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Abstract—In an attempt to expand Public Key Infrastructure (PKI) usage to a ubiquitous and mobile computing environment, we found

that the deployment of the PKI on a resource-constrained device such as an 8-bit microprocessor leads to user-obstructive latency or

additional circuitry for the operations. To alleviate these limitations, we propose a new PKI-based authentication protocol and security

infrastructure, namely, PKASSO, which is enhanced with the single sign-on and delegation technology that is used especially for

mobile devices with restricted computation power. PKASSO offloads complex PKI operations from the mobile devices to the

infrastructure so as to keep the hardware and software complexity of the devices as low as possible. In addition, even though a

conventional delegation mechanism cannot support a nonrepudiation mechanism against malicious user behavior, PKASSO can

provide such a mechanism by devising a referee server that, on one hand, generates binding information between a device and

authentication messages and, on the other hand, retains the information in its local storage for future accusation. We present the

detailed design and performance evaluation of PKASSO and offer a protocol analysis in terms of user authentication latency and the

completeness of the protocol. According to the performance evaluation, the authentication latency of our infrastructure (which

averages 0.082 second) is much shorter than the authentication latency of a conventional PKI-based authentication latency (which

averages 5.01 seconds).

Index Terms—Authentication, access controls, public key cryptosystems.
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1 INTRODUCTION

IN the provision of services in a ubiquitous environment,
pervasive devices frequently communicate with other

unknown devices, thereby exposing themselves to an
unfortified insecure environment. Security in a ubiquitous
environment is therefore of immense importance and the
issue needs to be addressed to secure the privacy and
confidentiality of users who live in such an environment [1].
In our ubiquitous environment, we have been developing a
wearable computer, called the Ubiquitous Fashionable
Computer (UFC) [2] and, in its interoperable computing
environments, we deployed various devices such as
U-Kiosks, U-Print, and ZigBee-enabled appliances to
provide users with ubiquitous services, primarily for a
university campus [3].

As a fundamental way of enforcing the security of a
ubiquitous environment, authentication and authorization
stand out as the two most widely used mechanisms. A full
realization of trustworthy ubiquitous services based on
authentication and authorization in a ubiquitous computing
environment requires deep understanding of the perfor-
mance characteristics and the communication patterns of
the mobile devices since those devices are usually endowed

with limited computation power. In particular, due to the
anonymity and mobility of users in a ubiquitous environ-
ment, the pervasive devices placed to provide services
should always check the identity of the mobile devices and
vice versa, necessitating mutual authentication between
them. Thus, fundamental security operations such as
authentication, digital signatures, nonrepudiation, and
secure key distribution should be provided as essential
services by a security infrastructure to ensure the high
security of the services [4].

From a security aspect, the Public Key Infrastructure
(PKI) is generally considered as the most appropriate
solution for the requirements. However, the computational
complexity of PKI causes high deployment costs and a high
operational overhead because asymmetric key operations of
PKI need to be performed on mobile devices. In addition,
the frequency of user authentication requests increases
rapidly in proportion to the number of the service devices
that require mutual authentication [5]. In a mobile comput-
ing environment, the performance implications of protocol
design are often accentuated by limitations in the capacity
of the mobile processor and the wireless network. The
resources required to perform asymmetric key operations
and to transmit large messages may result in unacceptable
performance results and intolerable user authentication
response times.

By thoroughly investigating our ubiquitous environment
and conventional security systems, we identified two critical
limitations of a conventional PKI-based security system. The
limitations and our approach are described as follows:

1. Obstructive authentication latency in a mobile
device with restricted computation power. There
is a challenge with clients where mobile devices with
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restricted computation power demand frequent and
dynamic authentications over PKI. To address this
latency problem, we propose a security infrastruc-
ture that is based on PKI and a single-sign-on (SSO)
protocol. The proposed security infrastructure pro-
vides users with a seamless and secure system of
authentication and key distribution. In the proposed
infrastructure, we devised a delegation server that
offloads complex PKI operations from mobile
devices to the infrastructure so as to keep the
hardware and software complexity of the devices
as low as possible. By using the proposed authenti-
cation mechanism, we can also achieve a more
secure mechanism in line with newly emerging
security policy requirements without replacing
hardware or software components of devices.

2. Support for digital signature and nonrepudiation.
Even though a digital signature mechanism and a
nonrepudiation mechanism are essential functions in
security applications, a conventional delegation
mechanism cannot support these two mechanisms
against malicious user behavior. Because user
authentication transactions are already delegated,
an authenticator cannot prove the fact that the
authentication transactions are really intended by
users. Our proposed protocol, named PKASSO
(Public Key-based A3-providing Single Sign On),
and the security infrastructure can provide the two
mechanisms by means of a referee server that
generates binding information between a device
and authentication messages [6].

The remainder of this paper is organized as follows: In
Section 2, we discuss relevant works. In Section 3, we
present the overall system design and components of the
proposed security infrastructure. In Section 4, we illustrate
the proposed SSO protocol. In Section 5, we evaluate the
performance of PKASSO. Finally, in Section 6, we present
our conclusions.

2 RELATED WORKS

To meet the demands of a ubiquitous and mobile environ-
ment, researchers have endeavored to facilitate the deploy-
ment of a security infrastructure for e-commerce,
particularly an infrastructure that can verify the authenticity

of communicating parties and establish trust among devices
over the air. In this section, we briefly discuss the
experimental results as we evaluate the preexisting security
infrastructures in terms of security level and authentication
latency. More comprehensive evaluations of the experi-
mental results are described in Section 5.

2.1 PKI

PKI, which is a representative security infrastructure based
on an asymmetric key, is generally considered to be the
most appropriate solution for e-commerce and mutual
authentication due to its digital signature and nonrepudia-
tion features [7]. The organization of a conventional PKI
and its characteristics in terms of security level and
authentication latency are illustrated in Fig. 1. Even though
PKI provides full security features, including authentica-
tion, digital signature, nonrepudiation, and secure key
distribution, it has a severe drawback when used by a
diminutive device with restricted computation power, that
is, the user service latency, which is mainly determined by
the authentication latency, is exacerbated by the restricted
resources of the device and by the extremely high complex-
ity of RSA operations for encryption, decryption, and
certificate validation in PKI. The estimated minimum
authentication latency in our experimental environment is
about 5.01 seconds on the 8 bit microprocessor [8] deployed
mainly in a wireless communication module.

2.2 Kerberos-Assisted Authentication

Fig. 2 shows the architecture and characteristics of a
conventional authentication system based on a symmetric
cryptography called Kerberos [9]. Kerberos achieves a
significantly reduced authentication latency (minimum of
0.19 second) over PKI (minimum of 5.01 seconds) by virtue of
the lesser complexity of the symmetric key operations and the
SSO mechanism. Kerberos works on the basis of tickets,
namely, a Ticket Grant Ticket (TGT) and a Session Grant
Ticket (SGT), which prove the identity of users. Whenever a
user attempts to connect to a specific service, a TGT and an
SGT are required for Kerberos authentication. Once a user
acquires a TGT from the Kerberos server through the initial
user authentication, the user can get SGTs which enable the
user to receive a service several times without additional
authentication for a specific period.

Kaman [9] studied how the Kerberos protocol can be
deployed in mobile ad hoc networks. He presented a secure
key exchange scheme for use in ad hoc networks. The
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Fig. 1. The conventional PKI architecture and a brief overview of the

characteristics.

Fig. 2. The architecture of a conventional security infrastructure based

on Kerberos and its characteristics.



scheme is based on the Kerberos protocol and measures
factors such as replication and elections to ensure max-
imum connectivity between clients and servers. This
scheme cannot, however, provide a digital signature,
nonrepudiation, and secure key distribution for unknown
devices, even though these functions are essential in
security applications. These functions are precluded,
because Kerberos uses an authentication mechanism based
on a symmetric cryptography with a preshared secret key.

2.3 PKINIT and M-PKINIT

PKINIT is an extension of the Kerberos protocol so as to
enable public key-based authentication between a user and
a Key Distribution Center (KDC) instead of using sym-
metric key-based authentication. In this approach, a
Kerberos server collaborates with the PKI entities, CA and
LDAP directory server [10]. In addition, the PKINIT
protocol aims at enhancing the security of the Kerberos
protocol by using a PKI-based authentication to get a TGT
by using a smaller number of public key operations than
conventional PKI-based authentication.

The M-PKINIT protocol is a lighter version of the PKINIT
which was proposed in an attempt to reduce the significant
overhead of the authentication operation and communica-
tion whenever public key protocol operations are invoked in
a mobile device [11]. Fig. 3 shows the organization and
characteristics of the M-PKINIT protocol. This scheme can
provide a secure key distribution mechanism over the
asymmetric key operation, SSO through Kerberos, and it
has a shorter authentication latency (minimum of 0.74 sec-
ond) than the PKI (minimum of 5.01 seconds). However, it
cannot provide a digital signature and nonrepudiation
because each authentication for a service device is
accomplished by Kerberos-based authentication. The M-
PKINIT protocol requires performing public and private
key operations on a user’s device whenever the user
moves to another Kerberos realm to get a TGT.

2.4 NSI

The NSI introduced a PKI server that is responsible for
searching and verifying certificates on behalf of a mobile
device or client [12]. Fig. 4 shows the architecture and
characteristics of the NSI. The PKI server provides a set of
simple and abstract APIs (PKI Client API) that hide most of
the complex PKI operations from a client, thereby mini-
mizing the hardware and software complexity for a client.
To minimize the operational complexity for the client and
server, we adopted a mechanism, called delegation [13],

which has been actively studied and used in the research
area of grid computing. The PKI server and the delegation
mechanism can both minimize the PKI-related computation
overhead of a client by offloading the complex operations to
a powerful infrastructure server. Although the NSI pro-
vides all of the security functionality of the PKI, the
authentication latency of the NSI (minimum of 4.75 seconds)
fails to meet our system requirement with respect to
authentication latency. The major reason for that failure is
because the asymmetric key operations are performed on
the user’s mobile device.

2.5 Summary

Fig. 5 shows the technical advancement flow of the
aforementioned works, as well as their security functional-
ities and authentication latency. The last row in Fig. 5b
clarifies our PKASSO’s design goal with respect to security
functionalities to be achieved and its resulting authentica-
tion latency.

Even though PKI has attained consensus that it can
enable high security by providing the four essential security
functionalities, except for SSO, it comes at the price that the
PKI-based authentication requires many more CPU cycles
than the Kerberos authentication system based on a
symmetric cryptography. Consequently, when PKI is used
in a mobile and ubiquitous environment, the high computa-
tional complexity results in high deployment costs and
operation overhead since those operations are necessarily
performed on a mobile device with computation power
constraints. As compared to PKI, Kerberos and M-PKINIT
require relatively low computational complexity and
provide SSO capability, leading to a significantly reduced
authentication latency of 0.19 and 0.74 second, respectively.
Kerberos, however, is incapable of providing digital
signature, nonrepudiation, and secure key distribution
due to its nature of asymmetric key operations and the
nonexistence of CA, a third-party security mediator.
M-PKINIT cannot provide a digital signature and non-
repudiation, though they can provide secure key distribu-
tion by initial authentication over PKI. Although NSI can
provide all of the security functionality of PKI and reduce
the PKI operation complexity on a mobile device, it still
suffers from an intolerable authentication latency. In
addition, NSI is not designed to provide SSO capability.

To alleviate these limitations, we propose a new PKI-
based authentication protocol and security infrastructure,
namely, PKASSO. To harness the full power of PKI, even in
a mobile environment, NSI and PKASSO take a different
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stance by making an effort to reduce the number of PKI
operations or the complexity of asymmetric key operations,
as shown in Fig. 6. The main goal of NSI is to offload the
certificate validation phase (searching and verifying a
certificate through a lengthy validation chain) out of a
mobile device. In our experiment, as shown in Fig. 6, the
overall authentication latency of NSI was reduced to
4.75 seconds. On the other hand, PKASSO aims at off-
loading the mutual authentication phase (mainly asym-
metric key operations) and the certificate validation phase
from a mobile device to the infrastructure. In terms of
authentication latency, PKASSO itself is broken into two
phases: the delegation phase and the authentication phase
in Fig. 6. Upon entering the security infrastructure for the
first time, the mobile device needs to perform asymmetric
key operations for delegation (5.19 seconds). Once the
delegation is successfully completed, from the second time,
the authentication latency is reduced to 0.082 second.

3 DESIGN OF THE PKASSO SECURITY

INFRASTRUCTURE

3.1 The PKASSO Design Philosophy

As explained in Section 2, we designed the PKASSO
security infrastructure to solve the limitations of a conven-
tional authentication system. Our PKASSO design philoso-
phy is based on the following objectives:

. Nonobstructive authentication latency. The authen-
tication latency of PKASSO should be bounded
within a certain amount of time, particularly in
terms of human perception and the type of services
for which it will be used.

. Equivalent security level as the PKI. PKASSO
should provide the same security features, including
authentication, digital signature, nonrepudiation,
and secure key distribution, within a nonobstructive
authentication latency.

3.2 Overall System Design

We incorporated the PKINIT protocol into our system as an
underlying security infrastructure in an attempt to provide
a secure key distribution and a way of efficiently and cost
effectively managing a large number of devices and sensors
in a ubiquitous environment. As described in Section 2, the
PKINIT protocol is an extension of the Kerberos protocol so
as to enable public key-based authentication between a user
and KDC instead of using the symmetric key-based
authentication. However, the PKINIT protocol has two
drawbacks: 1) It cannot provide a digital signature and
nonrepudiation because each authentication for a service
device is accomplished by Kerberos-based authentication
and 2) it has an obstructive authentication latency (mini-
mum of 0.74 second) because it requires public and private
key operations on the user’s device whenever the user
moves to another Kerberos realm to get a TGT. To overcome
these drawbacks, we based the design of our security
infrastructure and protocol on two principles:

. A computationally efficient PKI-based SSO proto-
col. The requirement of users to sign on for each
service device on each occasion will severely hamper
the usability of a diminutive security device with
limited computation power. The widely used SSO
technology can greatly relieve the poor usability
problem by obviating the need for repeated sign-on
procedures; hence, we adopted the SSO technology
into our underlying security infrastructure. To
provide the SSO technology and nonobstructive
authentication latency, we propose a computation-
ally efficient PKI-based SSO protocol that is based on
a delegation mechanism that uses a proxy certificate
[13]. The proposed protocol also provides identical
security functionalities as in PKI.

. A delegation server and a referee server. For our
SSO protocol, we devised a delegation server and a
referee server. The delegation server is responsible
for performing prohibitively expensive PKI opera-
tions on behalf of a diminutive security device to
minimize the computational overhead of the security
device. The referee server, which is designed to
provide a computationally efficient digital signature
and nonrepudiation, generates binding information
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Fig. 5. Summary of relevant works. Experimental results in terms of

authentication latency are described in Section 5. (a) Evolution of

relevant works. (b) Security functionality and authentication latency of

relevant works.

Fig. 6. Comparison of authentication latency for PKIX, NSI, and

PKASSO.



between security devices and authentication mes-
sages and retains the information in its local storage
for future accusation.

3.3 The Proposed PKASSO Security Infrastructure

Fig. 7 shows the overall architecture of our PKASSO

security infrastructure. The five major components of our

architecture are listed as follows:

. The PKINIT protocol, which is considered as a
promising foundation of PKASSO, consists of a CA,
an LDAP, and a Kerberos server, as described in
Section 2.3.

. A user is a mobile entity that receives the provided
services in our ubiquitous security environment. To
utilize services such as authentication, authorization,
and accounting in the environment, each user should
carry a diminutive security device called a PANDA,
which is a type of a smart card equipped with ZigBee-
based low-power intercommunication capability and
location-sensing capability [15]. Fig. 8 shows our
implementation of the PANDA and the UFC.

. A service device permeates the surroundings for the
provision of services. The service device in our
environment has a ZigBee communication module
to interact with users and to authenticate the identity
of users.

. A delegation server is designed to offload complex
PKI-related operations from a user to the infrastruc-
ture, making it possible to develop users’ security
device PANDA with cheap simple hardware. The
delegation server also maintains all of the proxy
certificates that contain the private keys and public
keys that are delegated and signed by a user. Upon
entering the security infrastructure for the first time,
the user delegates the user authentication operations
to the delegation server by following RFC3820 [13].
The delegation server subsequently takes over all of
the authentication operations until the users’ proxy
certificate expires.

. A referee server provides a nonrepudiation mechan-
ism for combating malicious user behavior. The
nonrepudiation mechanism takes effect as long as

the user uses its own private key in an authentication
process. However, after delegating its operations to
the delegation server, the user no longer uses its
private key as a means of halting the provision of the
nonrepudiation mechanism. We therefore devised a
referee server so that, even during the delegation
process, we could bring the mechanism back into our
system. The referee server investigates all authentica-
tion messages, generates binding information on the
fly between a user and the authentication messages,
and retains the information signed by the referee
server’s private key in its local storage for future
accusation. Due to the referee server, our proposed
security infrastructure can provide a symmetric key-
based nonrepudiation mechanism that is computa-
tionally efficient on the user’s mobile devices. More
specific details of the nonrepudiation mechanism are
described in Section 4.

3.4 Overall Authentication Process of the PKASSO

Fig. 9 shows the overall process of authentication on the basis
of our security infrastructure. The proposed delegation
server and the referee server make it possible to authenti-
cate users with only three symmetric key operations on the
user’s device after the delegation, thereby providing the
following level of security, which is identical to the security
of PKI:

1. The service device sends a challenge message to a
user who intends to receive a service.

2. The user generates an authentication request mes-
sage (with two symmetric key operations) and sends
it to the delegation server.

3. The delegation server performs transactions for
verification and authentication with the referee
server and the PKINIT protocol on behalf of the user.

4. By using a received authentication message from the
PKINIT protocol, the delegation server makes a
response message and transmits it to the service
device.

5. The authentication is completed on the arrival of a
confirming message from the user.
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Fig. 7. The proposed security infrastructure PKASSO.

Fig. 8. (a) UFC [2] and UFC modules attached on UFC. The UFC

modules (Camera module and PANDA) can be attached and detached

easily on UFC, allowing users to construct one’s own UFC platform.

(b) Developed PANDA. (c) Specification of the PANDA [14].



4 PROPOSED SSO PROTOCOL

Deliberating on our system design philosophy, we made

our best effort to streamline the computation of a mobile

device with restricted computation power and to minimize

the communication overhead per authentication in a mobile

device. Our novel challenge message, which is generated by

a hash function and a cross-distributed key among the

entities, can facilitate authentications with optimal compu-

tation and communication overheads without compromis-

ing any of the system’s PKI security standards.

4.1 Flow Diagram of the SSO Protocol

Fig. 10 shows a flow diagram of the proposed SSO protocol.

The protocol consists of six states and the protocol safety is

verified in Section 4.4:

. State 1. When a user intends to receive a service
from a service device, the user accepts a beaconing
challenge message from the service device.

. State 2. On the first occasion when a user accesses the
security infrastructure, the user and the delegation
server perform a mutual authentication based on
PKI. The user then delegates the user authentica-
tion operations to the delegation server. For this
purpose, a public-private key pair is generated by
the delegation server and the public key is
subsequently transmitted to the user. Upon the
arrival of the public key, the user generates a proxy
certificate containing the public key and signs the
proxy certificate with the private key. Last, the user
sends the proxy certificate back to the delegation
server. Through the delegation mechanism, three
keys are shared exclusively between the user, the
delegation server, and the referee server. Through-
out the public key operation, the user shares two
keys: one with the delegation server and one with
the referee server. The delegation server also shares
one key with the referee server and one with the
user.

. State 3. Once the delegation is successfully com-
pleted, State 2 is skipped until the corresponding
proxy certificate either expires or is revoked. The

user encrypts the received challenge message by
using the AES twice; the user then transmits the
encrypted message to the delegation server. Upon
receiving the encrypted challenge message from the
user, the delegation server asks the referee server to
verify the message.

. States 4-6. Upon reception of the verification result
from the referee server, the delegation server
operates the PKINIT authentication to get a TGT
over the PKI (State 4) and an SGT over the Kerberos
(State 5). Finally, the delegation server generates and
sends a response message to the service device and
the user sends a confirm message to the service
device. After the validation check of the service
device, the authentication operation is terminated
(State 6).

4.2 Description of the SSO Protocol

As previously mentioned, the proposed protocol can

provide seamless authentication after the delegation. Any

user who accesses the security infrastructure for the first

time is asked to delegate the user authentication. Hence, the

initial authentication takes longer than delegated authenti-

cations. On the other hand, the authentication latency can

be shortened drastically after the completion of the

delegation because the user can be authenticated by using

a much simpler type of symmetric cryptography. Thus, the

authentication flow is changed as follows:

. The first access to the security infrastructure goes
through all of the states, i.e., from State 1 to State 6.

. After the delegation, the authentication goes through
State 1 and then moves to States 3-6.

. If the delegation server has already obtained a TGT ,
it goes through States 1, 3, 5, and 6.

. If the delegation server has already obtained a TGT
and an SGT , it goes through States 1, 3 and 6.

In this section, we describe the authentication and the

nonrepudiation mechanisms of the proposed SSO protocol.
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Fig. 10. Flow diagram of the proposed SSO protocol.



Table 1 describes the notations of the entities and messages

that describe the proposed protocol.

4.2.1 State 1

In State 1, as described in Fig. 11, a service device (Bob) keeps

beaconing Message 1-1, which consists of the service ID. The

service device also periodically sends a Bob Capsule until a

PANDA bearer (Alice) initiates an authentication process

after receiving Message 1-1. The Bob Capsule is the hashed

value of two inputs: a unique serial number and a randomly

generated nonce. The serial number is updated for each

authentication transaction so that all of the serial numbers can

be mapped uniquely to the user’s ID and authentication

transactions. Furthermore, the used seed value of the

generated Bob Capsule is unknown to the other entities.

4.2.2 State 2

The message flow of State 2 is shown in Fig. 12. State 2 is the

phase for conducting a user delegation by generating a

proxy certificate. If Alice has already delegated herself, the

state transits to State 3. Otherwise, Alice needs to start the

delegation process by entering State 2. To delegate

authentication operations, Alice sends a delegation request

message Message 2-1. In response, the delegation server

generates a private-public key pair and sends the public key

back to Alice, i.e., Message 2-2. Alice uses her private key to

generate a proxy certificate containing the public key and

she transmits the public key to the delegation server, i.e.,

Message 2-3. Next, the delegation server registers Alice’s

identity and sends to the referee server the evidentiary data

KRefe;Alice, KDelg;Refe, and CRDelg;Alice for nonrepudiation,

i.e., Message 2-4. Last, the referee server grants a sequence

number SeqAlice, which is uniquely mapped to the delegated

user over Message 2-5.

4.2.3 State 3

State 3 is the phase of generating and sending an

authentication request to a delegation server. Upon receiv-

ing a challenge message, i.e., Message 1-1, from the service

device, Alice generates an authentication request message,

i.e., Message 3-1, by combining the challenge message with

a subkey (a symmetric key), which will be secretly shared

with the service device Bob. Alice then sends Message 3-1 to

the delegation server. Subsequently, the delegation server

generates Message 3-2 as a proof that Alice requested an

authentication for the service and then sends this message

to the referee server for nonrepudiation. Upon the arrival of

the message, the referee server checks the validity of the

authentication request message and sends the result to the
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delegation server in Message 3-3. If the delegation server

receives the OK message, the state moves to State 4.

4.2.4 State 4

The delegation server sends the TGT request message to the

Kerberos server in case the delegation server does not have

the previously issued TGT for Alice, i.e., Message 4-1. On

the other hand, if the delegation server already holds the

previously issued TGT for Alice, the protocol promptly

moves to State 5 without doing anything in this state. The

Kerberos server responds to the TGT request message and

sends the TGT to the delegation server in Message 4-2.

Because each Kerberos server and the delegation server

have their own certificates, they can authenticate each other

by using an existing PKI.

4.2.5 State 5

If the delegation server obtains a TGT in State 4, the

delegation server sends an SGT request message to the

Kerberos server in Message 5-1. In response to the request

message, the Kerberos server sends a new SGT for Bob to

the delegation server in Message 5-2. If the delegation

server gets the SGT in advance for the user authentication

request, this state can be skipped and the protocol can

proceed directly and immediately from State 1 to State 6.

Fig. 13 shows the message flows from State 3 to State 5.

4.2.6 State 6

State 6 is the phase where the delegation server sends the final

response message to the service device Bob in Message 6-1.

Bob then checks the validity of the authentication by using

the Bob Capsule and shares the subkey generated by Alice

in Message 3-1. After that, Bob sends the response message

to the delegation server for mutual authentication in

Message 6-2. Finally, the authentication is completed by

Alice’s confirm message, i.e., Message 6-3. As a result, Alice

and Bob can share the subkey after the authentication.

Fig. 14 shows the message flow of State 6.

4.3 Computationally Efficient Nonrepudiation
Mechanism

Our proposed protocol can provide nonrepudiation and a

digital signature through the Bob Capsule, which is

generated among the entities by a hash function and

distributed keys (K
Delg;Refe

, K
Refe;Alice

, and K
Alice;Delg

). Upon

entering the security infrastructure for the first time, user

devices operate asymmetric key operations for delegation.

Once the delegation is successfully completed, our protocol

does not require any asymmetric key operations on the user

devices; hence, PKASSO provides a level of security that is

identical to that of PKI, as well as a minimized authentica-

tion latency.
This section elaborates upon how nonrepudiation can be

provided in collaboration with the referee server. To

achieve nonrepudiation, the referee server registers the

delegation information of a user in State 2 (the registration

phase) and verifies the validity of the user’s message for

each authentication transaction in State 3 (the verification

phase). These transactions for nonrepudiation require no

additional cryptography operations and communication

overhead on the user devices.
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Fig. 13. Message flow diagram from State 3 to State 5.

Fig. 14. Message flow diagram of State 6.



4.3.1 Registration Phase for Nonrepudiation (State 2)

As an initial phase of nonrepudiation, the delegation server

registers the delegated user information ID
Alice

and K
Refe;Alice

with the referee server, as described in Fig. 15a:

1. A delegation request message, i.e., Message 2-1, is
used for sharing two keys exclusively with the
delegation server and the referee server, that is, it
provides nonrepudiation for a state in which a user’s
authentication is delegated. To share keys securely
and exclusively, the shared keys are encrypted and
signed with the user’s private and public keys
(PU

Delg
, PU

Refe
).

2. In reply to the message, the delegation server stores
the key that is to be shared with Alice by the
decryption of Message 2-1 and generates a proxy
certificate over Messages 2-1 and 2-2. Next, the
delegation server injects a symmetric key that is to
be shared with the referee server and generates
Message 2-4 by using a private key PR

delg
and a

public key PU
refe

.
3. In response to Message 2-4, the referee server checks

the validity of the message and stores two different
symmetric keys that are to be shared with the
delegation server and Alice, respectively. As a result,
through this registration phase, the three entities,
namely, user, delegation server, and referee server,
exclusively share three keys (K

Delg;Refe
, K

Refe;Alice
, and

K
Alice;Delg

).

4.3.2 Verification Phase for Nonrepudiation (State 3)

Once registration is successfully completed in State 2, the

referee server checks the validity of the user’s message for

each authentication transaction, as described in Fig. 15b. To

support nonrepudiation, the referee server generates bind-

ing information between a device and authentication

messages as follows:

1. Alice receives a challenge message from a service
device, i.e., Message 1-1. The challenge message,
called the Bob Capsule, is the output of SHA-1 with
two inputs: a serial number of the service and a
randomly generated nonce value. Due to the NP-
completeness of SHA-1, only the service device can
perceive the nonce value.

2. Alice sends the delegation server an authentication
request message, i.e., Message 3-1, which contains
two Bob Capsules. One of the Bob Capsules is
encrypted with K

Refe;Alice
and the other is encrypted

using K
Alice;Delg

.
3. In reply to Message 3-1, the delegation server sends a

Bob Capsule verification message, i.e., Message 3-2,
to verify Alice’s message against malicious user
behavior. Message 3-2 contains a digital signature of
the encrypted Bob Capsule using the delegated
private key PR

Alice;Delg
and the Bob Capsule. These

contexts are encrypted with K
Delg;Refe

.
4. The referee server compares the two Bob Capsules to

check the justness of the authentication request
message. If the two messages are identical to each
other, the referee server sends an OK message to the
delegation server. Otherwise, the referee server
sends a BAD message to the delegation server.
Subsequently, the verified Bob Capsule and the
digital signature of the delegation server are retained
on the local repository of the referee server.

4.3.3 How the User Authentication Records Can Be

Proved

As shown in Fig. 16, the referee server retains the history

data, which states that Alice sent Message 3-1 as a type of a

notarized authentication list (NAL). The NAL is the data

structure for storing the evidence of nonrepudiation, and all

of the contexts are periodically stored with the signature of

the referee server. This process, which ensures the integrity

of user authentication by using the digital signature of the

referee server, contains the following data:

. Data stored per delegation:

- IDAlice: Message 2-4.
- KRefe;Alice, KDelg;Refe: Message 2-4.
- SeqAlice: Message 2-5.

. Data stored per authentication:

- Bob Capsule: Message 3-2.
- EfKRefe;Alice; Bob Capsuleg: evidentiary data.

Fig. 17 illustrates how the NAL is used to prove that Alice
sent an authentication request message to the delegation
server. Let us assume that a service device asserts that Alice
repudiates an authentication of the service device. In this
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Fig. 15. Overall message transactions for the nonrepudiation of

PKASSO. (a) Registration phase for nonrepudiation (State 2).

(b) Verification phase for nonrepudiation (State 3).



case, the service device can put in a claim for a justice with
the serial number included in the challenge message
Bob Capsule to the referee server. The referee server then
requires the evidentiary data that were used to generate the
challenge message with the serial number and inputs the
evidence data and the serial number to SHA-1. If the output
of SHA-1 is identical to the stored data in the referee server,
it proves that Alice forwarded the received Bob Capsule for
the accused authentication. The referee server can therefore
refute Alice’s repudiation.

4.4 Security Considerations of PKASSO

We analyzed the protocol safety by considering the replay
attacks and man-in-the-middle (MITM) attacks. We as-
sumed that the underlying cryptography AES, RSA, and
SHA were invulnerable with regard to message secrecy and
integrity; hence, we did not consider attacks such as
cryptanalysis and message slicing. On the other hand, any
principle can place or inject a message on any link at any
time. In addition, any principle can eavesdrop, drop, alter,
or redirect all exchanged messages being passed along any
link or replay messages recorded from past communica-
tions. In this section, we confirm the safety of our proposed
protocol in relation to replay and MITM attacks.

Theorem 1. PKASSO is safe from replay attacks.

Proof. Let us assume that the authentication path is
½Alice , Delegation Server , Kerberos Server, Bob�.
We prove the safety for the next attack types as follows:

1. A replay attack for the delegation request
message, i.e., Message 2-1. In this case, an
intruder can try to attack by sending the captured
delegation request message. However, the key to
be shared with the delegation server cannot be
read by the intruder because the key is encrypted
with the public key of the delegation server. Thus,
the intruder can no longer perform the delegation
mechanism.

2. A replay attack for the delegation response
message, i.e., Message 2-2. In this case, an
intruder can try to attack by sending the captured
delegation response message. However, the in-
truder’s attack cannot succeed because the dele-
gation request message includes the nonce data
enclosed in the delegation request message.

3. A replay attack for the authentication request
message, i.e., Message 3-1, and

4. a replay attack for the response message between
the delegation server and the service device, i.e.,
Message 6-2. In these cases, an intruder cannot

reuse the authentication request message, i.e.,
Message 3-1, or the response message, i.e.,
Message 6-1, because the Bob Capsule included
in the challenge message is altered in each
authentication. tu

Theorem 2. PKASSO is safe from MITM attacks.

Proof. We prove the safety for the next attack types as

follows:

1. An MITM attack between a user and a delegation
server. In this case, each entity performs a mutual
authentication over PKI before a delegation and
shares the key for a secure connection. Thus, the
intruder cannot forge the authentication request
message of the user.

2. An MITM attack between a user and a service
device and

3. an MITM attack between a delegation server and
a service device. In these cases, each service
device generates a Bob Capsule, which is altered
for each authentication, and this capsule is
encrypted and transmitted by using a shared
key that is generated in a previous state. Thus, the
intruder cannot successfully masquerade as the
user or the service device. tu

5 EFFICIENCY AND PERFORMANCE EVALUATION

In this section, we present the performance results obtained

with our prototype implementation of PKASSO. First, we

demonstrate the overall experimental environment. We

then describe the cryptography operation experiment and

the operational efficiency of the authentication protocol to

evaluate the performance of PKASSO in terms of authenti-

cation latency.

5.1 Experimental Environment

To evaluate the performance characteristics of PKASSO, we

constructed a pseudoservice device and a PANDA which

are coupled to a load generator. The objective of the

pseudodevices is to simulate the processing and commu-

nication resources anticipated in a full implementation (for

multiusers and multiservice devices). Fig. 18 shows the
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Fig. 16. Notarized Authentical List (NAL) data structure.

Fig. 17. Nonrepudiation mechanism using history data (NAL) in

PKASSO.



overall experimental environment. The pseudoservice device
and PANDA have operation times that are similar to actual
operation times (for example, those that result from commu-
nications, encryption and decryption, and message proces-
sing). The pseudodevices are modeled on the cryptography
operation (RSA and AES) times, the data rate, the detection
ratio, and the delivery latency of ZigBee communications.
Moreover, these pseudodevices are connected to PKASSO
and receive control signals from the load generator. The load
generator is a module that generates control signals to
produce authentication request messages by using a random
generator that models the mobility of users [16].

5.2 Cryptography Operation Experiment

The first experiment measures the cryptography processing
time on ZigBee devices (PANDA and a service device)
equipped with an ATmel 8-bit processor (16 MHz) [8] and a
server (a 3.2 GHz Xeon processor with a 4 Gbyte RAM).
Fig. 19 compares the processing time of an RSA 1,024 bit
algorithm as an asymmetric key operation, an AES 128 bit
algorithm as a symmetric key operation, and a SHA-1
algorithm as a hash function. It shows that the times
required to decrypt and to encrypt a 128 byte block of data
with the RSA 1,024 bit algorithm are 4,723 and 226 ms,
respectively, on ZigBee devices. On the other hand, the
times required to encrypt and to decrypt the block with the
AES 128 bit algorithm on the device are both 3 ms because
an AES accelerator is embedded in the ZigBee communica-
tion module (CC2420 [17]). Furthermore, SHA-1 needed
6 ms of operation time to generate a challenge message. On
the server side, the cryptography operation time is
drastically reduced by a high-performance processor and
a huge memory.

5.3 Authentication Protocol Efficiency

The performance of the authentication protocol in terms of
authentication latency and the consumption of processing
and communication resources is an important factor to be
considered when designing authentication protocols [18]. In
this section, we analyze the efficiency of five different

authentication protocols (PKIX, Kerberos, M-PKINIT, NSI,
and PKASSO) in terms of computation and communication
efficiency.

5.3.1 Computation Efficiency

Fig. 20 gives the number of public and private keys and the
symmetric key operations performed with the total opera-
tion time for each authentication protocol. Despite having
the smallest number of cryptography operations per
authentication, the PKIX protocol has the longest operation
time among these protocols because it has the largest
number of private key operations in the resource-con-
strained mobile device. Kerberos, on the other hand, has the
shortest operation time because the Kerberos authentication
can be completed by symmetric key operations. In the case
of PKASSO, the first time that a user accesses the security
infrastructure, the user delegates the user authentication
operations to the delegation server, which requires two
public key operations and one private key operation. The
delegation operation time of PKASSO is similar to the
operation time of an M-PKINIT TGT or a PKIX. After the
delegation operation, the user can initiate self authentica-
tion by processing only five symmetric key operations; this
process has a much shorter operation time than the
corresponding process of an M-PKINIT TGT and a PKIX.

By way of summarizing the above results, we give an
outline of the minimum operation time of the authentica-
tion protocols. The PKIX operation time with the RSA
1,024 bit algorithm is 4,952.34 ms. The Kerberos has a much
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Fig. 18. Experiment environment to measure the performance of

PKASSO in terms of authentication latency and operation efficiency in

PANDA.

Fig. 19. Processing times of encryption/decryption for each algorithm

and operation environment.

Fig. 20. The number of public/private keys and the symmetric key

operations with the total operation time for each protocol (PKIX,

Kerberos, M-PKINIT, NSI, and PKASSO).



shorter operation time (24.04 ms) than the PKIX, which is
due to the fact that the symmetric key operation has a much
shorter operation time than the asymmetric key operation.
In the case of the M-PKINIT protocol, when a user acquires
a TGT, the operation time is similar to the PKIX operation
time. On the other hand, the operation time for obtaining an
SGT with the M-PKINIT protocol is 24.02 ms because the
user can grasp an SGT by using the TGT without
asymmetric key operations. The NSI has shorter operation
time (4,726.51 ms) than the PKIX, which is due to the PKI
server that is responsible for searching and verifying
certificates on behalf of a mobile device. In the case of
PKASSO, even though the delegation operation of PKASSO
has the longest operation time among all the cryptography
operations, an authentication can be accomplished without
asymmetric key operations after the delegation operation.
As a result, we confirmed that PKASSO has the shortest
operation time after the delegation of the user’s authentica-
tion, even though PKASSO provides a PKI-based authenti-
cation. This outcome is due to the offloading of the
asymmetric key operation from the user’s device to the
delegation server in State 2.

In order to measure how many cryptography operations
on the client side cause an obstructive authentication
latency, we estimated the operation time of the server side
and the client side for each authentication protocol, as
shown in Fig. 21. In the case of the Kerberos and M-PKINIT
protocols, we assumed that 10 percent of all of the
authentications were for acquiring a TGT, while the
remainder was for obtaining an SGT. In the case of
PKASSO, 10 percent of the TGT requests were delegation
requests [16]. Fig. 21a presents a comparison of the
operation time of the server side. Fig. 21b compares the
operation time performed on the client side. Even though
the operation time of PKASSO on the server side is 10 times
longer than that of PKIX, the operation time of PKASSO on
the client side is much shorter than that of PKIX. As a result,
the total operation time of PKASSO (69.91 ms) is much
shorter than PKIX (5,178.34 ms). It is due to the gap in

computation power between the server, the resource-
restricted mobile devices, and the distribution of client-side
operations and server-side operations, as shown in Fig. 22.
The ratio of the client-side operations to the server-side
operations is 0.972 to 0.028 for the PKIX protocol, 0.571 to
0.429 for the Kerberos protocol, 0.516 to 0.484 for the
M-PKINIT protocol, 0.857 to 0.143 for the NSI, and 0.019 to
0.981 (the smallest ratio) for the PKASSO protocol.

Despite having the longest operation time on the server
side of PKASSO, the overall operation time of PKASSO
(69.91ms)is74.07timesshorterthanthatofPKIX(5,178.34ms).
The reason for this result is that only 1.9 percent of the
authentication operations of PKASSO are executed in a
resource-constrained mobile device, whereas 97.2 percent
of PKIX operations are executed in such a device.

5.3.2 Communication Efficiency

The comparison of the required payload per authentication
is illustrated in Fig. 23. In the case of Kerberos, M-PKINIT,
and PKASSO, we assumed that 10 percent of all of the
authentications were initiated to acquire a TGT and that the
remainder were for obtaining an SGT. In terms of the
communication overhead, PKASSO is the most efficient
protocol because its smallest payload (0.076 Kbyte) enables
the communication overhead of PKASSO to be minimized.

The overall data payload of PKIX and NSI is about
3.67 Kbyte and 1.76 Kbyte due to the transmission of each
entity’s certificate. In the case of M-PKINIT, the TGT
request has the heaviest data payload (7.54 Kbytes) because
the user should send and receive each entity’s certificates
and a TGT for each movement to other Kerberos realms.
Furthermore, 2.35 Kbyte transmissions are required to
acquire an SGT in M-PKINIT and Kerberos. In the case of
PKASSO, whenever the user first accesses the security
infrastructure, a 1.42 Kbyte transmission over ZigBee is
required to delegate the user’s authentication to the delega-
tion server. After the delegation, the PKASSO authentication
has the smallest payload (0.332 Kbyte) for obtaining a TGT or
an SGT because the user authentication is completed by the
transmission of a Bob Capsule (0.032 Kbyte) and a con-
firmation message (0.044 Kbyte).
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Fig. 21. Operation time (a) on the server side and (b) on the client side for each authentication protocol.

Fig. 22. Distribution of client side operations and server side operations.



5.4 Performance Evaluation

Fig. 24 illustrates the improvement in the authentication
latency with our scheme and compares it with a general
PKIX operation equipped with a PANDA and a smart card
[19]. In the case of the Kerberos and M-PKINIT protocols,
we assumed that 10 percent of all of the authentications
were for acquiring a TGT, while the remainder was for
obtaining an SGT. In the case of PKASSO, 10 percent of the
TGT requests were delegation requests [16]. If an RSA
1,024 bit algorithm is processed on a PANDA equipped
with an 8 bit processor (16 MHz) [8], the authentication
latency averages to 5.01 seconds. Furthermore, if an
authentication with Kerberos, M-PKINIT, and NSI is
executed on the above platform, the authentication latency
averages 0.19, 0.74, and 4.75 seconds, respectively, because,
in order to obtain a TGT, the Kerberos authentication
protocol uses symmetric key operations and M-PKINIT
uses asymmetric key operations. With the M-PKINIT
protocol, a user can get an SGT without asymmetric key
operations; hence, the authentication latency of M-PKINIT
is much shorter than that of PKIX. The authentication
latency of NSI is shorter than PKIX, which is due to the
delegated operations for the certificate verification by the PKI
server. The latency of a contact-type smart card is estimated to
be 3.70 seconds [20], which is faster than the latency of PKIX
on our security device. In the case of PKASSO, even though
the delegation operation of PKASSO takes longer than a
general PKIX authentication (5.19 seconds), the authentica-
tion latency of PKASSO with a PANDA can be shortened to

0.082 second for a specified period after the delegation. As
described in Section 5.3, the major reduction in the
authentication latency is due to the offloading of complex
operations from the devices to the infrastructure. As a
result, we can minimize the authentication latency from an
average of 5.01 to 0.082 second without compromising the
security level of PKIX.

Fig. 25 shows how the authentication latency mutates as
the number of authentication requests per second varies. The
number of authentication requests per second ranges from 10
to 140, with 87,880 users and 17,576 service devices. For the M-
PKINIT, Kerberos, NSI, and PKASSO protocols, we found
that the authentication latency increases as the number of
authentication requests increases, mainly as a result of the
cryptography operations and the communication overhead
on the server side. In the case of M-PKINIT, the authentication
latency increased from 0.733 to 5.424 seconds as the number
of authentication requests per second increased. The
authentication latency of NSI is elevated from 4.750 to
5.812 seconds with varying numbers of authentication
requests per second. In the case of PKIX (RSA), there was
almost no variation in the authentication latency because the
server-side overhead of PKIX was much smaller than the
client-side overhead. In the case of PKASSO, the authentica-
tion latency is shorter than that of Kerberos in the state where
the number of requests is less than 90. However, the latency of
PKASSO is longer than that of Kerberos and has a higher rate
of increase if PKASSO receives more requests than 90. This
phenomenon is due to the fact that the quantity of server-side
operations of PKASSO is much greater than that of Kerberos.
This result confirms that our PKI-based authentication with
nonrepudiation can be accomplished seamlessly by PKASSO
whenever the number of requests per second is less than 90.

6 CONCLUSION

Our task has been to provide a full-fledged security solution
tailored for a ubiquitous and mobile computing environ-
ment, where numerous devices and sensors with severe
resource-constraints interact with each other. To accomplish
this task, we thoroughly reviewed the ways by which the
conventional PKI-based security infrastructure is used in
the environment and we consequently derived the blue-
prints for an efficient PKI-based security infrastructure
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Fig. 23. Required payload on each authentication protocol.

Fig. 24. Authentication latency for PKIX (RSA), Smart Card, Kerberos,

M-PKINIT, NSI, and PKASSO.

Fig. 25. Authentication latency with varying numbers of authentication

requests per second for PKIX (RSA), Kerberos, M-PKINIT, NSI, and

PKASSO.



called PKASSO. Besides utilizing conventional PKI entities
in our security infrastructure, we conceived and imple-
mented the concepts of a delegation server, a referee server,
and a new PKI-based SSO protocol. Our security infra-
structure features three remarkable achievements:

1. PKI-based SSO protocol. This protocol enables an
operationally efficient security mechanism and cost-
effective deployment of the security services by
offloading complex PKI operations from the mobile
devices to the infrastructure.

2. Delegation server. This server is responsible for
performing prohibitively expensive PKI operations
on behalf of a PANDA without compromising the
security level of the PKI. As a result, it minimizes the
computational overhead of the security device.

3. Referee server. This server ensures nonrepudiation
of any transaction between a delegator and a
delegatee.

Our infrastructure consequently enables a cost-effective
but uncompromisingly secure development of diminutive
security devices. Furthermore, our delegation mechanism
significantly improves the authentication latency. Accord-
ing to the performance evaluation, the authentication
latency of our infrastructure (which averages 0.082 second)
is much shorter than the authentication latency of a contact-
type smart card (which averages 3.70 seconds) or a
conventional PKI-based authentication latency (which
averages 5.01 seconds).
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