2023 IEEE Sixth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)

CO-TRIS: Container Orchestration — Transforming
container using Resource Inspection System

Joo-Young Roh
Computer & Information Secuirty
Sejong University
Seoul, South Korea

Sang-Hoon Choi
Computer & Infromation Secuirty
Sejong University
Seoul, South Korea

Ki-Woong Park*
Computer & Information Secuirty
Sejong University
Seoul, South Korea

hpjoo718@gmail.com csh0052@gmail.com woongbak@sejong.ac.kr
*Corresponding author
Abstract— Traditional approaches to container containers and microservices. Kubernetes is a
orchestration, such as distributed threshold-based typical orchestration tool [8, 9]. Container—
policies, often result in isolated or underutilized orchestration tools use distributed threshold-based
resources. This can negatively affect application policies that employ a system metric to set

availability and performance. This paper presents a new
orchestration framework that solves the cloud-
computing resource-allocation problem, focusing on
containerized environments. This framework focuses on
the runtime phase of the container lifecycle. It uses
visualized resource information to optimize resource
reallocation in cloud services, and introduces a
systematic orchestration approach that enables efficient
resource utilization and real-time allocation. Its goal is
to improve the smooth operation and quality of service
(QoS) of containers and microservices in a cloud
environment., Our method improved the experimental
allocation from 24 container blocks to 67. The results
improved linearly until 30k epochs and then plateaued.

Keywords— Cloud Systems, System Design, CaaS(Container
as a service), Orchestration, Reinforcement Learning, Deep
Learning

L

The shift from cloud systems to cloud—native
systems is in full swing, with an emphasis on
infrastructure resilience, flexibility, and efficiency
[1]. Cloud-native services and microservices
create an environment for modular, flexible
development and rapid iteration; however, they
present complementary operational aspects and can
cause new system problems in terms of resource
operation and management [2, 3]. This has
increased the importance of maintenance and
resource monitoring.

INTRODUCTION

To ensure the smooth operation and quality of
service (QoS) of containers and microservices,
infrastructure development and operations (DevOps)
managers have developed various approaches to
optimize resource usage and systematically build
and operate application runtime environments [4,
5]. One such approach is resource orchestration [6,
7]. Container-orchestration tools automate the
provisioning, management, communication, and
deployment of containers, helping to manage the
entire lifecycle of distributed applications, such as

2831-7203/23/$31.00 ©2023 IEEE
DOI 10.1109/AIKE59827.2023.00027

121

thresholds for container resources. However, such
a policy can over—allocate resources to running
applications, resulting in allocated resources being
unused and isolated. This can lead to reduced
application availability. Ongoing research
addresses this problem [10, 11, 12, 13].

We proposed and designed an orchestration
framework that can efficiently reallocate containers
to run more containers with limited physical
resources. The framework monitors the resource
usage In a running container environment,
visualizes it in block form, determines the optimized
container placement using machine learning, and
migrates the container.

II. RELATED STUDIES

A. Research on resource gathering

The first is the computation and time-delay
issues caused by resource collection. Because our
main idea is to orchestrate the use of blocked
container resources, it is important to efficiently
collect running container resources. In this section,

we introduce related research on container
resource collection.
cAdvisor (Container Advisor): cAdvisor is a

component designed to collect system matrices
from containers [14]. It runs independently of other
processes to collect resources and interacts
directly with the runtime API and OS to collect
matrices. It provides the ability to aggregate, store,
and visualize the collected resource data.
Kubernetes, the most representative container-—
orchestration tool, leverages cAdvisor for resource
collection.

eBPF (extended Berkeley Packet Filter): Originally
used at the network layer to capture packets and
analyze traffic, eBPF [15] can now perform tasks,
such as tracking, monitoring, security, and
performance analysis, in the kernel [16, 17, 18, 19].

eBPF is being leveraged to build custom tools to
track containers and collect matrices for resource
utilization, network communication, and application
behavior.

As a representative example of using eBPF to
collect resources, Red Hat introduced a process for
combining Performance Co-Pilot (PCP) and
bpftrace to perform continuous resource collection
[20]. Moreover, ViperProbe [21] proposed an
eBPF-based scalable dynamic and adaptive
microservice resource—collection framework.

B. Research on resource orchestration

Container orchestration refers to the automated
configuration, management, and control of
containerized applications[22, 23].

Kubernetes, which can manage these matters,
serves as an intermediary to continuously support
and manage the smooth operation of instance and
container states. YAML or JSON files representing
the desired state of the application are deployed
and applied to working nodes. These files contain
detailed information about the Docker image to run
in the container, required resource assignments,
ports and services, etc. The YAML or JSON file
created to initiate the orchestration process is
published on the Kubernetes API server, where the
master node efficiently distributes workloads
across the cluster to satisfy the desired state [23].
Once configured, Kubernetes distributes the
workload throughout the cluster and successfully
establishes containerized nodes.

C. Limitations of previous studies

When monitoring resources using existing
container—-orchestration tools, the traditional
approach retrieves the entire resource metric from
the APl server. This process can create
unnecessary overhead [24]. This study leverages
eBPF technology to reduce the overhead associated
with existing resource collection. It filters the
resources to only collect those specific to the
proposed framework, to reduce unnecessary data
retrieval and optimize the performance and
resource utilization.

Orchestration typically allocates resources using

fixed thresholds. However, such static
orchestration cannot accommodate workloads
where resources are allocated, but idle or

underutilized. These "standby resources" do not
contribute to workloads and can reduce the
application performance [10, 12].

To mitigate the limitations of existing
orchestration tools, this paper proposes a
reinforcement-learning—based orchestration

framework that uses adaptive thresholds and

122

predictive analytics to gather specific resources,
optimize resource allocation, and increase resource
utilization.

III. FRAMEWORK STRUCTURE

ASsembly
Live Migration
i >>r:ﬁ>&g+ s TG mmse eration Hiy J"
(1)] Bl
S s
({0} (I} (0 - -- (I | (T :‘Vmahmnon w ‘
Observer Module i 7—' Observer Module L Module Modu\e
— Container Container Migration Orchestration
eBPF Verifier| Node 1 - ||eBPF Venfler Node N Module Node
i
OQrchestration
Fig. 1. CO-TRIS framework structure
To address the ©problem of resource

overallocation, owing to the structural problems in
orchestration tools that were discussed as
limitations in existing research, we propose the
following orchestration—-methodology framework
named CO-TRIS. The proposed framework consists
of four major modules: 'Observer,' 'Visualization,'
'Puzzle," and 'Migration’, as shown in Figure 1.

A. Observer module

The 'Observer' module uses eBPF technology to
filter and collect data related to the specific
resources in each container for a desired resource.
The 'Observer' module then preprocesses the
collected matrices to prepare them for visualization
in subsequent modules. In this study, we focused on
the orchestration methodology; we plan to develop
an eBPF resource-collection module in the future.

B. Visualization module

The 'Visualization' module receives the data
preprocessed by the 'Observer' module and
represents the data as they change in real time. The
'Visualization' module allows system administrators
and operators to quickly understand resource-
usage distributions and patterns for effective
container placement and resource management.

C. Puzzle module

The 'Puzzle' module combines blocked resource
data using reinforcement-learning techniques and
leverages learned knowledge and algorithms to find
the most efficient way to reallocate resources,
while maximizing utilization within the given
constraints. It allocates resources effectively to
minimize the "standby resources" in a dynamic
environment, where the resource availability and
demand change over time.

D. Migration module

The 'Migration' module applies the settings and
configuration determined in the 'Puzzle' module to
migrate a container or resource from its current
location to a new, optimized location.

IV. EXPERIMENTS

The experiments in this study were intended to
validate the CO-TRIS orchestration methodology.
The concept of block—based container relocation
was validated through the following experiments.
We imaged the collected resources as a
combination of 2D blocks and then experimented
with placing the blocks generated by each container
in a single space. The following assumptions were
made.

First, each block was confined to encompass no
more than 20 cells, ensuring that the overall
dimensional constraint of the image remained under
20 cells. Each cell represented one block unit. In
this study, the space in which blocks could be
placed was limited to a 20 X 20 grid. This
restriction is because of the limitations of our GPU.
We conducted experiments using image shapes to
represent the resource usage of three types of
containers and utilized a reinforcement-learning
model for placement. In our resource-visualization
approach, a diverse set of 24 distinct block
configurations was examined.

A. Orchestration Experiment

To validate our reinforcement learning—based
approach for resource orchestration, we conducted
the following experiments. Initially, we tested three
containers, each consisting of three basic blocks, as
shown in the top section of Figure 2. In these blocks,
the Y-axis represents memory and the X-axis
represents the CPU.

Basic blocks

Wem|
0%

Mem|
0%
Mem|
0 %)

cpu | cru | '
10%f 30 ' H

lock 1 Block 2 :

Transformation

Block modulation

Type 4

Type 1 Type 2 Type 3

Type 5 Type 6 Type 7 Type8

Fig. 2. Container blocking with resource

The baselines for the axes are CPU and memory,
which are the representative resources that create
the containers and can directly affect performance.
Each cell in this block corresponds to a percentage
value. For example, Block 1 represents 20% CPU
usage and 30% memory usage. An additional cell is
added for each 10% increase in usage. The
identified blocks can also be reorganized in eight
different ways. We utilized a total of 24 container
blocks. Eight variations are shown at the bottom of
Figure 2, all of which were derived from Block 3.

123

To demonstrate the learning progress of these
container blocks, we developed an orchestration
scheme similar to that of Tetris. The scheme was
trained using the deep—queue network (DQN) [25]
algorithm, which combines the principles of deep
and reinforcement learning. The parameters used in
the learning process are listed in Table I.

TABLE L. REINFORCEMENT-LEARNING PARAMETERS

le-3

512

0.99
85.000

Learning Rate
Batch Size
Gamma
Epochs

B. Orchestration-experiment results

Figure 3A illustrates the initial reinforcement-
learning state, in which 24 container blocks were
allocated at the onset of the learning process.
Conversely, Fig. 3B depicts the postlearning state.
Substantial free space was eliminated, as depicted
in the figure. This resulted in the allocation of 67
containers.

A. Initial training

B. Post-training model

Fig. 3. Container orchestration with reinforcement learning

Figure 4 tracks the evolution of the score over
the epochs, indicating that after training 85k
instances, an average score of 83 was attained. The
scoring was based on the following criteria: 1 point
was assumed for each block of containers placed.
The rule of adding 10 points to a clean line was
applied. The score displayed linear growth from the
commencement of learning until 30k, after which it
plateaued with no marked improvement. This
stagnation is attributed to the geometric constraints
of the blocks.

Given that only three block shapes were
employed, there was an inherent structural
limitation in forming a clear line using only these
three configurations. Addressing these challenges
requires the incorporation of blocks that extend
beyond two-dimensional configurations.

Fig. 4. Container orchestration with reinforcement learning

V. CONCLUSION

Container-orchestration tools control container
resources with fixed threshold policies. This can
lead to the over—allocation of resources and reduce
application safety and performance because of
unused "standby resources." To address these
issues, this study collected container resources
driven by Kubernetes in a container—-as—a-service
(CaaS) environment, visualized them in blocks, and
reassembled them for space allocation.

A limitation of the block-relocation experiments
in this study was that the resources collected in the
block-visualization phase were represented in one
dimension. Moreover, the limitations of the axes
allowed the resources to be defined only as blocks.

A more diverse container block shape should be
visualized in an actual application—centric container
environment. However, the limitations of 24 block

shapes and the short learning time in the
experiment made it difficult to confirm the
applicability of the framework to a diverse
environment.

In future research, we will develop a resource-
collection tool using eBPF, mentioned in the
'Observer’ module,” and compare the performance
and measure the overhead between the existing
resource—collection process (Docker API, cgroup)
and the developed tool. In addition, we will solve
the problem of the geometry of resource blocks in
this study by enabling the visualization of N-
dimensional puzzle geometry, based on the
collected resources, and increase the number of
learning cases by applying the framework to
various environments. Furthermore, we plan to
extend the application of this framework to cloud-
native services and microservices.

ACKNOWLEDGMENT

This work was supported by the Institute of Information & Communications
Technology Planning & Evaluation (IITP) ,(Project No. RS-2022-00165794,
Development of a Multi-Faceted Collection-Analysis-Response Platform for
Proactive Response to Ransomware Incidents, 30%), (Project No.2022-0-
00701, 10%, Project No.RS-2023-00228996, 10%), the ICT R&D Program
of MSIT/IITP, (Project No. 2021-0-01816, A Research on Core Technology
of Autonomous Twins for Metaverse, South Korea, 10%), and a National
Research Foundation of Korea (NRF), South Korea grant funded by the
Korean government (Project No. RS-2023-00208460, 40%)

REFERENCES

Balalaie, Armin, Abbas Heydarnoori, and Pooyan Jamshidi.
"Microservices architecture enables devops: Migration to a cloud-
native architecture." IEEE Software vol. 33, issue 3, pp. 42-52 May
2016.

Gan, Yu, et al. "An open-source benchmark suite for microservices and
their hardware-software implications for cloud & edge systems."
Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating
Systems. pp. 3-18, April 2019.

(1]

124

Zhou, Hao, et al. "Overload control for scaling wechat microservices."
Proceedings of the ACM Symposium on Cloud Computing. pp. 149-
161, October 2018.

McDaniel, Sean, Stephen Herbein, and Michela Taufer. "A two-tiered
approach to I/O quality of service in docker containers." 2015 IEEE
International Conference on Cluster Computing. 29 October 2015..

Xu, Cong, Karthick Rajamani, and Wesley Felter. "Nbwguard:
Realizing network qos for kubernetes." Proceedings of the 19th
international middleware conference industry. pp. 32-38, 10 December
2018.

Ranjan, Rajiv, et al. "Cloud resource orchestration programming:
overview, issues, and directions." IEEE Internet Computing, vol. 19,
issue 5, pp. 46-56, 2015.

Daradkeh, Tariq, and Anjali Agarwal. "Adaptive Micro-service based
Cloud Monitoring and Resource Orchestration." 2022 13th
International Conference on Information and Communication Systems
(ICICS), pp. 127-132, 04 July 2022.

kubernetes, 2014, https://kubernetes.io/.

Bernstein, David. "Containers and cloud: From Ixc to docker to
kubernetes." IEEE cloud computing, vol. 1, issue 3, pp. 81-84,
September 2014.

Bauer, André, et al. "Chamulteon: Coordinated auto-scaling of micro-
services." 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), pp.2015-2025, 31 October 2019.

Beltran, Marta. "Automatic provisioning of multi-tier applications in
cloud computing environments." The Journal of Supercomputing, vol.
71, pp.2221-2250, 21 January 2015.

Jayesh Vartak. “Eliminate Kubemetes node scaling lag with pod priority and
over-provisioning” https://aws.amazon.convko/blogs/containers/eliminate-
kubemetes-node-scaling-lag-with-pod-priority-and-over-provisioning/, 13
January 2023.

[10]

[11]

[12]

[13] Rossi, Fabiana, Valeria Cardellini, and Francesco Lo Presti.
"Hierarchical scaling of microservices in kubernetes." 2020 IEEE
International Conference on Autonomic Computing and Self-

Organizing Systems (ACSOS), pp.28-37, 15 September 2020.

Chang, Chia-Chen, et al. "A kubernetes-based monitoring platform for
dynamic cloud resource provisioning." GLOBECOM 2017-2017 IEEE
Global Communications Conference. December 2017.

eBPF(Extended Berkeley Packet Filter), 2011, https://ebpf.io.

Deri, Luca, et al. "Combining System Visibility and Security Using
eBPF." ITASEC, vol. 2315, 2019.

Liu, Chang, et al. "A protocol-independent container network
observability analysis system based on eBPF." 2020 IEEE 26th
International Conference on Parallel and Distributed Systems
(ICPADS), pp. 697-702, December 2020.

Vieira, Marcos AM, et al. "Fast packet processing with ebpf and xdp:
Concepts, code, challenges, and applications." ACM Computing
Surveys (CSUR), vol. 53, issue 1, pp. 1-36, 06 February 2020.

Cassagnes, Cyril, et al. "The rise of eBPF for non-intrusive
performance monitoring." NOMS 2020-2020 IEEE/IFIP Network
Operations and Management Symposium, pp. 1-7, April 2020.

Karl Abbott. “Visualizing System Performance with RHEL 8 Part 3:
Kernel Metric Graphing with Performance Co-Pilot, Grafana, and
Bpftrace.” https://www.redhat.com/en/blog/visualizing-system-
performance-rhel-8-part-3-kernel-metric-graphing-performance-co-
pilot-grafana-and-bpftrace, 3 February 2021.

[14]

[15]
[1e]

[17]

[18]

[19]

[20]

[21] Levin, Joshua, and Theophilus A. Benson. "ViperProbe: Rethinking
microservice observability with eBPF." 2020 IEEE 9th International

Conference on Cloud Networking (CloudNet), pp. 1-8, November 2020.

[22] Zhong, Zhiheng, et al. "Machine learning-based orchestration of
containers: A taxonomy and future directions." ACM Computing
Surveys (CSUR), vol. 54, issue 10s, pp.1-35, 13 September 2022.

[23] Nguyen, Thanh-Tung, et al. "Horizontal pod autoscaling in Kubernetes
for elastic container orchestration." Sensors vol. 20 issue 16, pp.1-18,
17 August 2020.

Medel, Victor, et al. "Characterising resource management
performance in Kubernetes." Computers & Electrical Engineering, vol.
68, pp.286-297, May 2018.

Osband, Ian, et al. "Deep exploration via bootstrapped DQN."
Advances in neural information processing systems 29, pp.1-9, 2016.

[24]

[25]

