
I. INTRODUCTION

Cloud services change the economics of computing by

enabling users to pay only for the capacity that they

actually use.  Service providers widely use the pay-per-use

contract scheme in their pay-as-you-go pricing model: that

is, the consumer uses as many resources as needed and is

billed by the provider for the amount of resources

consumed by the end of an agreed period.  In this

environment, the ability to record and account for the

usage of cloud resources in a trustworthy way encourages

widespread cloud deployment and availability [1],[23].

On the basis of trustworthiness, Cloud Service Providers

(CSPs) and users can both construct trustworthy usage

records to prove which resources were allocated and when

they were initiated and released.  And the usage record

should describe all the factors that are taken into account

in calculating resource consumption charges.  In

commercial cloud services, on the other hand, such as

Amazon EC2, S3 [14] and Azure [3], the contract

transactions and management are both processed by the

CSP alone; there is no trustworthiness of contract

transactions.

Among attempts to enforce the trustworthiness of

contract systems, a Public Key Infrastructure (PKI)-based

digital signature [17] stands out as a fundamental, widely-

used mechanism.  However, the computational complexity

of a PKI may result in a high computational overhead and

an intolerable contract response time because the

asymmetric key operations of digital signatures must be

performed for both the thin client terminal and the CSP.

This problem is exacerbated when the number of contract

transactions increases rapidly in proportion to the number

of users that require diverse cloud resources. 

By thoroughly investigating conventional contract

systems of cloud computing environment, we identified
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the following two fundamental requirements, which drive

the architecture of our contract system for cloud

computing environemnt: 

① Support for a trustworthy contract mechanism: In

traditional cloud contract systems, the contract

transactions and contract information are both

processed by the CSP alone. For a trustworthy way of

logging resource usage, a digital signature is essential

because it enhances the contract mechanism with

mutual trustworthiness [2].  As shown in Figure 1, our

proposed contract system introduces the concept of a

cloud notary authority (CNA) for the supervision of

contract transactions; and it generates trustworthy

binding information for users and CSPs.  Furthermore,

the resource usage log, which is based on a one-way

hash chain, retains the information in its local storage

for future accusations.  CNA supervises the contract

and, because of its objectivity, is likely to be accepted

by users and CSPs alike. 

② A computationally efficient contract mechanism with a

minuscule computational overhead: The frequent cloud

contract transactions lead to an excessive computational

overhead or contract system bottleneck.  To mitigate

these problems, we propose a computationally efficient

contract scheme which provides mutual trustworthiness.

The proposed contract scheme drastically minimizes the

asymmetric key operations of cloud users and CSPs; it

provides a level of mutual trustworthiness that is

identical to that of a PKI; and it minimizes contract

transaction latency. 

This paper is an extended work related to our previous

work, called THEMIS [27]. Previous work mainly focuses

on a protocol design to provide a mutual trustworthiness

needed for a mutually verifiable billing system.  In this

paper, attempts are given to integrate a complete cloud

contract system into resource management module of the

cloud computing platform, called iCubeCloud [26] as the

key primitive for a secure and trustworthy conatract

transaction.  Additionally, we present the performance

results of our prototype with deeper insight to show its

feasibility and practicality in terms of transaction latency,

throughput, and overhead from the trustworthy contract

mechanism.

The remainder of the paper is organized as follows: In

Section II, we discuss relevant works.  In Section III, we

present the overall system design and components of the

proposed contract system.  In Section IV, we illustrate the

proposed contract protocol and its trustworthness.  In

Section V, we describe our real implementation of the

contract system on a real cloud computing service.  In

Section VI, we evaluate the performance of the proposed

contract scheme.  Finally, in Section VII, we present our

conclusions and suggest future works. 

II. PREVIOUS WORKS 

A contract system that tracks the usage of computing

re-sources has been actively studied and developed in the

research area of grid or cloud computing.  To date, how-

ever, none of the contract systems have incorporated a
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Figure 1.  Cloud notary authority(CNA) for a trustworthy cloud service contract
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records.  There are also other resource management and

contract frameworks that have been suggested as part of

traditional grid approaches: namely, Condor/G [7],

Nimrod/G [8], GRASP [9], Tivoli [10], and TeraGrid [21].

However, rather than address security concerns, they focus

on notions such as distributed resource usage metering and

an accounting and account balancing mechanism for a

distributed grid environment.  Thus, they fail to provide

the type of mutual trustworthiness and integrity needed in

a trustworthy contract system that records the usage of

cloud resources.

2.  Security-enhanced contract systems

Several electronic payment schemes have been

proposed in the literature in an attempt to provide security-

enhanced contract mechanisms. They include

micropayment-based schemes such as PayWord [18],

MiniPay [16], e-coupons [19], and NetPay [24].  Broadly

deployed in e-payment systems, these schemes enable

users to securely and efficiently perform repeated

payments. Many of these schemes are based on the use of

one-way hash functions that generate chains of hash

values; users perform contract transactions by releasing a

certain number of hashes in the hash chain.  Although

these schemes are supposed to provide secure contract for

micropayment transactions in a computationally efficient

trustworthy or computationally efficient contract

mechanism.  In this section, we briefly discuss the

experimental results as we evaluate existing contract

systems in terms of their security level and contract

overhead.  A more comprehensive evaluation of the

experimental results is described in Section VI. 

1.  Native contract systems 

In a pay-as-you-go pricing model, users can scale the

capacity of cloud resources on demand.  Resource

consumption is billed on a utility basis with little or no

upfront cost.  Two pioneering studies identified challenges

in managing the resources of a grid computing

environment and proposed a computational economy as a

metaphor for effective management of resources [4],[5].

Several researchers presented a resource usage processing

system that can be used to scan batch system logs to build

accounting records [6]~[10],[21]; this system is able to

record and account for the usage of grid resources. 

Figure 2 shows the architecture and characteristics of a

contract system without any security concerns.  The

resource usage information, which pertains to the CPU

cycles, storage, and network bandwidth, is collected via a

resource usage monitor and charged over the cloud

contract agent.  APEL [6] presents a contract system that

processes log information to create quantified accounting
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estimated average contract transaction latency in our

experimental environment is 57.19 ms. 

III. DESIGN OF THE CLOUD
CONTRACT SYSTEM

1.  Design philosophy

In this section, we present the overall architecture and

contract process of the cloud contract system.  While

deliberating on the system requirements mentioned above,

we based the design of our contract system and protocol

on two principles: 

•Trustworthy contract with a CNA: We devised the CNA

to ensure that cloud resource usage is recorded and

accounted for in a trustworthy and credible way.  The

CNA supervises contract transactions by generating

binding information between a user and resource usage

log and retains the information in its local storage for

future accusation.  Our designed CNA, which covers

about 20,000 cloud service users, is based on a model

of the computer usage pattern of users [22].  Currently,

we are investigating the CNA from the perspectives of
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way, they offer no support for mutual trustworthiness of

the resource usage log. 

The research area of cloud and grid computing has

presented the PKI-enhanced contract and accounting

frameworks such as RUS [28], DGAS [11], SGAS [12],

GridBank [13], and Amazon EC2 [14].  They have an

access control mechanism that uses digitally signed

certificates to define and enforce an access policy for a set

of distributed resources.  However, none of these projects

treats the problem of dealing with the trustworthiness of

contract transactions or its computational efficiency, as we

do for the cloud computing environment. 

Due to its digital signature and non-repudiation

features, a PKI is generally considered to be the most

appropriate and fundamental way of enforcing

trustworthiness in terms of our requirements [15],[25].

Figure 3 illustrates the organization of a PKI-enhanced

contract system and its characteristics in terms of security

level and contract overhead.  A PKI has a contract

overhead even though it relies on full security features to

achieve mutual trustworthiness and data integrity.  The

extent of the overhead is mainly determined by the

extremely high complexity of asymmetric key operations

when the PKI is used for a contract system by a thin client

or heavily loaded server [20].  Figure 3 shows that the
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resource request to the CSP with a contract transaction.
•Cloud Notary Authority (CNA): The CNA provides a

trustworthy integrity mechanism that combats the

malicious behavior of users or the CSP.  In addition, it

investigates contract transactions and generates

trustworthy binding information among all the involved

entities on the basis of a one-way hash chain and

resource usage log; it also retains the information in its

local storage for future accusations.  The CNA enables

our proposed contract system to provide mutual

trustworthiness and integrity for a cloud resource usage

log.  The process, which involves exclusive key sharing

between entities and a one-way hash chain-based

signature, is computationally efficient for a thin client

and the CSP. 

3.  Overall process of contract transaction 

With the proposed CNA, trustworthy contract can be

provided without asymmetric key operations of any

entities after a registration phase.  Figure 4 shows the

overall process of a contract transaction with our contract

system.  The following details of the trustworthy contract

mechanism are described in more detail in Section IV:

① The user generates a cloud resource request message

and sends it to the CSP.

② The CSP sends the user a µ-contract-CSP generated

with a digital signature from a CSP hash chain.

③ The user generates a µ-contract with a hash chain-based

digital signature of the user and sends it to the CNA.

massive scalability and robustness.  We believe that

putting multiple trusted third parties in charge of the

CNA is an appropriate way forward, as is the case with

the PKI.
•Contract transactions with a minuscule computing

overhead: The requirement of performing frequent

transactions of frequent, trustworthy contract leads to

an excessive computation overhead or produces a

bottleneck in the contract system.  To provide a non-

obstructive contract operation, we propose a

computationally efficient contract protocol that

provides mutual trustworthiness and integrity of the

resource usage log.  The proposed contract protocol

drastically minimizes the asymmetric key operations of

cloud users and CSPs; it also minimizes the contract

transactions latency and provides a level of mutual

trustworthiness that is identical to that of a PKI.

2.  The proposed cloud contract system 

Figure 4 shows the overall architecture of our cloud

contract system.  The three major components of the

architecture are listed as follows:

•Cloud Service Provider (CSP): The CSP enables users

to scale their capacity upwards or downwards in

accordance with their computing requirements and to

pay only for the capacity that they actually use.
•Users: We assume that users are thin clients who use

services in the cloud computing environment.  To use

services in such an environment, each user makes a
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④ The CNA performs transactions to verify the µ-contract

from the user, and generates trustworthy binding

information between the user and the CSP for

consistency of the µ-contract. 

⑤ The contract process is completed when the user and

the CSP receive confirmation from the CNA. 

IV. CONTRACT PROTOCOL AND
ITS TRUSTWORTHNESS

While deliberating on our system design philosophy,

we diligently tried to streamline the computation overhead

of the contract operation.  Our novel µ-contract is

generated by a hash function and exclusively distributed

keys among entities.  It optimizes the computation

overhead of the contract mechanism and facilitates mutual

trustworthiness and integrity for cloud resource usage. 

1.  Operational Flow of the contract protocol

In this section, we describe an operational flow of the

overall transactions of the proposed contract protocol.

More specific data structure of each message is described

in [27].  The protocol consists of the following three

states: 

•State 1 (Mutul Authentication): When a user first

accesses the CSP, mutual PKI-based authentications are

performed by the user, the CSP, and the CNA.

Throughout the mutual authentications, the user, the

CNA, and the CSP exclusively share the following

three keys:

CSP CNA:(Kc,n), User CNA:(Ku,n), and User CSP:(Ku,c)

•State 2 (Hash Chain Registration):  In this state, the

user, the CSP, and the CNA generate a hash chain of

length N by applying the hash function N times to a

seed value (Cu,N, Cc,N, and Cn,N) so that a final hash

(Cu,0, Cc,0, and Cn,0) can be obtained.  The user and the

CSP commit to the final hash by digitally signing the

final hash (Cu,0 and Cc,0), and by registering the digital

signed hash elements to the CNA.  The purpose of this

registration is to commit the final hash values to the

CNA and to receive the final hash (Cn,0) generated by

the CNA.  Once the commitment of the one-way hash

chains is successfully completed, State 2 is skipped

until the corresponding hash chain either expires or is

revoked. 
•State 3 (Contract Transaction): A user who intends to

receive a cloud resource from the CSP generates a

resource request message encrypted with Ku,c and sends

it to the CSP. Upon receiving the message, the CSP

transmits a stipulation (S) containing an agreement that

covers factors such as the granted resource, the time,

and the price as well as the µ-contract-CSP.  The µ-

contract-CSP contains an encrypted value of three

inputs (namely, a hashed value of the stipulation (S), a

hash element (Cc,n), and a randomly generated nonce)

and a hashed value of two inputs (namely, a stipulation

(S) and a hash element (Cc,n)). The hash element is

updated for each contract transaction on a chain-by-

chain basis so that all of the hash elements can be

linked and verified sequentially toward the seed value

(Cu,0, Cc,0, and Cn,0) of the hash chains. Furthermore,

the used hash element (Cc,n) is unknown to the user.

After receiving the µ-contract-CSP, the user generates

a notary request message by combining the µ-contract-

CSP from the CSP with the user's own µ-contract-User.

In this message, the stipulation (S) used to generate the

µ-contract is unknown to the CNA.  The user then

sends the notary request message to the CNA for the

mutual trustworthness and integrity of the µ-contract.

When the message arrives, the CNA compares the H(S)

section of µ-contract-User with the H(S) section of µ-

contract-CSP to check the justness of the contract

request message.  If the two contexts are identical to

each other, the CNA sends the user and CSP a

confirmation message, which contains the hashed value

of H(S) and the hash element (Cn,n) of the CNA.

Otherwise, the CNA sends an error message to the user

and CSP.  The contract transaction is completed when

the user and the CSP receive the final confirmation

message.  The verified µ-contract is subsequently

retained on the local repository of the CNA for future

accusations.

The proposed protocol can provide a trustworthy and

non-obstructive method of contract after the authentication

(State1) and the hash chain registration (State2).  Any user

who accesses the CSP for the first time or needs the hash

chain renewal is asked to perform a mutual authentication

(State1) or generate a hash chain and commit to it by

digitally signing the final hash (State2), which requires an

asymmetric key operation.  From the perspective of

computation efficiency, the initial contract operation takes

longer than a normal PKI-based contract operation.  On

the other hand, the contract overhead for the client and the
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value of H(S) and the hash element (Cn,n) of the CNA. The

CNA then sends the user and CSP a confirmation message

with the binding information.  Upon receiving the

message, the user and CSP confirm that the corresponding

contract transaction (µ-contract) is correctly notarized

with the hash element (Cn,n) of the CNA.  After each

contract transaction, the CNA retains the corresponding µ-

contract, binding information, and Cn,n at their local

repository; the user stores the contract-related information

(S and µ-contract-User); and the CSP stores the

information (S and µ-contract-CSP) as evidentiary data.

In the case of the CNA, the transactional data is stored in a

type of notarized contract list (NCL).  The NCL is a XML-

based data structure for storing evidence of the contract

transactions for future accusations.  All of the contexts are

periodically stored with the digital signature of the CNA

to ensure the integrity of the NCL context. 

Figure 6 illustrates how the NCL is used to prove the

integrity of certain contract transactions with the

verification module of the CNA.  The verification module

consists of three hash modules: the User-Verifier, the

CNA-Verifier, and the CSP-Verifier.  The CNA-Verifier

verifies the integrity of the stipulation (S) from the user or

CSP by comparing the stipulation with the binding

information of the CNA.  The User-Verifier and the CSP-

Verifier check the correctness of an asserted contract

transaction by the user and CSP, respectively. Each

verifier inputs a stipulation (S) from the user or CSP as

CSP can be reduced drastically after the completion of

State 2 because the user and the CSP can perform the

contract transaction by simply using symmetric key and

hash operations. 

3.  How the contract records can be
trustworthy

Our proposed protocol can provide mutual

trustworthiness and integrity through the µ-contract,

which is generated among the entities by symmetric and

hash cryptography and distributed keys (Ku,c, Ku,n, and

Kc,n).  This section elaborates how the contract can be

verified in collaboration with the CNA.  Trustworthy

contract can be achieved when the CNA verifies the

validity of the user's message for each contract transaction

in State 3.  As described in Figure 5, when the notary

request message arrives at the CNA, the CNA examines

the consistency of the hash elements (Cu,n and Cc,n) from

the user and the CSP by checking the link with the

previously used hash elements (Cu,n-1 and Cc,n-1).  Next,

the CNA verifies the consistency between the H(S) section

of µ-contract-User and the H(S) section of µ-contract-

CSP.  By the checking, the CNA can prove that the CSP

sent the µ-contract-CSP and that the user sent the notary

request message with the same stipulation (S) as the

stipulation from the CSP.  The CNA subsequently

generates binding information, which contains the hashed

Figure 5.  Overall message transactions and local repositories for mutually verifiable contract transactions
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well as hash elements from the NCL to verify the integrity

of certain contract transactions.  For example, in the case

of the User-Verifier, a discrepancy between the output of

the hash function and the stored data of the CNA proves

that the user has modified the stipulation of the relevant

contract. 

Whenever the CSP asserts that a user repudiates a

certain contract transactions, the CSP can submit a claim

for justice to the CNA, drawing attention to the stipulation

(S) included in the corresponding µ-contract-CSP.  The

CNA then verifies the claim by comparing the output

value of the CNA-verifier with the corresponding binding

information stored in the NCL.  If the claim is correct, the

CNA then demands to see the stipulation (S) used to

generate the µ-contract-User.  The CNA then inputs the

stipulation (S) from the user and the hashed value stored

on NCL into User-Verifier and inputs the stipulation (S)

from CSP and the hashed value stored on the NCL into the

User-Verifier. Any discrepancy between the output of the

hash function and the stored data of the NCL proves that

the user or CSP has modified the stipulation of the

relevant contract. 

V. SYSTEM IMPLEMENTATION 

In this section, we describe our real implementation of

the cloud contract system on a real cloud computing

service called iCubeCloud [26]. First, we explain the

purpose and features of the three key components in detail.

We then describe the overall system interface with the

process for passing messages among the three entities of

the cloud contract system. 

1.  Overall software component

Figure 7 shows the overall software components of the

cloud contract system. The three major components are

the Contract-Client, the Contract-CSP, and the Contract-

CNA.  The components interact with each other on the

basis of the proposed contract protocol via a secure

communication.  For secure communication and

cryptographic operations, we deployed OpenSSL as

cryptography primitive.  The performed contract

transactions are maintained by using MySQL and SQLite

in the Contract-Client, the Contract-CSP, and the

Cloud Service
Provider(CSP)

Evidence Data
from CSP

User

Stipulation(S)

Evidence Data
from user

Verification
Module of CNA

User-Verifier

S SCu,n Cc,nSHA-1

SHA-1 SHA-1 SHA-1

µ-contract-Usern-th Contract
Transaction µ-contract-CSP

Notarized Contract List(NCL)

Figure 6.  Verification mechanism with the notarized contract list (NCL) in the CNA

H(H(S)||Cn,n)
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CNA-Verifier CSP-Verifier
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module. When users make a resource request message,

the proposed contract protocol is performed on the

client contract agent.  The transactional data of the

protocol are then stored into the local repository. 
•Contract-CSP: The Contract-CSP acts as a mediator

between users and the cloud service platform.  The core

part of the Contract-CSP is the CSP contract agent

module.  The CSP contract agent is a part of our

underlying cloud computing platform, called as

iCubeCloud [26].  In our platform, the CSP contract

agent is integrated into the resource management

module as the key primitive for a secure and

trustworthy contract transaction.  When a user who

intends to receive a cloud resource sends a resource

request message, the CSP contract agent performs the

contract transaction on the basis of the proposed

protocol by generating a µ-contract-CSP and assigning

Contract-CNA. We integrated our implemented system in

two kinds of machines with the different hardware

specifications. A client running the Contract-Client has an

Intel Z510 processor and a 1GB main memory; the other

components have a Xeon E5500 processor and 4 GB main

memory.  The three major components of the overall

contract system are described as follows: 

•Contract-Client: The Cloud-Client is a client side

application that provides the user interface for working

with the CSP and the CNA. Users can start and stop

user-defined virtual machine instances, view and

perform actions on running instances, and manage

storage volumes with simple clicks of a mouse. They

can also check the consumption of cloud resources such

as the CPU, memory, and storage capacity. The core

part of the Contract-Client is the client contract agent
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the requested cloud resources that interact with the

cloud resource management module.  After that, the

CSP Contract agent records the contract transactions in

the backend database for future accusations.  The

performed contract transactions can be viewed via the

CSP contract transaction log viewer. 
•Contract-CNA: The Contract-CNA consists of two

submodules: a verification module and a backend

database.  The verification module supervises the

contract and makes the contract more objective and

acceptable to users and CSPs. After receiving a notary

request message, the verification module verifies the

received µ-contract, generates the binding information,

and records that information in the backend database

for future accusations.  Through this process, the CNA

provides mutual trustworthiness and integrity for a

cloud resource usage record, affording protection

against the malicious behavior of users or the CSP.  The

CNA-contract verification console can be used to verify

a certain contract transaction at the request of the user

or the CSP.  The console easily demonstrates what

happens if a user or CSP engages in malicious behavior. 

2.  Overall system interface 

The screenshot of the above-mentioned three entities

in Figure 8 illustrates one unit of the contract transaction.

The screenshot is divided into three parts.  The first part

(Figure 8-a) is the client-console interface where users can

start and stop user-defined virtual machine instances, view

and perform actions on running instances, and manage

storage volumes.  The second part (Figure 8-b) is the CSP

contract transaction log viewer, which displays the

performed contract transactions; it covers factors such as

the granted resource, the time, the price, and the µ-

contract-CSP, which is implemented inside the CSP.  The

third part (Figure 8-c) is the CNA contract verification

console; it displays the notarized contract transactions

implemented inside the CNA.  The whole process is

described as follows: 

① At the client console on the user side, the user can

request a cloud computing resource by selecting a

virtual machine type, a system image, the storage

capacity, and so on. 

② After receiving the request message from the user side,

the contract agent of the CSP sends the user a µ-

contract-CSP message corresponding to the resource

request message.

③ After acquiring the message from the contract agent of

the CSP, the client console program generates a µ-

contract-User and sends it to the CNA. 

④ The CNA performs transactions to verify the µ-

contract from the user and generates trustworthy

binding information between the user and the CSP for

consistency of the µ-contract. The µ-contract and the
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Figure 8.  Screenshot of (a) client console (b) log viewer of CSP, and (c) verification console of CNA

(a) client-console (b) CSP Contract Transaction Log Viewer

(c) CNA Contract verification Console



corresponding binding information are then stored in

the backend database.

⑤ The contract process is completed when the client

console and the contract agent of the CSP receive

confirmation from the CNA. 

Through this process, one unit of the contract

transaction is accomplished. All transactional data are

stored in their own database, which can be displayed in

each logger of the components.

VI. EFFICIENCY AND
PERFORMANCE EVALUATION

In this section, we present the performance results of

our prototype version of the cloud contract system.  First,

we demonstrate the overall experimental environment. We

then describe the operational efficiency of the contract

protocol to evaluate the performance of the cloud contract

system in terms of latency and throughput of the proposed

contract protocol. 

1.  Experimental environment 

To evaluate the performance characteristics of the

cloud contract system, we constructed a cloud user

emulator and coupled it to a contract transaction generator.

The objective of the emulator is to simulate the processing

and communications resources anticipated in a full

implementation.  Figure 9 shows the overall experimental

environment.  The operating times of the emulator are

similar to actual operating times (for communications,

contract operations, and message processing).  In addition,

the user emulator receives control signals from the

contract transaction generator.  The generator is a module

that generates control signals to produce contract request

messages; for this purpose, we use a random generator that

models the computer usage pattern of users [22]. 

2.  Cryptography operation experiment 

The first experiment measures the cryptography

processing time on the client side, which is equipped with

an Intel Z510 , 1GB RAM and a server (an E5500

processor with a 4 GB RAM).  Table 1 compares the

processing time of an RSA 1,024 bit algorithm [20] as an

asymmetric key operation, an AES 128 bit algorithm as a

symmetric key operation, and a SHA-1 algorithm as a

hash function.  It shows that the times required to decrypt

and encrypt a 128 byte block of data with the RSA 1,024

bit algorithm are 22.324 ms and 1.169 ms, respectively, on

the computing devices of the client. In contrast, only 0.014

ms is required to encrypt and decrypt the block with the

AES 128 bit algorithm on the device because an AES

operation has a much lower computation overhead than
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the RSA algorithm.  Furthermore, SHA-1 needs only

0.0012 ms of operation time to generate a hashed message.

On the server side, the cryptography operation time is

drastically reduced by a high-performance processor and a

huge memory.  On the server side, a 128 byte block of

data with the RSA 1,024 bit algorithm is decrypted in

2.012 ms and encrypted in 0.117 ms.  The same block with

the AES 128 bit algorithm on the device is encrypted and

decrypted in 0.0031 ms.  The SHA-1 takes only 0.0003 ms

of operation time to generate a hashed message. 

3.  Contract protocol efficiency and
comparative evaluation 

The performance of the contract protocol in terms of

the contract overhead and the consumption of processing

and communication resources is an important factor to be

considered when designing contract protocols. First, we

analyze how the efficiency of the proposed contract

system compares with PKI-based contract; we also

analyze the µ-payment in terms of computation and

communication efficiency. 

Figure 10 (a) shows the number of public and private

keys (RSA 1,024 bits), the symmetric key (AES 128 bits),

and the hash (SHA-1) operations performed with the total

operating time for each contract protocol.  In spite of its

smaller number of cryptography operations per contract,

the PKI-based contract protocol has a much longer latency

period for contract transactions than other schemes

because it has a certain number of private and public key
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Table1.  Processing times of encryption,decryption,and hash for each algorithm and operation environment

Platform

Private Key

Public Key

Encryption

Decryption

SHA-1

Private Key

Public Key

Encryption

Decryption

SHA-1

RSA 1024bit

AES 128bit

Hash Function

RSA 1024bit

AES 128bit

Hash Function

Operation time

Avg. 22.324 ms

Avg. 1.169 ms

Avg. 0.014 ms

Avg. 0.014 ms

Avg. 0.0012 ms

Avg. 2.012 ms

Avg. 0.117 ms

Avg. 0.0031 ms

Avg. 0.0031 ms

Avg. 0.0003 ms

•Client Side

- CPU:Intel Z510

- RAM:1GB

Cryptography

•Server

- CPU:Xeon E5500

- RAM:4GB

Figure10.  (a) the number of public/private keys and the symmetric key operations with the total operation time 
for each protocol(PKI, µ-payment,proposed) (b) contract transactions latency



operations for all of the entities.  The µ-payment, on the

other hand, has the shortest processing time because it can

be completed by symmetric key and hash operations, but it

fails to meet our security requirement.  In the case of the

proposed contract system, the first time a user accesses the

CSP, all of the entities perform mutual PKI-based

authentications and generate a hash chain which requires

two private and public key operations and multiple hash

operations.  The authentication and hash chain generation

time of the proposed contract system is similar to the

operating time of PKI-based contract.  However, after the

operations, the user can perform a contract operation by

processing only four symmetric key operations and two

hash operations. This process has a much shorter operating

time than the corresponding process of a PKI-based

contract transaction.  By way of summarizing the above

results, we give an outline of the overall transaction time

of the contract protocols.  As shown in Figure 10(b), we

estimate the operating time of each entity for each contract

transaction so that we can measure how much the

cryptography contributes to the contract overhead. The PKI-

based contract transaction time with the RSA 1,024 bits

algorithm is 57.19 ms.  In the case of the µ-payment, the

contract transaction can be accomplished without asymmetric

key operations.  These results confirm that even though the

µ-payment has much shorter contract latency (4.33 ms), it

cannot provide mutual trustworthiness and integrity. In the

case of the proposed contract system, the contract

transactions are accomplished without asymmetric key

operations but still ensure mutual trustworthiness and

integrity.  We measured the contract transaction latency by

measuring the interval between the resource request

message and the confirmation message on the client side.

The results confirm that, in the case of the proposed

contract system, the total transaction time for the user and

the CSP is much shorter than that of the PKI-based

contract system. Moreover, without compromising the PKI

security level, the total contract transaction time of the

proposed contract system (4.50 ms) is much shorter than

that of PKI-based contract (57.19 ms). 

4.  Throughput evaluation 

Figure 11 illustrates how the throughput of the

contract transactions mutates as the number of contract

requests per second varies.  The number of contract

requests per second ranges from 100 to 6,000.  For the

PKI-based contract protocol, we found that the throughput

is saturated on 611.1 transactions per second as the

number of contract requests increases, mainly as a result

of the cryptography operations and the communication

overhead on both the client side and the server side. In the

case of the proposed contract system and the µ-payment,

the throughput is saturated on 4801.7 and 4994.2

transactions per second, respectively, as the number of

contract requests increases.  This phenomenon is due to

the fact that quantity of user and server provider-side

operations and the µ-payment is much smaller than that of

PKI-based contract. The µ-payment cannot provide

mutual trustworthiness and integrity; our contract system

can provide them.  This result confirms that the proposed

contract protocol can seamlessly achieve fine-grained

trustworthiness whenever the number of requests per

second is less than 4,800. 
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5.  Storage overhead

The CNA needs to store all the µ-contracts contained

in the messages and binding information so that mutual

trustworthiness can be ensured for an indefinite period.

First, we measured the size of the data stored in the local

repository of the CNA, the users, and the CSP for a period

of one month. The iCubeCloud service is the CSP in this

study; it is currently being used by five research institutes

for course work and research activities.  The total number

of users is about 2,700. The average size of the µ-

contracts stored by the CNA per user per day is 8.7?KB;

the average size of the usage log and related information

stored by the cloud and the user is 71.6?KB per user per

day. If a million people use the cloud service, the cloud

contract system will need archiving capabilities so that

after a certain period records can be moved from the CNA

into archival storage. Currently, we are working towards

the scalability and optimization of the storage

requirements for cloud contract transactions. 

VII. CONCLUSION

Our aim was to provide a full-fledged trustworthy and

non-obstructive contract solution tailored for a cloud

computing environment.  To accomplish this task, we

thoroughly reviewed the ways in which conventional

contract systems are used in the environment, and we

consequently derived blueprints for our trustworthy and

computationally efficient contract system.  Besides

utilizing conventional contract systems, we conceived and

implemented the concept of a CNA that supervises

contract to make it more objective and acceptable to users

and CSPs alike. Our contract system features two

remarkable achievements: 

① Contract transactions with a minuscule computing

overhead: Our trustworthy contract protocol replaces

prohibitively expensive PKI operations without

compromising the security level of the PKI; as a result,

it significantly reduces the contract transaction

overhead.

② Cloud Notary Authority (CNA): This entity ensures

undeniable verification of any transaction between a

cloud service user and a CSP.  Our cloud contract

system consequently represents a cost-effective but

uncompromisingly secure development of a contract

system.  According to the performance evaluation, the

contract overhead of our contract system (which

averages 4.50 ms) is much shorter than the contract

overhead of conventional PKI-based contract (which

averages 57.19 ms).  Thus, the throughput of the

contract transactions of the proposed cloud contract

system (4801.7 transactions per second) is much

higher than the throughput of PKI-based contract

transactions (which averages 611.1 transactions per

second).

Our next step is to consider the scalability and fault

tolerance of the cloud contract system. Currently, we are

investigating the system from the perspectives of massive

scalability and robustness.  We believe that putting

multiple trusted third parties in charge of the CNA is an

appropriate way forward, as is the case with the PKI. We

are working towards a coud contract system with more

fault tolerance to scalable contract. 
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