
ISSN 2672-1562
VOL. 6

ICNGC
2020

The 6th International Conference
on Next Generation Computing 2020

Shilla Stay Haeundae, Busan, KoreaVenue

Dates December 17(THU) ~ 19(SAT), 2020

Organized by | Sponsored by |

- 276 - - 277 -

The 6th International Conference on Next Generation Computing 2020

IV. CONCLUSION

This paper proposes a reference model for compatibility
among the different SSI platforms by suggesting requirement
of each SSI platform layer that is composed of a storage layer,
resolution layer, and communication layer. We describe
requirements of each layer and propose the reference model to
satisfy the requirements. Then we explain how this reference
model support compatibility among the heterogeneous SSI
platforms

ACKNOWLEDGEMENT
This work was supported by the Institute for Information

& communications Technology Promotion(IITP) grant
funded by the Korea government(MSIT) (No. 20HS3710,
Development of Decentralized Self Sovereign Identity
Management Technology using Blockchain).

REFERENCES
[1] D. Reed, M. Sporny, D. Longley, C. Allen, R. Grant, M. Sabadello, and

J. Holt, “Decentralized identifiers (DIDs) v1.0,” W3C,
https://www.w3.org/TR/did-core, July 2020.

[2] M. Sporny, D. Longley, and D. Chadwick, “Verifiable credentials data
model 1.0,” W3C, https://www.w3.org/TR/vc-data-model, November
2019.

[3] Sovrin, "Sovrin homepage," https://sovrin.org, August 2020.
[4] uPort, “uPort homepage,” https://www.uport.me, August 2020.
[5] Metadium, "Metadium homepage," https://www.metadium.com,

November. 2020.
[6] Loopchain, “Loopchain homepage,” https://www.iconloop.com,

November. 2020.
[7] Omnione, “Omnione homepage,”

https://www.omnione.net/ko/service/omnioneservice, November 2020.
[8] DIF, “Decentralized-identity/universal-resolver,”

https://github.com/decentralized-identity/universal-resolver.

The 6th International Conference on Next Generation Computing 2020

Timeline-Based Container Restore via a
Computationally Efficient Snapshot

Sang-Hoon Choi
SysCore Lab.

Sejong University
Seoul, Korea

csh0052@gmail.com

Ki-Woong Park
Dept. of Information Security

Sejong University
Seoul, Korea

woongbak@sejong.ac.kr

Abstract―Recently, container technology has garnered
attention for maximizing the utilization of computing
resources. Container technology is widely used in
micro-services, DevOps, etc. because it requires less
resources than existing virtualization technology and can be
operated in various environments. Therefore, stability is
crucial in containers. Hence, when a container instance fails
to provide service because of an external attack or its
internal fault, a serious problem occurs. Investigation is
necessitated for detection and restoration when a service
error occurs inside a container. Herein, we propose a
technique to efficiently capture a running container instance
and restore it to the desired point in time.

Keywords―cloud computing; container; snapshot

I. INTRODUCTION
Recently, container technology has garnered attention

in the field of cloud computing. Container technology is
attracting attention because it can execute instances with
fewer resources compared with virtualization technologies
[1, 2]. Container technology can drive instances with low
overhead because it shares the kernel of the host operating
system. Because containers use most elements in
conjunction with the host operating system, only a
minimal number of resources is required to execute the
instance. Recently, it has been widely used in serverless
fields to utilize these features effectively

All services provided to the user are executed in the
container instance. Therefore, stability is crucial in
containers. For example, when a container instance fails to
provide a service because of an external attack or its own
fault, a significant problem arises. Herein, we propose a
method to improve the safety of containers. Our proposed
technology can efficiently capture and restore live
container instances. The timeline snapshot framework
records all information regarding instances executing in a
container environment at specific intervals. When a
problem occurs in the container service, the user can return
to the point of time at any time. The system proposed
herein provides three benefits. First, no modules need to be
installed inside the container. All logging occurs at the
host operating system level. Second, our system is
computationally efficient. The memory workload test is
reduced by approximately 37.8% compared with the full
snapshot. Finally, we applied a container-specific
restoration technique. A container-specific encoding
scheme is applied in our system to remove unnecessary or
duplicated data elements when restoring a container.

II. RELATED WORK
Research has been actively conducted to efficiently

store the state information of an instance in a virtualized
environment [3, 4, 5]. The checkpoint on the docker uses a
technique known as CRIU, instead of its own engine [6, 7,
8]. CRIU is a project to implement checkpoint/restore
functionality for Linux. Most snapshot-related studies,
including container migration, use CRIU. However, CRIU
is not a technology specific to container instances.
Therefore, the operation is also performed on data that
overlap unnecessary data for container restore. Such an
operation results in a significant amount of overhead
when performing repetitive snapshots. Therefore, we
propose a snapshot technique that can remove
unnecessary data and redundant data in a container to
solve the overhead problem.

III. TIMELINE-BASED CONTAINER RESTORE
FRAMEWORK

This section describes the framework designed to
enhance the safety of containers. Our proposed framework
can efficiently capture and restore live container instances.

A. Timeline-base Container Restore Framework
Our goal is to maximize efficiency by removing

unnecessary information in capturing the state information
of container instances. Our system targets a container
platform using a docker engine. We analyzed the factors
required to drive a container on a docking engine. The
docker container was driven by cgroups, namespace, and
image (file system). Therefore, various information is
required to dump/restore the state data of the container.
However, a checkpoint utilizing a CRIU dumps three sets
of unrequired data.

First, the checkpoint of the docker will dump hosts,
hostname, resolv.conf, etc. from the host operating system.
Because these files are used for restoring, they are required
only at the point of restore. Therefore, it is unnecessary to
dump data fixed to the host when obtaining a snapshot.
Second, all mount files for the container instance are
dumped. In a modern docker engine, container storage is
managed using a file system known as Overlayfs [9].
Overlayfs allows one, typically read–write, directory tree
to be overlaid onto another, read-only directory tree. All
modifications are performed in the upper, writable layer.
Utilizing these advantages when performing container
snapshots maximizes efficiency. We only dumped the
storage information in the upper directory when
performing a container snapshot. Subsequently, we

- 278 - - 279 -

The 6th International Conference on Next Generation Computing 2020

data—a problem that we must be solved in the future.

ACKNOWLEDGMENT
This work was supported by Institute for Information &

Communications Technology Promotion (IITP) grants
funded by the Korean government (MSIT) (No.
2018-0-00420) and supported by National Research
Foundation of Korea (NRF) grants funded by the Korean
government (NRF-2020R1A2C4002737).

REFERENCES
[1] Morabito, Roberto, Jimmy Kjällman, and Miika Komu.

"Hypervisors vs. lightweight virtualization: a performance
comparison." Cloud Engineering (IC2E), 2015 IEEE International
Conference on. IEEE, 2015.

[2] Merkel, Dirk. "Docker: lightweight linux containers for consistent
development and deployment." Linux Journal 2014.239 (2014): 2.

[3] Simha, Dilip Nijagal, Maohua Lu, and Tzi-cker Chiueh. "A
scalable deduplication and garbage collection engine for
incremental backup." Proceedings of the 6th International Systems
and Storage Conference. ACM, 2013.

[4] Arcese, Mauro, Marco Mattia, and Stefano Sidoti. "Reconfiguring

a snapshot of a virtual machine." U.S. Patent No. 9,817,685. 14
Nov. 2017.

[5] Mutalik, Madhav, and Srikanth Palaparthi. "Facilitating test
failover using a thin provisioned virtual machine created from a
snapshot." U.S. Patent No. 9,792,187. 17 Oct. 2017.

[6] Pickartz, Simon, et al. "Migrating LinuX containers using CRIU."
International Conference on High Performance Computing.
Springer, Cham, 2016.

[7] Nadgowda, Shripad, et al. "Voyager: complete container state
migration." Distributed Computing Systems (ICDCS), 2017 IEEE
37th International Conference on. IEEE, 2017.

[8] Louati, Thouraya, et al. "Lxcloud-cr: towards linux containers
distributed hash table based checkpoint-restart." Journal of Parallel
and Distributed Computing 111 (2018): 187-205.

[9] Overlayfs,
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.t
xt

[10] Sang-Hoon Choi and Ki-Woong Park, 2017, "Computationally
Efficient Instance Memory Monitoring Scheme for a
Security-Enhanced Cloud Platform," Journal of the Korea Institute
of Information Security & Cryptology, Vol. 27, No. 4, pp.
775~783.

[11] Geek, Hectic. "Stress Test Your Ubuntu Computer with ‘Stress."

