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   Abstract—Trusted Execution Environments (TEEs) are the 

most vital security features of contemporary computing, 

especially in a virtualized environment. Two popular 

hardware-based TEEs include Intel Software Guard 

Extensions (SGX) and AMD Secure Encrypted Virtualization 

(SEV), which respectively help protect sensitive computation 

from several forms of attacks. This paper investigates SGX and 

SEV very deeply, including their architecture, memory 

encryption mechanisms, and the security vulnerabilities they 

encounter. SGX adopts an enclave-based approach to 

application-level isolation, whereas SEV affords VM system-

wide memory encryption. We discuss the implications of such 

designs in cloud computing environments and proffer 

recommendations that will help secure attacks emanating from 

side-channel and rollback.  

    Keywords: trusted execution environments, Intel SGX, AMD 
SEV, secure program execution, memory encryption. 

I. Introduction 

 The advent of cloud computing and virtualized systems 

has turned the world of computing upside down by allowing 

resources to be shared amongst multiple tenants (e.g. users) 

while scaling with balance. But they also represent a security 

risk because attackers can exploit system software 

weaknesses in OS and hypervisors. To mitigate the same, 

Trusted Execution Environments (TEEs) provide a secure 

execution environment to run trusted code within an 

untrusted system. Trusted Execution Environments (TEEs), 

including Intel Software Guard Extensions (SGX) and AMD 

Secure Encrypted Virtualization, have been around for a 

while and are commonly used to protect sensitive 

computations if the receiving OS or hypervisor is not fully 

trusted [1]. 

With the growing need for secure code execution in 

cloud environments, confidential computing solutions have 

emerged, such as SGX or SEV. In this way, SGX protects 

enclaves with an application-level isolation and SEV is 

implemented for the encryption of the memory space of 

virtual machines (VMs) at the system-wide level. The paper 

provides a broad analysis of cryptosystem implementation 

techniques, isolation techniques, and various system 

vulnerabilities in the domain of confidential computing. We 

analyze them to differentiate where they are suitable for the 

varieties of cloud-based workloads and strive to identify 

potential directions on secret computing. 

II. Architectural Comparison 

A. Intel Software Guard Extensions (SGX) 

Intel SGX also creates secure enclaves (protected 

memory regions) within the application address space, 

insulated from both privileged and unprivileged system 

software. While data inside enclaves resides in the 

application address space, the Memory Encryption Engine 

(MEE) encrypts this data on path outside the CPU , when 

pages are evicted to system DRAM  [2]. Active enclave data 

lives in the Enclave Page Cache (EPC), which is a quantity 

of protected areas in the CPU itself. The most substantial 

value of SGX would be the highly specific isolation small 

sections of an application could run inside enclaves. 

However, this level of precision results in significant 

expansion of the Trusted Computing Base (TCB), since 

enclaved applications require many trusted components like 

the SGX Platform Software (PSW) and driver stacks. This 

dependence increases the attack surface [3]. 

B. AMD Secure Encrypted Virtualization (SEV) 

AMD SEV encrypts the complete memory space of 

virtual machines via Secure Memory Encryption (SME), 

guaranteeing that data remains encrypted while residing in 

DRAM. The Platform Security Processor (PSP) oversees 

encryption keys, segregating virtual machines (VMs) from 

one another and from the hypervisor. SGX offers fine-

grained memory encryption, which is good for protecting 

fully virtualized environments. SEV, on the other hand, 

doesn't have the application-level isolation feature that SGX 

does [4]. 
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SEV-SNP (Secure Nested Paging) enhances SEV by 

incorporating memory integrity verifications, protecting 

against rollback attacks and hypervisor manipulation. SEV-

SNP checks the integrity of virtual machine memory, 

stopping malicious hypervisors from changing or rolling 

back memory, which would be a security breach [4]. 

TABLE 1 COMPARISON OF SGX AND SEV FEATURES 

III. Memory Encryption and Isolation 

A. SGX Memory Encryption and Isolation 

SGX employs enclave-specific encryption using the 

Memory Encryption Engine (MEE) to protect enclave data 

throughout memory paging processes. The CPU regulates 

memory access rights and retains enclave data in the Enclave 

Page Cache (EPC). Nonetheless, SGX's security possesses 

certain limits. While it encrypts data when transferred to 

untrusted memory, it is susceptible to specific side-channel 

attacks during active enclave activities [1]. The Foreshadow 

attack, which exploits speculative execution to extract 

enclave data from the processor's speculative cache, is a 

notable example. Furthermore, side-channel attacks like 

page-fault and cache timing attacks might undermine SGX's 

protections by scrutinizing memory access patterns [6]. 

B. SEV Memory Encryption and Isolation 

   SEV's Secure Memory Encryption (SME) scheme offers 

comprehensive protection for VM memory by encrypting it 

entirely. This protects against threats emanating from the 

hypervisor. The Platform Security CPU (PSP), a specialized 

CPU, oversees encryption keys for each virtual machine 

(VM). SEV's coarse-grained encryption safeguards the 

operating system and user data within the VM from 

unauthorized access [7]. 

   SEV-SNP mitigates SEV's susceptibility to rollback 

attacks, wherein a malevolent hypervisor may return the 

virtual machine to a prior state to exploit inadequate 

encryption. SEV-SNP offers strong defenses against such 

attacks by incorporating integrity protection into VM 

memory and verifying the encryption state through 

attestation [8]. 

 

Fig 1.   Diagram illustrating the memory encryption process in SGX vs 

SEV 

IV. Threat Models and Security Vulnerabilities 

A. Intel SGX Threat Model 

Since the operating system and hypervisor could be 

hacked, SGX operates under the premise that enclaves 

would still be shielded from such privileged attacks. SGX is 

susceptible to microarchitectural side-channel attacks, such 

as Foreshadow and Meltdown, which exploit speculative 

execution to leak sensitive enclave information [5]. 

Foreshadow: Attackers exploit speculative execution 

vulnerabilities to leak data stored in the EPC despite using 

SGX’s memory protection capabilities. 

Foreshadow breaks the confidentiality of the EPC and 

thus compromises SGX's memory protection on speculative 

execution, as attackers can leak any data that is loaded into 

memory protected by a page encryption key maintained in 

the EPC. SGX design is vulnerable to side-channel attacks, 

such as cache timing, page-fault side channels. On the other 

hand, cache timing attacks exploit slight variations in timing 

between different access(es) to a cached resource to leak 

selectively sensitive data and page-fault attacks monitor 

page accesses to deduce behaviors of an enclave [6] . These 

assaults draw attention to the inherent hazards in depending 

just on hardware isolation, including later SGX versions' 

mitigating measures. 

B. AMD SEV Threat Model 

SEV presumes the hypervisor could be malevolent; 

hence, it encrypts VM memory to safeguard against 

unwanted access. SEV is susceptible to rollback attacks 

when a compromised hypervisor restores the VM to a prior 

encrypted state, enabling the attacker to change the VM 

without decrypting it [8]. 

SEV's dependence on the hypervisor for the management 

of encryption keys presents supplementary dangers. An 

assailant with access to the hypervisor may seize control of 

Features Intel SGX AMD SEV 

Memory Encryption Enclave-specific via 

MEE 

Entire VM memory via 

SME 

Key Management Managed by CPU Managed by PSP 

Attack Surface Vulnerable to side-
channel and 

speculative attacks. 

Vulnerable to rollback 
and cold-boot attacks 

Use Cases Application-level 

isolation 

Full VM protection 

Granularity Fine-grained, 
application-specific 

Coarse-grained, VM-
wide 
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the PSP and alter encryption keys, circumventing SEV's 

safeguards. Cold-boot attacks represent a considerable risk, 

as an assailant with physical access to a powered-off system 

can get encryption keys from memory [9]. 

TABLE 2: SUMMARY OF VULNERABILITIES IN SGX AND SEV 

Vulnerability Type Intel SGX AMD SEV 

Side-Channel Attacks Cache timing, page 
fault, speculative 

execution 

Limited to hypervisor 
or cold-boot attacks 

Rollback Attacks Not applicable Hypervisor-based 

rollback is a concern 

Key Management 
Attacks 

Secure CPU-based 
key management 

Hypervisor and PSP-
managed, susceptible 

to compromise 

 

V. Performance Considerations 

A. Intel SGX Performance 

The performance overhead of SGX mostly comes from 

the costs of creating an enclave, context switching between 

enclaves during enclaving & mode transitions and enclave 

paging. Applications that are in regular communication with 

enclaves, or applications managing lots of data suffer from a 

lot of performance degradation. Memory-intensive 

applications can experience up to a 3x performance 

slowdown under SGX vs. regular (unprotected) 

environments [1], [2]. 

Also, the performance of using SGX is inherently 

difficult because enclave transitions need to save and restore 

the enclaves state, which means every time there is some 

overhead added. Literature has suggested a number of 

optimizations to address this challenge, including decreasing 

the frequency at which these transitions are invoked and 

using hardware-rooted approaches tailored for security-

sensitive operations, but enclosure management remains 

complex and continues to be a major scalability bottleneck 

with respect to SGX deployment. 

B. AMD SEV Performance 

SEV typically has a lower performance overhead than 

SGX since it encrypts the entire VM and so does not require 

switching back and forth between trusted and untrusted 

execution contexts. However, memory encryption and 

decryption mechanisms result in latency during context 

switching; the impact is especially problematic in multi-

tenant cloud systems (where virtual machines frequently 

access shared resources) [9]. 

Memory integrity systems that perform memory health 

checks by validating encrypted memory are another source 

of overhead added via SEV-SNP. Incorporate these 

verifications with high-availability cloud setups or 

complicated work, and the hold-up might aggravate. The 

security/effectiveness trade-off is generally considered OK 

for SEV-SNP and its stronger protections. 

 

Fig 2.    Performance Overhead: SGX vs SEV Across Workloads 

VI. Future Directions in TEE Development 

Intel SGX and AMD SEV both have introducing 

limitations that must be addressed subsequent versions. SGX 

is facing the challenge of mitigating side-channel attacks 

with increased performance scalability. However, although 

initiatives like SGXv2 improve enclave sizes and leverage 

dynamic memory management as a means to mitigate 

certain performance constraints, despite the existence of 

mitigations such as Specter and Meltdown, SGX remains 

insecure against speculative execution attacks. 

For the future, we would like to see improvements that 

will reduce dependency on hypervisors and grow key 

management protocols throughout SEV. You also could 

limit the dangers from hypervisor hacking with multi-key 

encryption as well as hardware-based key attestation. It will 

also be more relevant in the cloud if SEV supports secret 

computing frameworks (such as multi-party computation or 

federated learning). 

VII. Conclusion 

This work reveals that Intel SGX and AMD SEV are 

similar in terms of their ability to protect computations in 

untrusted environments. SGX has strong application-level 

isolation through enclaves, where though SGX does better 

against privilege attacks but exposes secure enclaves to side-

channels and eventually will be significantly slowed down. 

By extension, in our evaluation, SEV has broad memory 
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encryption for VMs, and the security scheme of this measure 

relies on HPA’s integrity, while it can be improved by 

tackling the weakness of rollback attacks. 

SGX, the poster child of enclave-based security solutions 

plagued by performance issues, is a common choice when 

you need strong, application-level security. On the other 

hand, SEV offers benefits in virtualized environments since 

it virtually eliminates any setup requirements and degrades 

performance much less. While using SGX or SEV to create 

strong confinement is crucial, this decision should be made 

on a workload basis, and threat models should not place 

fundamental reliance on them to maintain good security in 

any case of workloads that requires the instantiation. 
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