
Plotting OSS-based Supply Chain attack
strategies and the defense failure

Arpita Dinesh Sarang1[0000−0003−4461−711X], Sang-Hoon
Choi2[0000−0002−9549−0887], and Ki-Woong Park3[0000−0002−3377−223X] ⋆

1 SysCore Lab, Department of Information Security, and Convergence Engineering
for Intelligent Drone, Sejong University, Seoul 05006, South Korea

arpita.sarang@sju.ac.kr
2 SysCore Lab, Sejong University, Seoul 05006, South Korea

csh0052@gmail.com
3 Department of Information Security, and Convergence Engineering for Intelligent

Drone, Sejong University, Seoul 05006, South Korea
woongbak@sejong.ac.kr

Abstract. The supply chain attack, which targets open-source soft-
ware, is currently the most discussed cyberattack. This is due to the
recent open-source XZ utils and PyPI projects based attacks where the
attackers employed similar strategies. A backdoor was injected in the
libraries developed by these projects for future exploitation when soft-
ware users installed them on systems. These attacks were executed by the
trusted developers of these projects and influenced by unknown promot-
ers. Therefore, there is a need to scrutinize Open Source Software(OSS)
Security to protect the legacy of Open Software development for the
future. This paper provides an overview of these two attack strategies
through their case studies, which aid in the creation of a generic attack
framework for supply chain attacks on OSS. We present the existing de-
tection methods for OSS security in this work and their lacunas taking
into account at various stages of a supply chain attack. This makes it
necessary to build platforms that allow the current OSS security detec-
tion modules to be utilized in sequence. Therefore, we introduce an OSS
security Detection platform that does not completely address the limita-
tions of the detection technique, but when combined, they can maximize
the effectiveness of an OSS security quality check.

Keywords: Supply Chain Attack · Linux distribution · Cyber Security ·
Supply Chain Attack as a Service(SCAaaS) · Open Source Software(OSS)
Security · Software Bill of Materials(SBOM)

1 Introduction

A software-based supply chain attack is a cyber-attack that distributes software
or its library with a backdoor that can exploit the critical data on systems they
⋆ Corresponding author.



2 Arpita Dinesh Sarang, Sang-Hoon Choi, and Ki-Woong Park

get installed on [1]. These backdoors are injected during the development process
of the software or its library. They are induced by the developers with malicious
intent so strategically that they remain undetected even after distribution. This
cyber-attack has been in action since the first “Ken Thompson Hack” in 1984,
which warned about the upcoming attacks through the great speech on ” Re-
flections on Trusting Trust” [2]. Such attacks have been planned meticulously
for many years and malicious code for them is induced periodically to the soft-
ware. A global report highlighted that a total of 210,031 software packages were
affected by supply chain attacks over the past two years [3]. The number of sup-
ply chain incidents on open-source software surged to 245,032 in 2023—a 178%
increase from 2022 [4].

Open Source Software(OSS) is the potential target for the software-based
supply chain attack. These software are widely consumed by the technical com-
munity due to the benefits they provide such as free license, customizability,
availability, and so on. Also, the software developers take great interest in de-
veloping these software projects by contributing valuable suggestions through
comments and code fixes on the software project development open discussions
and support emails. The core project developers and maintainers consider the
suggestions and notice the valuable contributions to OSS development. In this
development process the core developer, maintainers or the developers outside
the project comment or promote fixes cannot be trusted as they may have ma-
licious intent. A little ignorance in evaluating development due to trust in these
entities can lead to a Supply Chain Attack through OSS. An enhanced taxonomy
for Open source software-based supply chain attacks (OSSCAs) that listed some
affected vectors, include users, systems, project maintainers, and root nodes [5].
A multi-year social engineering initiative, the XZ Util attack on February 24,
2024 [6], and PyPI attack for extraction of the web browser and cryptocurrency
data on March 29, 2024 were well-known OSS security breaches for the first
half of the year. Due to the prolonged and organised nature of attacks, they
are challenging to detect. Attackers typically introduce backdoors by embedding
granular program blocks. By the time exploitation is discovered, it is often too
late for the victims.

In this paper, we discuss the two famous OSS-based Supply Chain attacks
i.e., the XZ Util and the PyPI Project attack with relevant case studies. These
recent attacks on the OSS supply chain allowed us to study their attack strate-
gies closely and draw a generic attack framework for OSS-based Supply Chain
Attacks. With the advantage of this attack framework built based on the cur-
rent attack strategies, we were motivated to study the existing OSS security
mechanisms for the detection and their lacunas for such attacks. This assists in
understanding why these existing defense mechanisms failed and where is the
necessity for upgrade them.

The remainder of this paper is as follows: Section 2, provide insight based
on previous detection techniques for OSS based Supply Chain Attack. Section 3,
describe the OSS-based Supply Chain Attacks in detailed case studies. Section
4, conveys the Generic framework based recent attacks. Section 5, discusses



Plotting OSS-based Supply Chain attack strategies and the defense failure 3

the prevention and detection strategies and their lackings. Finally, Section 6,
concludes our Learnings and future works.

2 Related Work

OSS projects are the most targeted entity for the software-based supply chain
attack. Developers are welcomed to the software development environment of
these projects based on their development skills, not their good or bad intentions.
This allows the malware developer to participate in the development process
easily. This is a cyber-security challenge that OSS development projects began
to face due to rising supply chain attacks. This victimizes all the OSS users
trusting and utilizing the software. When it comes to OSS the well-known ones
are downloaded from trusted sites as they are free and can be more customised
to use. For studies conducted on OSS security. Detection of supply chain attacks
on such software needs to be reviewed thoroughly.

Table 1 summarizes the types of detection techniques introduced by the pre-
vious study. These studies have limitations and can fail in cases mentioned in
section 3. The Detection techniques are based on various aspects of the OSS code
as discussed. The Query-based detection type performs a scan on OSS code for
malicious queries and performs a match malicious query database [16]. In [17]
and [18], the library-based detection type scan the OSS project dependency li-
braries if they are outdated or malicious. Whereas, in [19], [20], [21] and [22]

Table 1: OSS Supply Chain Attack Detection Techniques
Related
Work Technique Type Limitations

[16] Query-based
detection

It is dependent on source data integrity, normal
queries with malicious arguments will be ignored,
cannot detect the behavior of queries outside database.

[17], [18] Library-based
detection

Some resource might ignore the less vulnerable
packages.

[19],
[20],
[21], [22]

Vulnerability-based
detection

It can prove a package to be less vulnerable due to low
vulnerability detected when compared with datasets
available even though it is critically malicious.

[23]
Combination of
different detection
modules

Combining different modules for detection makes this
technique type accurate can differ, third party
contracts for different applications are risky due to
delayed updates.

[24], [25] Third party based
detection

It depends on application detection capability and
compatibility with OSS not causing delays.

[26],
[27], [28]

Stakeholder-based
detection

It is a quality analysis therefore, cannot be measured
and trusted.

[29] Network-based
detection

This detection fails detect malicious packets when
network traffic use encryption techniques, or the
malicious traffic trigger not passed.



4 Arpita Dinesh Sarang, Sang-Hoon Choi, and Ki-Woong Park

the Vulnerability-based detection type detects and matches with the Vulnera-
bility database for flaws in OSS. For, instance SBOM is majorly consumed by
vulnerability assessment tools. These three types of detection techniques depend
majorly on data resource integrity. In [23], combination of different detection
module types is to combine different detection tools available for attack-based
malware detection. Third-party-based detection in [24], [25] is implementing the
monitoring, protocol-based authentication techniques for security of OSS project
development. While the Stakeholder-based detection in [28] is trying the detect
the developer’s intentions in the project. The Network-based detection in [29]
of malicious packages or activity during network communication with other re-
sources. Due to unpredictable patterns and the non-generalized design of Sup-
ply chain attacks, the detection techniques are not well defined. They depend
on previous attack analysis outcomes and fail to detect new attacks that are
polymorphic in nature and should be detected before distribution of the OSS
stage.

3 Case studies

We conducted these case studies based on various analysis and resources to
outline their attack strategies.

3.1 XZ Utils Project attack

XZ Utils Project(Backdoor target): In 2005, Lasse Collin launched Project
LZMA Utils with a small team of engineers. The goal of the project was to create
a library for data compression that would support the Linux operating system.
This library uses the Lempel–Ziv–Markov chain algorithm (LZMA) for compres-
sion and decompression. The xz and lzma file formats can be compressed and
decompressed using it. Other software also utilised this library to compress data.
Later on, the project became known as XZ utils. Many developers and program-
ming experts contributed to this project, since it’s open source, by offering their
insightful comments and useful code snippets. Lasse Collins had the authority
to approve and merge the code blocks to the project since he was its primary de-
veloper and maintainer. Under Lasse Collin’s guidance, several iterations of the
XZ Utils were introduced throughout the year. These included the compromised
versions 5.6.1, which was issued on March 9, 2024, and 5.6.0, which was released
on February 24, 2024 [8]. The malicious file was present in these version’s release
tarballs. Through this version’s backdoor, an attacker can command the system
of the victim with administrator rights. Version 5.4.6 is presently the most stable
version of this project that is available.

Malicious Actors: For years, a number of players worked their part to create
this backdoor in the data compression library of the Linux distribution. Some
made significant contributions by changing code blocks. While others applied



Plotting OSS-based Supply Chain attack strategies and the defense failure 5

pressure to have the backdoor code added. In this analysis, we attempt to ar-
range the attack’s chronology in order to obtain the event sequence for the supply
chain attack carried out on the Linux distribution’s XZ Utils project. Major ele-
ments of this attack are contributed by the attack contributors mentioned above.
We draw a timeline for the attack events(see Fig. 1). Jia Tan(with developer

2021 2022 2023 2024

Pr
oj

ec
t:

 L
ZM

A/
XZ

 U
til

s 
st

ar
te

d 
in

 th
e 

ye
ar

 2
00

5 
by

 L
as

se
 C

ol
lin

s Jia Tan(Developer) 
joined project as 

“JiaT75”

1st commit by JiaT75, 
approved by Lasse 
Collin(Maintainer)

Another suspicious 
commit by JiaT75

Jia Tan(JiaT75) 
became co-

maintainer for the 
project

Another suspicious 
commit by JiaT75 but, 
code written by Hans 

Jansen

JiaT75 added test 
files to the project

Version 5.6.1 was 
released for XZ Utils 

Version 5.6.0 was 
released for XZ Utils 

Andrew Freund 
reported the 

backdoor in the 
latest two release

N
ov

em
be

r

Ap
ril

D
ec

em
be

r

Ja
nu

ar
y

Fe
br

ua
ry

Fe
br

ua
ry

M
ar

ch

M
ar

ch

The maintainer email 
of Lasse Collin was 

replaced by Jia Tan’s 
email address

M
ar

ch

Jigar 
Kumar(Commenter)

Dennis Ens(Commenter)

Fig. 1: Attack activity timeline for XZ Utils project

ID JiaT75) joined the XZ Utils project in 2021 and had a significant role in
creating this backdoor for supply chain attacks in the XZ Utils library [9]. He
provided Lasse Collin with various code blocks for XZ Util development that
contained ignorant or obfuscated malicious code that initially was approved and
integrated into the main project. Everything maintained on GitHub, including
the "xz.tukaani.org" subdomain, was accessible to him. Lasse Collin was the
only one with access to the main "tukaani.org" page [10]. JiaTan contributed a
number of code blocks to the error-fixing and update of the XZ util project. In
November 2021, JiaT75’s first commit to xz utils was accepted and merged by
Lasse Collin. There was a suspicious code edit in this commit that altered the
secure "safe_fprintf()" to the "fprintf()" that code_1 indicated. This was done
by employing an insecure function to perform a format string attack. An attacker
may run arbitrary programs on the server, read variables off the stack, and cause
segmentation faults or application crashes if they supply a format string made
up of "fprintf()" conversion characters like %f, %p, %n, etc. as parameter values.

Later, JiaT75 contributed a second suspicious commit to XZ Utils in code_2
in April 2022. The code that ignored the memory and CPU use indication was
hardware-related. This was done with the goal of not notifying XZ Util’s con-
sumers about any CPU or memory-related issues. By December 2022, Lasse
Collin designated JiaT75 as a reliable co-maintainer for the XZ util project.
JiaT75 committed a third controversial code commit on January 7, 2023. The
code block that was merged was originally composed by Hans Jansen, another



6 Arpita Dinesh Sarang, Sang-Hoon Choi, and Ki-Woong Park

developer, rather than JiaT75. This commit carried out an IFUNC()-based ex-
ploit using glibc. In order to safeguard the offset tables and procedure linkage
tables, the glibc feature known as IFUNC (GNU indirect function) acts as a
resolver, helping to replace the function addresses to default at startup. Since
these tables can be modified at startup time, the function from the external
library was used to replace the pointer to the RSA_Public_Decrypt. JiaT75
gained greater authority when the official email address for XZ Utils code for
component testing infrastructure was updated from "lasse.collin@tukaani.org"
to "jiat0218@gmail.com" in March 2023. Eventually, on February 23, 2024, he
added the test files "good-large_compressed.lzma" and "bad-3-corrupt_lzma2.xz".
These two malicious files are executed when the macro "build-to-host.m4". Ad-
ditional small contributors Jigar Kumar and Dennis Ens made contributions to
the project by pressuring the inclusion of malicious code as essential functional-
ity and by causing pointless conflicts with the patch release schedule during the
years 2022 to 2024 [11].

Microsoft developer "Andres Freund"’s suspicion on the unusual CPU usage
patterns and Valgrind failures enabled him to track down this supply chain
attack. This curious Microsoft engineer saw that the SSHD process was utilising a
lot of CPU power, which was causing the Debian Linux distribution’s SSH-based
login to function slowly. This gave Andres the opportunity to investigate the
reason for the delay, conduct the necessary analysis based on his expertise, and
report the issue to the relevant Linux distribution authorities i.e., oss-security
via mail on 29 March 2024 [7]. He notified them with the high-level dynamics of
the attack that he had discovered during his analytical process. He discovered
that the XZ utils package contained a backdoor committed to the open source
linux distribution package code. The backdoor was archieved in the download
package known as the tarballs and targeted the x86-64 linux.

3.2 PyPI Project attack

Pytoileur(Backdoor target): The supply chain attack’s target programme is
the PYPI project and its users, through introducing the package pytoileur. The
purpose of this package is to automate and manage tasks in Python projects.
It mostly automates the work of repetitive development. By offering a stream-
lined workflow for routine operations like configuring development environments,
handling dependencies, and conducting tests, it improves productivity. Include
linting and testing tools in your code to guarantee quality. Automate the de-
ployment procedures. This package was actually trojonised with malicious code.
That targeted at the user’s crypto-based application data and web browser data.

Malicious Actors: On May 25, 2024, a developer named "PhilipsPY" joined
the PYPI(Python Package Index) project. PYPI is an open source library that
allows Python developers to reuse code; there are a lot of packages available for
download and installation. He uploaded the malicious code-encoded in Pytoileur
package. After joining the open community discussion on stackoverflow, "Es-
tAYA G" (promoter) began responding to other users’ questions about Python



Plotting OSS-based Supply Chain attack strategies and the defense failure 7

development. By responding to questions on stackoverflow, he promoted the in-
stallation of the pytoileur package as solution to their problems.

2024

Pr
oj

ec
t:

 P
yt

ho
n 

Pa
ck

ag
e 

In
de

x(
Py

PI
) P

ro
je

ct
 la

un
ch

in
 th

e 
ye

ar
 2

00
3 

by
 R

ic
ha

rd
 Jo

ne
s

PhilipsPY joined the
PyPl project

Pytoileur Package
released under PyPI

project

Sonatype's
Automated malware

Detector flagged 
pytoileur Package

M
ay

25

M
ay

28

M
ay

 2
9

"EstAYAG"(Promoter in the stack overflow)

Pytoileur package 
removed from PyPI

Library

M
ay

 2
9

Version 1.0.1 Version 1.0.2

Fig. 2: Attack activity timeline for PyPI project

The Project PYPI, included a package Pytoileur version 1.0.1 and version
1.0.2. This package was published on the same day by the author PhilipsPy in
the PYPI library on 28 May 2024. We draw a timeline for the attack events(see
Fig. 2). It had a total number of 264 downloads This package setup.py included a
hidden malicous code. In its metadata, the package calls itself a "Cool package."
The HTML webpage description refers to the package as a "API Management
tool written in Python." The package is also trying to typosquat users of legiti-
mate packages like "Pyston," as evidenced by the code’s reference to "pystob,"
a now-defunct package (more on that later). The setup.py was injected with
whitespaces after the print() statement in its code which can be avoided by the
text editors those use the wordwrap. The whitespaces actually was hiding the
code that executed the base64-encoded that connected to the remote server. Its
payload stated that it connected "http: 51.11.140.144:8086/dl/runtime". Con-
necting to this external server it retrieved the windows binary called "run-
time.exe". This file was undetected by the file scanning software and firewall.
The "runtime.exe" was executed using the powershell and vbscript of the sys-
tem. Once the execution of the "runtime.exe" is performed it dropped more
suspicious file that modify the windows registry settings and deploy harmful
payloads. This leads to the execution of the main.exe file which gathers informa-
tion from the web browsers and the crypto currency services. webbrowsers such
as Brave, firefox, google etc and well known crypto currency services such as
the Coinbase, Binance, Paysafecard, crypto.com, exodus etc data were retrieved
by this execution. Sonatype’s automated malware detection engine for sonatype
repository firewall detected and flagged the pytoileur package in PYPI reposi-
tory on 28 May 2024. The Sonatype security researcher Jeff Thornhill noticed



8 Arpita Dinesh Sarang, Sang-Hoon Choi, and Ki-Woong Park

the line 17 whitespaces in the setup.py of the pytoileur package was hiding a
code. This allowed him to further analyse this backdoor and track the issue as
"SONATYPE-2024-1783" [12]. Later raised an alert to the PYPI admins and
declared it a software based supply chain attack. The developer "PhilipsPY"
and the promoter ID "EstAYA G" for pytoileur package were discontinued from
development community [13]. Sonatype is a business that specialises in supply
chain management software. The Sonatype company’s automatic malware de-
tection tool was one of their tools that assisted us in finding the backdoor in the
earlier mentioned Python programme. This business develops tools and services
for identification and the fixing of vulnerabilities in OSS with a focus on security
of the OSS’s weakness and danger. They support the creation of software security
policies. They encourage community engagement and tool enhancement.

4 Generic framework

These days, supply chain attacks based on software have become commodified.
On the dark web, configurations, and portions of code for exploiting software
vulnerabilities during development are offered for sale. This commodification is
majorly known as a Supply chain attack as a service(SCAaaS). Since supply
chain attacks are becoming more accessible and commercialized, they can be
easily replicated by targeting software development environments and taking
advantage of the update process. Software libraries, pirated or open-source de-
velopment tools, and their distribution networks are its primary targets. As a
result, the frequency of attacks increased, having a widespread impact and mak-
ing the process of detection and attribution more difficult. Based on the case
studies this is a preliminary analysis.

Access Backdoor 
Deployment

Encourage 
Distribution

Perform 
Exploitation

Fig. 3: OSS-based Supply Chain Attack strategy

There are two primary objectives of a supply chain attack: embed malicious
code into software and to promote its use and distribution. As a result, there
are two types of criminals involved in a supply chain attack: those who create
and insert malicious code and those who promote or encourage on download of
software that contains harmful code. These attackers work together to gain access
to the target software project, deploy the backdoor code, encourage the software
distribution of that project that includes the backdoor and finally exploit the
backdoor to gain access to the system and the data (as shown in Fig. 3).

We provide a generic architecture for supply chain attacks that are OSS-
based(see Fig. 4). This figure clarifies the trade-off that exists between the at-
tacker, the vulnerability, and the exploitation of it. The attacking group’s devel-
opers attempt to get associated with one of the targeted software’s core develop-
ment projects. The malicious developers begin injecting malicious code into the



Plotting OSS-based Supply Chain attack strategies and the defense failure 9

…

…

Software 
Developers Project 

Environment

Software release and 
distribution

Group 1

Group 2

Group n

Merge and 
commit

Merge and 
commit

Merge and 
commit

Code 1

Code 2

Code n

…

Software

Updated Software

Includes 
backdoor

Updated Software
New Version

Maintainer 1

Maintainer 2

Maintainer n

Developer 1

Developer 2
Developer n

Developer 1
Developer 2
Developer n

Developer 1
Developer 2
Developer n

Code 

Malicious Code 

Code 

Software Download Software Download Software Download 

Consumer 1 Consumer 2 Consumer n

A
tt

ac
ke

r 
G

ro
u

p

Attacker 
lead

Attackers 
as OSS 

developer

victim 
system 

data

Software Backdoor 
Exploitation

Consumer Data

1

2

3
4

5 5

6

7

Fig. 4: OSS-based Supply Chain Attack framework

program’s code as soon as they have access to it as authorized developers. The
malicious code can be an argument, single-line code or a dependent executable
file. To prevent being discovered, this code has been encoded or obfuscated.
It is also possible to hide or remove logs produced by this type of program-
ming. During development, the attacker group’s developer deactivates alerts for
administrative commands, memory utilization, or intrusion detectors. This is ac-
complished over a longer period by gradually incorporating the malicious code
while remaining undetected by other legitimate developers or maintenance leads.
Even if any potentially harmful code is discovered, the promoters defend it so
well that others are led to believe that the code is necessary and urgent for
the project. Since the maintainer or project lead must take the demands of the
public into account, they approve the code because they think the developer is
legitimate and has good intentions. Once the code is deployed into the software
with all its dependencies satisfied, it becomes a backdoor for that software. Later
when the software is released by the project authors on their official websites.
The promoters working with the malicious developer and team initiate discus-
sions suggesting to download and install the software as solution for most of the
queries of users. The users of the OSS then start downloading and installing the
dependent packages or software. Finally, when the package or the software is
in use the injected backdoor gets executed on the user’s system. This backdoor
allows exploitation of user data by exposing it to the attacker groups.

To avoid OSS-based attacks, the development of software bill of materi-
als(SBOM) for instance has made it possible to identify dependencies, which
aren’t directly part of an application but are installed or launched when the ap-
plication is deployed as well as components that developers directly integrated
into an application by importing them into its source code as a potential solution
[15]. As a result, after researching current detection techniques, we suggest com-



10 Arpita Dinesh Sarang, Sang-Hoon Choi, and Ki-Woong Park

bining their use with development platforms during the software development
lifecycle.

5 Proposed Platform

Stakeholder-based Detection

Query-based Detection

Third-party-based Detection

Library-based Detection Vulnerability-based Detection

Combination of different detection modules

Network-based Detection

Module 1 Module 2

Module 3

Module 4

Module 5

Fig. 5: OSS-Security Quality testing Platform
Software security quality checks require detection prior to OSS software dis-

tribution. This makes the OSS development Lifecycle require a Security platform.
The lack of data labeling for malicious semantics, the uncertainty of the attack
design, and the irregular patterns of supply chain attacks based on OSS make
the detection approaches in table 1 insufficient. We propose an OSS Security
Quality testing platform using the prior study-based detection approach type
in 5. This platform will provide software is secure quality tests based on all
the detection approaches based on current standards by incorporating the best
modules available. Module 1, The Stakeholder-based detection provides their
rightful intent, background verifications, and control. Module 2, Third-party-
based detection allows authentication, and control privileges and monitors the
stakeholder’s activity once they are part of the project. Module 3, is a combi-
nation of three different detection approaches Query-based, Library-based, and
Vulnerability-based detection as they all focus on OSS semantics, dependency,
and logic. After Semantic and logic check the OSS should go through Mod-
ule 4, Combinations of different detection modules based on components of the
OSS. For instance, if the OSS Utilizes outside resources the connectivity, data
transfer and infrastructures should be analyzed well with security tools that are
developed resource-based for security. Finally, Module 5, Network-based detec-
tion, scans for malicious package exchange by providing different combinations
of benign and malicious parameters.

By using the OSS-Security Quality Testing Platform with the best detection
techniques for each module, OSS development, and utilization, organizations can
improve the security of their software and systems and increase their capacity
for identifying and thwarting supply chain attacks on OSS.



Plotting OSS-based Supply Chain attack strategies and the defense failure 11

6 Conclusion

The XZ Utils and PyPI Project attacks were multiyear strategized attacks. They
followed the common attack strategy. This motivated us to create the Generic
framework for the OSS-based Supply Chain Attack. These attacks remained un-
detected throughout the development and release process of the packages. The
study detection strategies during the development process and after the release
of the software is crucial which assisted us in finding the lacunas in these de-
fences. The most critical lacuna for this strategy is ignorance based on trust.
Protocols and Standards should be followed strictly to reduce the possibility of
such attacks. Our proposed OSS Security Quality Testing platform is an attempt
towards securing OSS. For Future works we plan to propose more detailed com-
binations of the modules in the platform and its feasibility as potential solution
for OSS Security.

7 Acknowledgment

This work was supported by the Institute of Information & Communications
Technology Planning & Evaluation (IITP) (Project No. 2022-0-00701, 10%;
Project No. RS-2023-00228996, 10%, Project No.RS-2022-00165794, 10%), the
ICT R&D Program of MSIT/IITP (Project No. 2021-0-01816, 10%), and a Na-
tional Research Foundation of Korea (NRF) grant funded by the Korean Gov-
ernment (Project No. RS2023-00208460, 60%).

References

1. Ladisa P, Plate H, Martinez M, Barais O. Taxonomy of attacks on open-source
software supply chains. arXiv preprint arXiv:2204.04008. 2022 Apr 8.

2. Thompson K. Reflections on trusting trust. Communications of the ACM. 1984 Aug
1;27(8):761-3.

3. Statista Homepage, https://www.statista.com/statistics/1375128/supply-chain-
attacks-software-packages-affected-global/

4. Statista Homepage, https://www.statista.com/statistics/1268934/worldwide-open-
source-supply-chain-attacks/

5. Ladisa P, Plate H, Martinez M, Barais O. Sok: Taxonomy of attacks on open-source
software supply chains. In2023 IEEE Symposium on Security and Privacy (SP) 2023
May 21 (pp. 1509-1526). IEEE.

6. Seah J. Sliced cables and cyber-attacks: How safe is our internet?. News Weekly.
2024 May(3164):22-3.

7. Openwall Homepage, https://www.openwall.com/lists/oss-security/2024/03/29/4
8. Security Week: Supply Chain Attack: Major Linux Distributions Impacted

by XZ Utils Backdoor https://www.securityweek.com/supply-chain-attack-major-
linux-distributions-impacted-by-xz-utils-backdoor/

9. Lins M, Mayrhofer R, Roland M, Hofer D, Schwaighofer M. On the critical path to
implant backdoors and the effectiveness of potential mitigation techniques: Early
learnings from XZ. arXiv preprint arXiv:2404.08987. 2024 Apr 13.

10. The Tukaani Project, https://tukaani.org/xz-backdoor/
11. Evan Boehs, https://boehs.org/node/everything-i-know-about-the-xz-backdoor



12 Arpita Dinesh Sarang, Sang-Hoon Choi, and Ki-Woong Park

12. Sonatype, https://www.sonatype.com/blog/pypi-crypto-stealer-targets-windows-
users-revives-malware-campaign

13. Black Hat Ethical Hacking, https://www.blackhatethicalhacking.com/news/
14. SNYK Security Database, https://security.snyk.io
15. America’s Cyber Defense Agency, https://www.cisa.gov/sbom
16. Andreoli A, Lounis A, Debbabi M, Hanna A. On the prevalence of software sup-

ply chain attacks: Empirical study and investigative framework. Forensic Science
International: Digital Investigation. 2023 Mar 1;44:301508.

17. Malka J. Increasing Trust in the Open Source Supply Chain with Reproducible
Builds and Functional Package Management. In46th International Conference on
Software Engineering (ICSE 2024)-Doctoral Symposium (DS) Track 2024.

18. Nahum M, Grolman E, Maimon I, Mimran D, Elyashar A, Brodt O, Elovici Y,
Shabtai A. Ossintegrity: Collaborative Open Source Code Integrity Verification.
Available at SSRN 4711134.

19. Singla T, Anandayuvaraj D, Kalu KG, Schorlemmer TR, Davis JC. An empirical
study on using large language models to analyze software supply chain security
failures. InProceedings of the 2023 Workshop on Software Supply Chain Offensive
Research and Ecosystem Defenses 2023 Nov 30 (pp. 5-15).

20. O’Donoghue E, Reinhold AM, Izurieta C. Assessing Security Risks of Software
Supply Chains Using Software Bill of Materials. In2nd International Workshop on
Mining Software Repositories for Privacy and Security, MSR4P&S,(SANER 2024),
Rovaniemi, Finland 2024 Mar.

21. Haque BM. An Analysis of SBOM in the Context of Software Supply-chain Risk
Management (Master’s thesis).

22. Mirakhorli M, Garcia D, Dillon S, Laporte K, Morrison M, Lu H, Koscinski V,
Enoch C. A Landscape Study of Open Source and Proprietary Tools for Software
Bill of Materials (SBOM). arXiv preprint arXiv:2402.11151. 2024 Feb 17.

23. Gokkaya B, Karafili E, Aniello L, Halak B. Global supply chains security: a com-
parative analysis of emerging threats and traceability solutions. Benchmarking: An
International Journal. 2024 Mar 4.

24. Younis AA, Hu Y, Abdunabi R. Analyzing Software Supply Chain Security Risks in
Industrial Control System Protocols: An OpenSSF Scorecard Approach. In2023 10th
International Conference on Dependable Systems and Their Applications (DSA)
2023 Aug 10 (pp. 302-311). IEEE.

25. Nygård AR, Katsikas SK. Ethical hardware reverse engineering for securing the
digital supply chain in critical infrastructure. Information & Computer Security.
2024 Jan 15.

26. Vashisth M, Verma SK. State of the Art Different Security Challenges, Solutions
on Supply Chain: A Review. In2023 International Conference on Innovative Data
Communication Technologies and Application (ICIDCA) 2023 Mar 14 (pp. 427-431).
IEEE.

27. Turksonmez H, Ozcanhan MH. ENHANCING SECURITY OF RFID-ENABLED
IOT SUPPLY CHAIN. Malaysian Journal of Computer Science. 2023 Jul
31;36(3):289-307.

28. Boughton L, Miller C, Acar Y, Wermke D, Kästner C. Decomposing and Mea-
suring Trust in Open-Source Software Supply Chains. InProceedings of the 2024
ACM/IEEE 44th International Conference on Software Engineering: New Ideas and
Emerging Results 2024 Apr 14 (pp. 57-61).

29. Chauhdary SH, Alkatheiri MS, Alqarni MA, Saleem S. An efficient evolutionary
deep learning-based attack prediction in supply chain management systems. Com-
puters and Electrical Engineering. 2023 Jul 1;109:108768.


