
The 10th International Conference on Next Generation Computing (ICNGC 2024)

Trusted Execution Environments: A Comparative

Analysis of SGX and SEV

Omar Bin Kasim Bhuian

Computer Science Department,

 Huaiyin Institute of Technology,

 Huai’an, Jiangsu, China

 omarbinkasimsefat@gmail.com

Ki-Woong Park*

Department of Information Security and Convergence

Engineering for Intelligent Drone,

 Sejong University,

 Seoul 05006, South Korea

 woongbak@sejong.ac.kr

 Abstract—Trusted Execution Environments (TEEs) are the

most vital security features of contemporary computing,

especially in a virtualized environment. Two popular

hardware-based TEEs include Intel Software Guard

Extensions (SGX) and AMD Secure Encrypted Virtualization

(SEV), which respectively help protect sensitive computation

from several forms of attacks. This paper investigates SGX and

SEV very deeply, including their architecture, memory

encryption mechanisms, and the security vulnerabilities they

encounter. SGX adopts an enclave-based approach to

application-level isolation, whereas SEV affords VM system-

wide memory encryption. We discuss the implications of such

designs in cloud computing environments and proffer

recommendations that will help secure attacks emanating from

side-channel and rollback.

 Keywords: trusted execution environments, Intel SGX, AMD
SEV, secure program execution, memory encryption.

I. Introduction

 The advent of cloud computing and virtualized systems

has turned the world of computing upside down by allowing

resources to be shared amongst multiple tenants (e.g. users)

while scaling with balance. But they also represent a security

risk because attackers can exploit system software

weaknesses in OS and hypervisors. To mitigate the same,

Trusted Execution Environments (TEEs) provide a secure

execution environment to run trusted code within an

untrusted system. Trusted Execution Environments (TEEs),

including Intel Software Guard Extensions (SGX) and AMD

Secure Encrypted Virtualization, have been around for a

while and are commonly used to protect sensitive

computations if the receiving OS or hypervisor is not fully

trusted [1].

With the growing need for secure code execution in

cloud environments, confidential computing solutions have

emerged, such as SGX or SEV. In this way, SGX protects

enclaves with an application-level isolation and SEV is

implemented for the encryption of the memory space of

virtual machines (VMs) at the system-wide level. The paper

provides a broad analysis of cryptosystem implementation

techniques, isolation techniques, and various system

vulnerabilities in the domain of confidential computing. We

analyze them to differentiate where they are suitable for the

varieties of cloud-based workloads and strive to identify

potential directions on secret computing.

II. Architectural Comparison

A. Intel Software Guard Extensions (SGX)

Intel SGX also creates secure enclaves (protected

memory regions) within the application address space,

insulated from both privileged and unprivileged system

software. While data inside enclaves resides in the

application address space, the Memory Encryption Engine

(MEE) encrypts this data on path outside the CPU , when

pages are evicted to system DRAM [2]. Active enclave data

lives in the Enclave Page Cache (EPC), which is a quantity

of protected areas in the CPU itself. The most substantial

value of SGX would be the highly specific isolation small

sections of an application could run inside enclaves.

However, this level of precision results in significant

expansion of the Trusted Computing Base (TCB), since

enclaved applications require many trusted components like

the SGX Platform Software (PSW) and driver stacks. This

dependence increases the attack surface [3].

B. AMD Secure Encrypted Virtualization (SEV)

AMD SEV encrypts the complete memory space of

virtual machines via Secure Memory Encryption (SME),

guaranteeing that data remains encrypted while residing in

DRAM. The Platform Security Processor (PSP) oversees

encryption keys, segregating virtual machines (VMs) from

one another and from the hypervisor. SGX offers fine-

grained memory encryption, which is good for protecting

fully virtualized environments. SEV, on the other hand,

doesn't have the application-level isolation feature that SGX

does [4].

- 200 -

https://www.zotero.org/google-docs/?ePxdSk
https://www.zotero.org/google-docs/?8yM9ra
https://www.zotero.org/google-docs/?CsoOMb
https://www.zotero.org/google-docs/?29qYIs

The 10th International Conference on Next Generation Computing (ICNGC 2024)

SEV-SNP (Secure Nested Paging) enhances SEV by

incorporating memory integrity verifications, protecting

against rollback attacks and hypervisor manipulation. SEV-

SNP checks the integrity of virtual machine memory,

stopping malicious hypervisors from changing or rolling

back memory, which would be a security breach [4].

TABLE 1 COMPARISON OF SGX AND SEV FEATURES

III. Memory Encryption and Isolation

A. SGX Memory Encryption and Isolation

SGX employs enclave-specific encryption using the

Memory Encryption Engine (MEE) to protect enclave data

throughout memory paging processes. The CPU regulates

memory access rights and retains enclave data in the Enclave

Page Cache (EPC). Nonetheless, SGX's security possesses

certain limits. While it encrypts data when transferred to

untrusted memory, it is susceptible to specific side-channel

attacks during active enclave activities [1]. The Foreshadow

attack, which exploits speculative execution to extract

enclave data from the processor's speculative cache, is a

notable example. Furthermore, side-channel attacks like

page-fault and cache timing attacks might undermine SGX's

protections by scrutinizing memory access patterns [6].

B. SEV Memory Encryption and Isolation

 SEV's Secure Memory Encryption (SME) scheme offers

comprehensive protection for VM memory by encrypting it

entirely. This protects against threats emanating from the

hypervisor. The Platform Security CPU (PSP), a specialized

CPU, oversees encryption keys for each virtual machine

(VM). SEV's coarse-grained encryption safeguards the

operating system and user data within the VM from

unauthorized access [7].

 SEV-SNP mitigates SEV's susceptibility to rollback

attacks, wherein a malevolent hypervisor may return the

virtual machine to a prior state to exploit inadequate

encryption. SEV-SNP offers strong defenses against such

attacks by incorporating integrity protection into VM

memory and verifying the encryption state through

attestation [8].

Fig 1. Diagram illustrating the memory encryption process in SGX vs

SEV

IV. Threat Models and Security Vulnerabilities

A. Intel SGX Threat Model

Since the operating system and hypervisor could be

hacked, SGX operates under the premise that enclaves

would still be shielded from such privileged attacks. SGX is

susceptible to microarchitectural side-channel attacks, such

as Foreshadow and Meltdown, which exploit speculative

execution to leak sensitive enclave information [5].

Foreshadow: Attackers exploit speculative execution

vulnerabilities to leak data stored in the EPC despite using

SGX’s memory protection capabilities.

Foreshadow breaks the confidentiality of the EPC and

thus compromises SGX's memory protection on speculative

execution, as attackers can leak any data that is loaded into

memory protected by a page encryption key maintained in

the EPC. SGX design is vulnerable to side-channel attacks,

such as cache timing, page-fault side channels. On the other

hand, cache timing attacks exploit slight variations in timing

between different access(es) to a cached resource to leak

selectively sensitive data and page-fault attacks monitor

page accesses to deduce behaviors of an enclave [6] . These

assaults draw attention to the inherent hazards in depending

just on hardware isolation, including later SGX versions'

mitigating measures.

B. AMD SEV Threat Model

SEV presumes the hypervisor could be malevolent;

hence, it encrypts VM memory to safeguard against

unwanted access. SEV is susceptible to rollback attacks

when a compromised hypervisor restores the VM to a prior

encrypted state, enabling the attacker to change the VM

without decrypting it [8].

SEV's dependence on the hypervisor for the management

of encryption keys presents supplementary dangers. An

assailant with access to the hypervisor may seize control of

Features Intel SGX AMD SEV

Memory Encryption Enclave-specific via

MEE

Entire VM memory via

SME

Key Management Managed by CPU Managed by PSP

Attack Surface Vulnerable to side-
channel and

speculative attacks.

Vulnerable to rollback
and cold-boot attacks

Use Cases Application-level

isolation

Full VM protection

Granularity Fine-grained,
application-specific

Coarse-grained, VM-
wide

- 201 -

https://www.zotero.org/google-docs/?FZ1lWe
https://www.zotero.org/google-docs/?Kx9GH0
https://www.zotero.org/google-docs/?5MT50d
https://www.zotero.org/google-docs/?mcUNqi
https://www.zotero.org/google-docs/?DsMtt0
https://www.zotero.org/google-docs/?TtArWD

The 10th International Conference on Next Generation Computing (ICNGC 2024)

the PSP and alter encryption keys, circumventing SEV's

safeguards. Cold-boot attacks represent a considerable risk,

as an assailant with physical access to a powered-off system

can get encryption keys from memory [9].

TABLE 2: SUMMARY OF VULNERABILITIES IN SGX AND SEV

Vulnerability Type Intel SGX AMD SEV

Side-Channel Attacks Cache timing, page
fault, speculative

execution

Limited to hypervisor
or cold-boot attacks

Rollback Attacks Not applicable Hypervisor-based

rollback is a concern

Key Management
Attacks

Secure CPU-based
key management

Hypervisor and PSP-
managed, susceptible

to compromise

V. Performance Considerations

A. Intel SGX Performance

The performance overhead of SGX mostly comes from

the costs of creating an enclave, context switching between

enclaves during enclaving & mode transitions and enclave

paging. Applications that are in regular communication with

enclaves, or applications managing lots of data suffer from a

lot of performance degradation. Memory-intensive

applications can experience up to a 3x performance

slowdown under SGX vs. regular (unprotected)

environments [1], [2].

Also, the performance of using SGX is inherently

difficult because enclave transitions need to save and restore

the enclaves state, which means every time there is some

overhead added. Literature has suggested a number of

optimizations to address this challenge, including decreasing

the frequency at which these transitions are invoked and

using hardware-rooted approaches tailored for security-

sensitive operations, but enclosure management remains

complex and continues to be a major scalability bottleneck

with respect to SGX deployment.

B. AMD SEV Performance

SEV typically has a lower performance overhead than

SGX since it encrypts the entire VM and so does not require

switching back and forth between trusted and untrusted

execution contexts. However, memory encryption and

decryption mechanisms result in latency during context

switching; the impact is especially problematic in multi-

tenant cloud systems (where virtual machines frequently

access shared resources) [9].

Memory integrity systems that perform memory health

checks by validating encrypted memory are another source

of overhead added via SEV-SNP. Incorporate these

verifications with high-availability cloud setups or

complicated work, and the hold-up might aggravate. The

security/effectiveness trade-off is generally considered OK

for SEV-SNP and its stronger protections.

Fig 2. Performance Overhead: SGX vs SEV Across Workloads

VI. Future Directions in TEE Development

Intel SGX and AMD SEV both have introducing

limitations that must be addressed subsequent versions. SGX

is facing the challenge of mitigating side-channel attacks

with increased performance scalability. However, although

initiatives like SGXv2 improve enclave sizes and leverage

dynamic memory management as a means to mitigate

certain performance constraints, despite the existence of

mitigations such as Specter and Meltdown, SGX remains

insecure against speculative execution attacks.

For the future, we would like to see improvements that

will reduce dependency on hypervisors and grow key

management protocols throughout SEV. You also could

limit the dangers from hypervisor hacking with multi-key

encryption as well as hardware-based key attestation. It will

also be more relevant in the cloud if SEV supports secret

computing frameworks (such as multi-party computation or

federated learning).

VII. Conclusion

This work reveals that Intel SGX and AMD SEV are

similar in terms of their ability to protect computations in

untrusted environments. SGX has strong application-level

isolation through enclaves, where though SGX does better

against privilege attacks but exposes secure enclaves to side-

channels and eventually will be significantly slowed down.

By extension, in our evaluation, SEV has broad memory

- 202 -

https://www.zotero.org/google-docs/?cShcik
https://www.zotero.org/google-docs/?RCs1YQ
https://www.zotero.org/google-docs/?9tXsg2

The 10th International Conference on Next Generation Computing (ICNGC 2024)

encryption for VMs, and the security scheme of this measure

relies on HPA’s integrity, while it can be improved by

tackling the weakness of rollback attacks.

SGX, the poster child of enclave-based security solutions

plagued by performance issues, is a common choice when

you need strong, application-level security. On the other

hand, SEV offers benefits in virtualized environments since

it virtually eliminates any setup requirements and degrades

performance much less. While using SGX or SEV to create

strong confinement is crucial, this decision should be made

on a workload basis, and threat models should not place

fundamental reliance on them to maintain good security in

any case of workloads that requires the instantiation.

ACKNOWLEDGEMENT

This work was supported by the Institute of Information &

Communications Technology Planning & Evaluation (IITP)

grant funded by the Ministry of Science and ICT (Project No.

RS-2022-00165794, 50%; RS-2024-00438551, 30%), and

the Ministry of Science and ICT grant through the

Information Technology Research Center (ITRC) Program

(Project No. RS-2023-00228996, 20%)

REFERENCES

[1] “Costan, V., Devadas, S.: Intel SGX Explained. Cryptology
ePrint Archive, 2016.” Accessed: Sep. 14, 2024. [Online].
Available: https://eprint.iacr.org/2016/086.pdf

[2] I. A. I. Frank McKeen, “Innovative instructions and software
model for isolated execution |.” Accessed: Sep. 14, 2024.
[Online]. Available:
https://www.researchgate.net/publication/266654240_Innova

tive_instructions_and_software_model_for_isolated_executi
on

[3] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache
Attacks on Intel SGX,” Apr. 2017, pp. 1–6. doi:
10.1145/3065913.3065915.

[4] P. Paradžik, A. Derek, and M. Horvat, “Formal Security
Analysis of the AMD SEV-SNP Software Interface,” Jul. 23,
2024, arXiv: arXiv:2403.10296. doi:
10.48550/arXiv.2403.10296.

[5] J. Van Bulck et al., “Foreshadow: extracting the keys to the
intel SGX kingdom with transient out-of-order execution,” in
Proceedings of the 27th USENIX Conference on Security
Symposium, in SEC’18. USA: USENIX Association, Aug.
2018, pp. 991–1008.

[6] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating
Systems,” in 2015 IEEE Symposium on Security and Privacy,
San Jose, CA: IEEE, May 2015, pp. 640–656. doi:
10.1109/SP.2015.45.

[7] “AMD Secure Encrypted Virtualization (SEV),” AMD.
Accessed: Sep. 16, 2024. [Online]. Available:
https://www.amd.com/en/developer/sev.html

[8] L. Wilke, J. Wichelmann, M. Morbitzer, and T. Eisenbarth,
“SEVurity: No Security Without Integrity -- Breaking
Integrity-Free Memory Encryption with Minimal
Assumptions,” in 2020 IEEE Symposium on Security and
Privacy (SP), May 2020, pp. 1483–1496. doi:
10.1109/SP40000.2020.00080.

[9] M. Morbitzer, M. Huber, J. Horsch, and S. Wessel, “SEVered:
Subverting AMD’s Virtual Machine Encryption,” in
Proceedings of the 11th European Workshop on Systems
Security, Apr. 2018, pp. 1–6. doi: 10.1145/3193111.3193112.

- 203 -

https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss
https://www.zotero.org/google-docs/?Oq1rss

