD technol-
ogy is one of the most effective defense methods. The accuracy
of user-defined adaptability was verified using a network-based
MTD technology. A dashboard was developed for verification, and
accuracy verification of the user-defined adaptability of the Apache
services was performed using the dashboard. The results of the
experiment confirmed that the properties of the service changed
according to the defined mutation elements, network class, and
hopping cycle. Furthermore, it was confirmed that the request was
not made to the existing IP and ports after the mutation.
Future studies should be conducted concerning the implementation
of the proposed software-defined MTD framework, measurement
of overhead (which occurs when the framework is applied to a
cloud native computing environment), and accuracy verification of
this framework.

ACKNOWLEDGMENTS
This work was supported by Institute for Information & Communi-
cations Technology Promotion (IITP) grants funded by the Korean
government (MSIT) (No. 2018-0-00420 and No. 2019-0-00426) and
supported by National Research Foundation of Korea (NRF) grants
funded by the Korean government (NRF2020R1A2C4002737)

REFERENCES
[1] Ehab Al-Shaer, Qi Duan, and Jafar Haadi Jafarian. 2012. Random host mutation

for moving target defense. In International Conference on Security and Privacy in
Communication Systems. Springer, 310–327.

[2] Nuha Alshuqayran, Nour Ali, and Roger Evans. 2016. A systematic mapping
study in microservice architecture. In 2016 IEEE 9th International Conference on
Service-Oriented Computing and Applications (SOCA). IEEE, 44–51.

[3] David Bernstein. 2014. Containers and cloud: From lxc to docker to kubernetes.
IEEE Cloud Computing 1, 3 (2014), 81–84.



Toward Software-Defined Moving Target Defense for Secure Service Deployment Enhanced with a User-Defined OrchestrationACM ICEA ’20, December 12–15, 2020, GangWon, Republic of Korea

[4] Eric A Brewer. 2015. Kubernetes and the path to cloud native. In Proceedings of
the sixth ACM symposium on cloud computing. 167–167.

[5] Jin-Hee Cho, Dilli P Sharma, Hooman Alavizadeh, Seunghyun Yoon, Noam Ben-
Asher, Terrence J Moore, Dong Seong Kim, Hyuk Lim, and Frederica F Nelson.
2020. Toward proactive, adaptive defense: A survey on moving target defense.
IEEE Communications Surveys & Tutorials 22, 1 (2020), 709–745.

[6] Andrew Clark, Kun Sun, and Radha Poovendran. 2013. Effectiveness of IP address
randomization in decoy-based moving target defense. In 52nd IEEE Conference
on Decision and Control. IEEE, 678–685.

[7] Dennis Gannon, Roger Barga, and Neel Sundaresan. 2017. Cloud-native applica-
tions. IEEE Cloud Computing 4, 5 (2017), 16–21.

[8] Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios Pendarakis, and Haining
Wang. 2017. ContainerLeaks: Emerging security threats of information leakages
in container clouds. In 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 237–248.

[9] Somya Garg and Satvik Garg. 2019. Automated cloud infrastructure, continuous
integration and continuous delivery using docker with robust container security.
In 2019 IEEE Conference onMultimedia Information Processing and Retrieval (MIPR).
IEEE, 467–470.

[10] AKGhosh, D Pendarakis, andWHSanders. 2009. Moving target defense co-chair’s
report-National Cyber Leap Year Summit 2009. Tech. Rep., Federal Networking
and Information Technology Research and Development (NITRD) Program (2009).

[11] Jafar Haadi Jafarian, Amirreza Niakanlahiji, Ehab Al-Shaer, and Qi Duan. 2016.
Multi-dimensional host identity anonymization for defeating skilled attackers.
In Proceedings of the 2016 ACM Workshop on Moving Target Defense. 47–58.

[12] Sushil Jajodia, Anup K Ghosh, Vipin Swarup, Cliff Wang, and X Sean Wang. 2011.
Moving target defense: creating asymmetric uncertainty for cyber threats. Vol. 54.
Springer Science & Business Media.

[13] Nane Kratzke and Peter-Christian Quint. 2017. Understanding cloud-native
applications after 10 years of cloud computing-a systematic mapping study.
Journal of Systems and Software 126 (2017), 1–16.

[14] David S Linthicum. 2017. Cloud-native applications and cloud migration: The
good, the bad, and the points between. IEEE Cloud Computing 4, 5 (2017), 12–14.

[15] Yue-Bin Luo, Bao-Sheng Wang, Xiao-Feng Wang, Xiao-Feng Hu, Gui-Lin Cai,
and Hao Sun. 2015. RPAH: Random port and address hopping for thwarting
internal and external adversaries. In 2015 IEEE Trustcom/BigDataSE/ISPA, Vol. 1.
IEEE, 263–270.

[16] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux journal 2014, 239 (2014), 2.

[17] Hamed Okhravi, Thomas Hobson, David Bigelow, and William Streilein. 2013.
Finding focus in the blur of moving-target techniques. IEEE Security & Privacy
12, 2 (2013), 16–26.

[18] Jun-Gyu Park, Yangjae Lee, Ki-Wan Kang, Sang-Hoon Lee, and Ki-Woong Park.
2020. Ghost-MTD: Moving Target Defense via Protocol Mutation for Mission-
Critical Cloud Systems. Energies 13, 8 (2020), 1883.

[19] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan, Christina De-
limitrou, Robbert Van Renesse, and Hakim Weatherspoon. 2019. X-containers:
Breaking down barriers to improve performance and isolation of cloud-native
containers. In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems. 121–135.

[20] Byungchul Tak, Canturk Isci, Sastry Duri, Nilton Bila, Shripad Nadgowda, and
James Doran. 2017. Understanding security implications of using containers in
the cloud. In 2017 {USENIX} Annual Technical Conference ({USENIX}{ATC} 17).
313–319.

[21] Kennedy A Torkura, Muhammad IH Sukmana, and Christoph Meinel. 2017.
Integrating continuous security assessments in microservices and cloud native
applications. In Proceedings of the10th International Conference on Utility and
Cloud Computing. 171–180.

[22] Jianjun Zheng and Akbar Siami Namin. 2019. A survey on the moving target
defense strategies: An architectural perspective. Journal of Computer Science and
Technology 34, 1 (2019), 207–233.

[23] Yuyang Zhou, Guang Cheng, Shanqing Jiang, Ying Hu, Yuyu Zhao, and Zihan
Chen. 2019. A cost-effective shuffling method against DDoS attacks using Moving
Target Defense. In Proceedings of the 6th ACMWorkshop on Moving Target Defense.
57–66.


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Software-Defined MTD Framework
	3.1 Derived Requirements
	3.2 Software-Defined MTD Framework Design

	4 Implementation and Experiment
	4.1 Implementation
	4.2 Experiment

	5 Conclusion
	Acknowledgments
	References

