
Deep dive into OpenTelemetry for evaluation of

their observability in edge computing

environment

Omar Bin Kasim Bhuian

Computer Science Department,

 Huaiyin Institute of Technology,

 Huai’an, Jiangsu, China

 omarbinkasimsefat@gmail.com

Ki-Woong Park*

Department of Information Security and Convergence

Engineering for Intelligent Drone,

 Sejong University,

 Seoul 05006, South Korea

 woongbak@sejong.ac.kr

Abstract

The rise of cloud-native infrastructures has accelerated the

adoption of OpenTelemetry as the leading standard for

monitoring system performance. OpenTelemetry's well-

established utility in software observability gives way to

significant limitations when applied to hardware and real-time

systems. This paper explores the challenges of integrating

OpenTelemetry with hybrid cloud-hardware environments,

drawing on real-world use cases such as the Israel-Lebanon

smart device sabotage. By highlighting performance

deficiencies, protocol incompatibilities, and security

vulnerabilities, we illustrate how OpenTelemetry's design

shortcomings diminish its utility in hardware-intensive

applications. We offer recommendations for improving device

compatibility and mitigating cybersecurity threats. The

document seeks to provide an exhaustive analysis and a

strategy for enhancing telemetry in hybrid settings.

Keywords: open-telemetry, cloud-native infrastructure,

distributed systems, hardware monitoring, security

Vulnerabilities, IoT.

I. Introduction

A. Background

In the present day, the scenario is even more intricate

with apps and intelligent things coming in play with

embedded hardware systems. To manage system monitoring

and analysis in such conditions, OpenTelemetry is emerging

as an open-source solution for observability with the ability

to capture distributed traces, metrics, and logs. The strength

of this tool is that deployment environments where

microservices are critical and you need powerful monitoring,

debugging tools for high availability and well-performance

support [1].

As we see cloud infrastructures include hardware-centric

environments such as devices tackling new workloads, the

shortfalls of OpenTelemetry also become more pronounced.

IoT systems are normally based on low-power processors.

Not have expansive memory, which is best for traditional

telemetry tools as they require a lot of resources. Or there are

also the issues related with hardware settings, as

OpenTelemetry's native design can be challenging due to the

multiple communication protocols used on hardware [2],

[3].These challenges, in turn, contain threats for time-critical

safety-ensuring systems. Open telemetry is crucial in deter

catastrophic failures scenarios like smart city infrastructures

or industrial control systems.

B. Problem Statement

This post digs into the OpenTelemetry technology

shortcomings by focusing on its bloated resource usage in

hybrid cloud and hardware environments. These systems are

increasingly being integrated with the Internet of Things

(IoT) devices, for which novel solutions have to be

developed given their constrained computing power and

communication protocols. In this paper, the authors take the

Israel-Lebanon conflict as an example of applying

OpenTelemetry and look at real world examples to describe

situations where it may be challenging to use

OpenTelemetry, especially in scenarios that require

lightweight use of resources and real time monitoring for

system protection [2], [4]. We will discuss methods to

enhance OpenTelemetry's infrastructure, including the

incorporation of additional protocols and improved resource

utilization, to provide more comprehensive telemetry in

mixed situations.

II. OpenTelemetry in Cloud-Native Environments

A. Cloud-Native Use Cases and Benefits

OpenTelemetry has demonstrated considerable

advantages in cloud-native systems characterized by

microservice architectures. A case study on financial

systems demonstrated how OpenTelemetry facilitates the

identification of performance bottlenecks by matching

telemetry data across many microservices. In this context,

OpenTelemetry's capability to provide distributed tracing is

crucial for resolving issues related to complex,

asynchronous service interactions [1], [3].

In cloud-native systems, telemetry collecting, analysis,

and visualization tools, such as Prometheus and Grafana, are

mailto:omarbinkasimsefat@gmail.com
mailto:woongbak@sejong.ac.kr
https://www.zotero.org/google-docs/?wZgZlw
https://www.zotero.org/google-docs/?IfvS0b
https://www.zotero.org/google-docs/?IfvS0b
https://www.zotero.org/google-docs/?MbyyqU
https://www.zotero.org/google-docs/?mB1ZLo

crucial for managing high traffic and system scalability.

OpenTelemetry’s integration with Prometheus, for example,

enables deep visibility into Kubernetes clusters, offering

multi-dimensional data insights that support real-time

decision-making [5]. OpenTelemetry's resource overhead is

mostly due to the volume of telemetry data and the demands

of real-time processing. To fix this, adaptive sampling and

lightweight agents can improve observability while putting

as little stress as possible on devices with limited resources.

As system complexity escalates, the resource overhead of

OpenTelemetry becomes evident. Implementing

OpenTelemetry in cloud infrastructure led to a 46.5% rise in

CPU utilization and a 47.5% increase in memory usage,

raising scalability issues in bigger settings [3]. Case studies,

including its application in financial systems, demonstrate

the advantages of OpenTelemetry in cloud-native

environments, especially in performance monitoring and

issue diagnosis within microservice architectures. These

observations can guide future research focused on creating

lightweight telemetry solutions tailored for IoT

environments, where efficiency and minimal resource use

are essential.

Table 1: Performance overhead encountered in cloud-native deployments

using different models of OpenTelemetry [3].

Deployment Model CPU Overhead Memory Overhead

Daemonset 46.5% 47.5%

Sidecar 50.0% 52.0%

B. Case Study1: Israel-Lebanon Conflict and IoT

Vulnerabilities

The security flaws in IoT systems, especially those

dealing with vital infrastructure, were exposed during the

Israel-Lebanon conflict. There have been rumors that Israel

compromised Lebanese infrastructure using cyber warfare

tactics, namely targeting smart equipment such as electrical

appliances that may be manipulated remotely and various

Internet of Things devices. Reports indicate that these

devices were utilized as hacking weapons by the Israeli

military, leading to physical harm and the remote detonation

of specific smart devices [6]. The incident underscores the

growing risks associated with adding IoT technologies to

vital systems. Absence of strong telemetry systems meant

that the hardware components, including IoT devices, were

not fully supervised and hence it left a window open to

potential attacks. OpenTelemetry works very well for cloud-

native software, but in this case would not be good enough

as it does not provide a way to send hardware telemetry.

IoT devices often have resource constraints, such as limited

power, low computational capacity and multiple

communication protocols. That means the OpenTelemetry

architecture, which is mainly focused on cloud-native

microservices, doesn't fit very well IoT devices. In high-risk

scenarios such as this, the lack of real-time monitoring and

ability to identify anomalies instead of devices (in IoT)

diminishes the framework [1], [2].

C. Case Study 2: Mirai Botnet Attack on IoT Devices

The 2016 Mirai botnet assault exemplifies significant

IoT vulnerabilities inside hybrid cloud hardware ecosystems.

The Mirai botnet used inadequate security configurations to

target several IoT devices, including IP cameras, routers, and

DVRs. These machines launched a massive DDoS attack

after being compromised, affecting global internet and cloud

infrastructures [7]. Lack of real-time monitoring and

telemetry solutions for IoT devices helped the attack succeed.

The majority of impacted devices' designs inhibited their

ability to transmit telemetry data that could have notified

administrators of their breach. Because OpenTelemetry is

focused on the cloud, it doesn't yet have the right tools to

connect with IoT devices easily for real-time monitoring.

This coverage gap let the attack spread quickly. If real-time

telemetry had been available across all of the infected IoT

devices, strange behavior could have been caught early on,

like when the devices joined a botnet and sent out strange

traffic. This could have stopped the attack before it got too

big [8].

III. Deep Dive into the Technical Failures:

OpenTelemetry does not have native support for the

protocols used by many IoT devices in critical infrastructure,

like Zigbee, MQTT, and Bluetooth. Its capacity to provide

complete end-to-end observability is compromised by this

constraint. The cyberattack during the Israel-Lebanon

conflict exploited weaknesses by targeting unsecured IoT

devices, underscoring the urgent requirement for telemetry

systems that provide real-time hardware monitoring.

OpenTelemetry's focus on software and cloud environments

makes it much less useful for finding security holes or

performance problems in hardware environments with

limited resources [8].

The Mirai botnet assault exploited inherent IoT security

vulnerabilities, such as default passwords and obsolete

firmware. Nonetheless, a more significant concern was the

lack of real-time telemetry to identify and counteract the

attack promptly. The scale and variety of IoT protocols

revealed OpenTelemetry's shortcomings in hardware

telemetry. A multitude of IoT devices are inadequate.

OpenTelemetry imposes overhead for logging and trace

collection, which many IoT devices are unable to handle,

hence intensifying the difficulties of protecting these

environments [5].

A. Protocol Incompatibility and Integration Issues

Although OpenTelemetry is intended for cloud-native

environments, its ideas can be modified for hardware

contexts. It is crucial to recognize its limitations, but equally

critical to accept the framework's merits in delivering

https://www.zotero.org/google-docs/?8U1muD
https://www.zotero.org/google-docs/?hEoz9x
https://www.zotero.org/google-docs/?qwlNqw
https://www.zotero.org/google-docs/?IQKBeh
https://www.zotero.org/google-docs/?2eRWNr
https://www.zotero.org/google-docs/?6j6U11
https://www.zotero.org/google-docs/?7bUudW
https://www.zotero.org/google-docs/?1h4gLU
https://www.zotero.org/google-docs/?V60Wug

comprehensive observability. By utilizing its current

features and suggesting specific improvements, we can

develop a more adaptable tool for hybrid systems. Telemetry

systems are essential for the effective monitoring and

management of modern infrastructures, including IoT and

hardware-intensive environments. OpenTelemetry,

specifically designed for cloud-native applications, is a

powerful solution for augmenting telemetry capabilities

across multiple domains. However, its current limitations,

especially the lack of native support for hardware-specific

communication protocols like Zigbee and MQTT, diminish

its efficiency in resource-constrained applications. Real-

time telemetry is essential in hazardous environments, such

as disaster management and industrial IoT. This underscores

the necessity to modify OpenTelemetry's framework to

address these challenges [1], [2].

Furthermore, hardware systems impose stringent

resource constraints, rendering the significant overhead of

OpenTelemetry inappropriate for low-power devices. Real-

time telemetry systems, particularly those employed in

disaster management, can be significantly compromised by

even a minor delay in data collection. Real-time systems in

flood-prone areas rely on instantaneous data to predict water

levels and issue alerts. Inefficient telemetry systems can lead

to catastrophic failures caused by delays [4], [9].

Figure 1 shows how Open Telemetry maximizes data

flow in cloud-native systems, mostly using HTTP and gRPC

protocols. Hardware systems, including IoT devices,

however, rely on multiple protocols such as Zigbee, Modbus,

and MQTT, which OpenTelemetry does not naturally

support. The differences in hybrid infrastructures preclude

thorough monitoring, which makes important devices

vulnerable to unnoticed failures and security flaws.

Improving protocol support will enable flawless telemetry

collection in hardware as well as cloud-native environments,

hence addressing these problems [3], [8].

Figure 1: A conceptual graphic that highlights the protocol and
architectural contrasts between OpenTelemetry's limited capabilities in

hardware contexts and its data flow in cloud-native systems.

B. Resource Constraints and Performance Overhead

The resource limits in IoT and embedded systems

intensify the shortcomings of OpenTelemetry. The

additional CPU and memory burden from telemetry

gathering is significant in cloud-native systems; however, in

hardware contexts, it may result in substantial performance

deterioration. Cheikhrouhou et al. [10] studied disaster

management telemetry systems and found that adding real-

time monitoring tools caused a latency increase of more than

10%, which meant that people took longer to react in critical

emergency situations.

Table 2: Impact of telemetry collection on real-time systems [10].

Real-Time

System

Latency Increase

with Telemetry

Impact

Flood Warning +10% Delayed alerts

IoT Smart Grid +8% Reduced response

time

IV. Enhancing OpenTelemetry for Hardware Monitoring

A. Protocol Extension and Lightweight Agents

For OpenTelemetry to become a real contender in

hardware environments, it will need to be improved. As such,

OpenTelemetry should start by enabling these hardware-

specific protocols, such as Zigbee and MQTT, which are

ubiquitous in IoT environments through modular protocol

extensions. Potentially, using lightweight telemetry agents

for low-power devices might reduce these costs of resources

where OpenTelemetry is being used. Lots and lots of

efficient trace, metrics, and log collection going on here—

all in a manner that the agent can perform real-time

monitoring without excessive pressure on the device’s

computational resources. This offers a path to continue using

OpenTelemetry in environments that are hardware and

resource-intensive as well as resource-constrained, helping

bridge the gap between cloud-native and IoT systems [2]. In

addition, a small resource overhead is required: in embedded

systems, a lightweight telemetry agent that is optimized for

low-power devices should be used. Those agents need to

look at key metrics that can reduce the number of calls

required to have real-time data processing running without

requiring much CPU and I/O from the system.

The further development of dynamically

loadable/unloadable telemetry collectors in OpenTelemetry

(modularized) may also strengthen the same flexibility for

hybrid environments [10].

B. Security and Privacy Enhancements

The story of Israel-Lebanon demonstrates a strong need

for system monitoring and telemetry around critical

infrastructure To keep their telemetry data for the hardware

https://www.zotero.org/google-docs/?KQ2D0k
https://www.zotero.org/google-docs/?4Nv9vo
https://www.zotero.org/google-docs/?FDw6LM
https://www.zotero.org/google-docs/?Y0AWgy
https://www.zotero.org/google-docs/?hSpN4N
https://www.zotero.org/google-docs/?OySEtv

systems tight and access-controlled to avoid being exploited

for harmful reasons [1], [4]. OpenTelemetry will have to as

well end-to-end encryption and robust mechanisms to assure

that telemetry does not become a trojan horse for

cyberattacks, especially in privacy-sensitive application

surroundings like smart cities or industrial IoT.

V. Conclusion:

There is no doubt that Open Telemetry is a powerful tool

for cloud-native observability but the points of improvement

in hardware-centric systems must be taken care before it

becomes an end-to-end solution for infrastructure, as we see

today. Enhancing Security, Supporting Lightweight Device,

and More Protocol This way, Open Telemetry will be a

strong and flexible framework. This work demonstrates

from technical analysis and case studies that it is not only

possible but imperative to close the chasm between cloud-

native telemetry and hardware-derived telemetry for hybrid

system observability.

ACKNOWLEDGEMENT

This work was supported by the Institute of Information &

Communications Technology Planning & Evaluation (IITP)

grant funded by the Ministry of Science and ICT (Project No.

RS-2024-00438551, 50%; 2022-11220701, 30%), and the

National Research Foundation of Korea (NRF) grant funded

by the Ministry of Science and ICT (Project No. RS-2023-

00208460, 20%).

References

[1] D. Gomez Blanco, Practical OpenTelemetry: Adopting

Open Observability Standards Across Your Organization.

Berkeley, CA: Apress, 2023. doi: 10.1007/978-1-4842-

9075-0.

[2] O. V. Talaver and T. A. Vakaliuk, “Telemetry to solve

dynamic analysis of a distributed system,” J. Edge Comput.,

vol. 3, no. 1, pp. 87–109, May 2024, doi: 10.55056/jec.728.

[3] E. Norgren, “OPTIMIZING DISTRIBUTED TRACING

OVERHEAD IN A CLOUD ENVIRONMENT WITH

OPENTELEMETRY”.

[4] G. Suciu, C. Istrate, D. Filip, A. Scheianu, and M. Cigale,

“Real-Time Telemetry System for Emergency Situations

using SWITCH”.

[5] W. Pourmajidi, L. Zhang, J. Steinbacher, T. Erwin, and A.

Miranskyy, “A Reference Architecture for Observability

and Compliance of Cloud Native Applications,” Feb. 22,

2023, arXiv: arXiv:2302.11617. Accessed: Sep. 23, 2024.

[Online]. Available: http://arxiv.org/abs/2302.11617

[6] “EXPLAINED | Cyber Attack on Hezbollah: Pagers

Explode, Killing 9 in Lebanon - Frontline.” Accessed: Sep.

28, 2024. [Online]. Available:

https://frontline.thehindu.com/news/lebanon-hezbollah-

cyber-attack-pager-explosions-warfare-israel-

gaza/article68654302.ece

[7] M. Antonakakis et al., “Understanding the Mirai Botnet”.

[8] B. B. Joanna Kosińska and M. M. Marek Konieczny,

“(PDF) Toward the Observability of Cloud-Native

Applications: The Overview of the State-of-the-Art,”

ResearchGate, doi: 10.1109/ACCESS.2023.3281860.

[9] “IoT Market View, 2020-2021,” Gartner. Accessed: Sep.

23, 2024. [Online]. Available:

https://www.gartner.com/en/documents/4010081

[10] O. Cheikhrouhou, A. Koubaa, and A. Zarrad, “A Cloud

Based Disaster Management System,” J. Sens. Actuator

Netw., vol. 9, no. 1, Art. no. 1, Mar. 2020, doi:

10.3390/jsan9010006.

https://www.zotero.org/google-docs/?ioiZud
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm
https://www.zotero.org/google-docs/?PhrVOm

