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Abstract. Many conventional control flow matching methods work well,
but lead to obstructive latency for the operations as the number of mal-
ware variants has soared. Even though many researchers have proposed
control flow matching methods, there is still a trade-off between accuracy
and performance. To alleviate this trade-off, we present a system called
MalCore, which is comprised of the following three novel mechanisms,
each of which aims to provide a practical malware identification sys-
tem: I-Filter for identical structured control flow string matching, table
division to exclude unnecessary comparisons with some malware, and
cognitive resource allocation for efficient parallelism. Our performance
evaluation shows that the total performance improvement is 280.9 times.
This work was undertaken on a real manycore computing platform called
MN-MATE.

1 Introduction

Antivirus vendors have detected malware through signature-based detection.
However, such malware detection has become ineffective as malware variant
generation tools have been available [15]. Due to the availability of such tools,
malware authors can easily create malware variants that are slight modifica-
tions of existing malware. Additionally, the number of new malware variants has
increased at an exploding pace.

Malware classification and identification is therefore of immense importance
to enable assessing damages after detection, and reinforcing disinfection mech-
anisms [14]. In addition, understudying groups and classes of malware would
enable malware researchers to concentrate their efforts on specific sets of fami-
lies to understand their intrinsic characteristics, and to develop better detection
and mitigation tools for them.

As a remedy to this problem, Malwise [8] has proposed structured control flow
string (SCFS) matching methods at a procedure level that classify malware vari-
ants by measuring similarities in existing malware samples. Their approaches are
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effective in detecting malware variants because, unlike signatures, control flows
of malware variants are much less changeable. Its authors have proposed two con-
trol flow matching methods. One of them is exact matching and the other one is
approximate matching. However, there is a trade-off between the two methods.
Exact matching is faster but less accurate than approximate matching because
it is only necessary to check whether each control flow is identical. On the other
hand, approximate matching is more accurate but has lower performance since
this method compares all parts of each control flow in a fine-grained manner. In
addition, both neither method considers parallelism even though many resources
are available in recent high performance computers.

This study is an extension of our previous work [10,11], in which we focused
on the conceptual design and implementation such as an acceleration of the
approximate matching method and efficient parallelism. Our objective in this
study however, is to achieve high accuracy and performance and apply paral-
lelism, and integrate the overall components into MN-MATE platform, a novel
resource management techniques for virtualization [16]. Consequently, MalCore
acts as the key primitive for a practical malware identification system enhanced
with manycore technology. As a result, we gained on average 280.9 times total
performance improvements in our experiments.

The remainder of the paper is organized as follows: In Sect. 2, we review
related works and analyze existing malware classification and identification sys-
tems. In Sect. 3, we present our motivation of this work. In Sect. 4, we illustrate
the overall system design and components of the proposed system. In Sect. 5, we
evaluate the performance of the proposed system. Finally, in Sect. 6, we present
our conclusions.

2 Related Work

Malware identification through matching control flows has been proposed in
order to solve the problem of not being able to detect malware variants. Of
various analysis approaches, one of them is to match SCFSs of binaries [8]. The
authors represented procedure-level control flows in a SCFS form and measure
similarities to existing malware samples in databases. If the most similar malware
is larger than the threshold value, the input binary is considered malicious. They
suggested two matching methods: exact matching and approximate matching.
However, exact matching has a lower accuracy, and approximate matching has
a lower performance.

To increase the performance of string matching, bioinformatic researchers
developed the fast string matching method to find identical strings to which
proteins were converted. However, the conventional character-to-character (C2C)
string matching is time-consuming due to large string sizes. In order to resolve
this performance bottleneck, they proposed short filtering [13]. According to
this algorithm, if a string shares a certain number of substrings, the pair is
considered identical. Consequently, they could skip many character-to-character
comparisons in the middle of matching processes. However, this approach is
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not applicable to matching malware programs because patterns of substrings in
SCFSs depend on variable authors’ coding styles.

From the view point of parallelism and resource management, there have been
several approaches for large workload distributions in scientific calculation, such
as matrix calculation [9]. It distributes workloads to multiple virtual machines
(VM) which is useful to fully utilize computing resources. However, we distribute
virtual CPUs (VCPU) instead of workloads. In an approach similar to our work,
some researchers have proposed dynamic resource allocation [12]. These studies
model workloads using resource usages, such as CPU usage, memory usage and
so on. Our work utilizes an easier modeling variable, Q, which indicates how
many workloads are distributed as well as CPU usage.

3 Motivation

In an attempt to achieve a practical malware identification system, we thor-
oughly analyze conventional operational routines for similarity measurement
and identify three critical mismatches in the conventional routines. They are
summarized as follows.

– Inefficient SCFS Matching: Before measuring set similarities, we need to
measure string-to-string (S2S) similarities through C2C matching based on the
edit distance algorithm [7]. However, this procedure is the main bottleneck of
similarity measurements because C2C matching requires many computations.
To resolve such a performance bottleneck, we found that there was a potential
for improvement in matching identical SCFSs. The purpose of C2C matching
is to find similar strings and measure how much similar two SCFSs are. When
we determine whether SCFSs are identical, it is necessary to know whether
they are identical to each other but unnecessary to measure how much similar
they are because the similarity between matched identical SCFSs is 100 %.
This approach can be frequently applied to C2C matching because malware
variants in the same family share many identical SCFSs.

– Brute-force Malware Comparison: In the similarity measurement pro-
cedure, we need to match SCFSs of an input binary with all pre-analyzed
malware samples in databases. However, the large number of malware sam-
ples causes the performance bottleneck. In order to reduce such comparison
overhead, a rule to exclude malware samples that cannot be similar to an input
binary before starting similarity measurements is necessary. Without such an
exclusion rule, it is necessary to compare all malware samples in databases.
This is because they are possibly similar.

– Non-parallelized Malware Analysis: According to the AV-TEST [1], mal-
ware authors created about 140 million new malware samples in 2014, and
88 % of them are malware variants [8], but it is hard to analyze all malware
variants with the optimized methods because of the significant number of mal-
ware samples. However, we can utilize many resources in high performance
computers to gain higher throughput. One way to use all resources for this
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purpose is parallelization of analysis which was not considered in the previous
work [11]. Even though this is a valid approach to increasing total analy-
sis throughput, this trial can waste resources without proper management.
Therefore, we need find a way to efficiently use such resources for optimized
parallelism.

4 Design of MalCore Identification System

The design of our system is motivated by three points as follows: inefficient
SCFS matching, brute-force malware comparison and non-parallelized malware
analysis. In this section, we describe the overview of our system and then how
to solve these problems.

4.1 Overall System Design

We implemented the malware variant identification system on MN-MATE [16].
Our malware variant identification system consists of three parts: Convertor,
Analyzer and Resource Manager. Both Convertor and Analyzer work on VMs but
Resource Manager works on dom0, the privileged VM that can control hypervisor
[17]. We describe our architecture in Fig. 1 and the flow chart in Fig. 2.

– Convertor: Convertor is responsible for converting input binaries into SCFSs.
This conversion task is composed of unpacking, decompiling and structuring.
Unpacking is for extracting hidden malicious codes, decompiling is to convert
binary codes into high-level codes like C, and structuring is to represent branch
instructions in decompiled codes into SCFSs. We describe the structuring rule
in Fig. 3a and the example of SCFS conversion in Fig. 3b. After finishing the
conversion process, converted SCFSs are sent to Analyzer.

– Analyzer: Analyzer plays a role in deciding whether input binaries are mali-
cious through measuring set similarities with existing malware samples in
databases. Analyzer uses SCFSs obtained from Convertor for similarity mea-
surements. We designed Analyzer with three components: malware databases,
I-Filter and C2C matcher. Malware databases consist of multiple tables, and
we store pre-converted SCFSs and their metadata such as hash values in these
tables. The role of I-Filter is to match identical SCFSs of an input binary with
those in the databases. C2C matcher is responsible for measuring similarities
of the remaining SCFSs that are not matched through I-Filter [11]. For mal-
ware databases, we use two types of databases: the global database and local
database. We used the global database to match identical SCFSs through I-
Filter. This database consists of several tables covering malware samples in
certain ranges of the total number of SCFCs. Each table stores SCFSs and
metadata of covered malware families, variant names, hash values and their
total numbers of SCFCs of malware samples. The local database consists of
multiple tables and stores the same data but only that of malware samples in
one malware family. We store indexed hash values in both types of databases
to use I-Filter more efficiently.
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Fig. 1. Overview of our system on MN-MATE.

– Resource Manager: Each VM is responsible for conversion and analysis.
However, their workloads vary according to the situation in which Analyzer
does not work due to there being no SCFSs or Convertor generates so many
SCFSs that Analyzer cannot process all of them. To prevent such a waste
of resources, Resource Manager allocates a proper amount of resources to
each VM. Therefore, we can conserve resources through manipulation of the
processing speed of each VM through resource allocation. Also, we utilize
VCPU pinning to dedicated nodes to enhance memory access performance
through local memory access instead of remote memory access.

4.2 I-Filter

We pointed out that S2S matching for identical SCFSs is inefficient despite
the high share ratio of identical SCFSs. In order to enhance the performance
of S2S matching, we use I-Filter [11] to match identical SCFSs through hash
value comparisons and then match only remaining SCFSs through edit distance
algorithm. We use CRC-64 for generation of hash values.

Efficiency of I-Filter can be seen through comparisons between time com-
plexities of both methods. In previous approach, all matching is done through
edit distance algorithm. Its time complexity between two SCFSs is O(mn). Both
m and n are lengths of SCFSs, and their minimum value is 10 [7]. In order to
accelerate matching for SCFSs, all SCFSs are stored in the BK-tree [6] indexed
malware database in the previous work [8]. However, it is time-consuming to find
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Fig. 2. Whole analysis flow chart.

Fig. 3. Conversion rule and example [7].
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valid SCFSs because each character of SCFSs should be checked. On the other
hand, the searching time complexity of I-Filtering is O(log s) where s is the
number of SCFSs. For S2S matching for each SCFS, each matching is processed
through hash value matching whose time complexity is O(1 ) without character-
to-character comparison. In addition, the number of comparisons is O(log s)
because we stored the hash values in B-tree. Therefore, we can induce the time
complexity for finding one SCFS is O(log s) from O(1)O(log s) = O(log s).
However, checks for identicalness are required to prevent hash collisions for all
SCFSs whose hash values are identical. The time complexity for hash collision
checking is O(m) which is proportional to the lower length m in a string pair.

4.3 Table Division

When we match SCFSs in the global database, unnecessary comparisons with
malware samples that cannot be similar cause redundant overhead costs. In order
to reduce such costs, we make a rule for excluding malware samples that cannot
be similar before starting similarity measurements. Because the set similarity, the
final similarity result [7], is directly related to the total number of SCFCs, we can
exclude such malware samples through dividing tables in the global database.
Therefore, we can exclude many malware candidates through comparisons of
the total number of SCFCs of an input binary. We describe such cases in Fig. 4.
In the first case, malware x can be similar to malware y if all their SCFSs are
matched. In the second case, malware x and y however are definitely dissimilar
even if malware x and y consist of only identical SCFSs. Thus, malware x is
eligible for comparison but malware y is ineligible according to the malware
exclusion policy.

In order to apply the above policy, we divide the table of the global database
into smaller tables according to the total number of SCFCs. Because our divided
tables store only possibly similar malware samples, it is possible to compare a
smaller number of entries. We describe the example of table division in Fig. 5.
Before we analyze input SCFSs, we select one of tables in the global database
based on the total number of SCFCs of each input binary. Although this selection
may result in a small cost, we can gain greater performance benefits from it. Since
each malware has on average 94 SCFSs in our malware samples, we can avoid
comparisons of 94 SCFSs of the input binary with those of malware samples
that cannot be similar in databases through one table selection. Through table
division, we can reduce comparisons due to reduced depths of B-trees and I/O
requests for loading unnecessary malware data from databases.

However, table division should guarantee that all possibly similar malware
samples are in each divided table. This guarantee is based on the set similar-
ity threshold value, 0.6 [7]. As described in Fig. 5, if the selected table covers
malware D, E and F with the total number of SCFCs from 55 to 80, this table
should have malware samples with the total number of SCFCs from 55 by 0.6
to 80 by 1.67. In such cases, we call the total number of SCFCs from 55 to 80
the cover range and from 33 to 55 and from 80 to 134 the guarantee range.
Malware samples covered by guarantee range should be included in the divided
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Fig. 4. Max similarity according to the total number of SCFCs.

tables. Otherwise, comparison only with a table cannot guarantee that all pos-
sibly similar malware samples are stored. From the perspective of performance,
we need to divide a table into smaller tables because the number of hash entries
can change according to sizes of cover ranges. However, excessive table division
causes storage redundancy for guarantee ranges. Furthermore, they can be much
larger than cover ranges if the cover ranges are too small. Therefore, we set the
cover range from one of 3,000, 10,000 and 20,000 and dynamically divide tables
to avoid excessive storage redundancy while maintaining a certain level of per-
formance. If the difference in the number of hash entries is smaller than 110 %
of the total number of hash entries with a larger cover range, we set the larger
cover range since this 10 % difference does not cause meaningful performance
degradation. After applying our table division policy, storage redundancy is not
large compared to storage capacity of HDD. As a result of table division, depths
are reduced from 50 % to 80 % and their average depth is 33 %.
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Fig. 5. An example of table division application.

4.4 Dynamic Resource Allocation

Our system consists of two main processing parts, Convertor and Analyzer.
We describe this system in Fig. 6. There are two problems causing unbalanced
core allocation. First one is processing speeds vary according to which binaries
are analyzed, and the other one is that the required number of cores is not a
natural number unlike the actual number of allocated cores. Therefore, naive
static core allocation cause waste of CPU power. To prevent such a situation,
we dynamically allocate cores according to the number of converted binaries.
We define the value Q as the representation of the number of such binaries
for dynamic core allocation modeling. To figure out whether core allocation
is appropriate, we also define Low and High which are threshold values of Q
which is periodically checked by Resource Manager. We categorize four states to
determine whether we need core reallocation according to Q.
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Fig. 6. Dynamic core allocation.

In detail, Fig. 6a refers to State 1, the initial core allocation state. In this state,
we initially allocate cores using average core allocation of the previous result.
If there is no such result, we can arbitrarily allocate cores. Even if it is wrong
allocation, Resource Manger will appropriately allocate cores. When Q reaches
the average value of Low and High, the current state will be State 2. In Fig. 6b,
we illustrate State 2. In this case, we consider cores are properly allocated.
Because the case where Q is higher than or equal to Low and lower than or
equal to High indicates that jobs are appropriately assigned to Convertor and
Analyzer. Consequently, Resource Manger does not reallocate cores. We describe
State 3 where Q is lower than Low in Fig. 6c. In this state, we reallocate cores
to Convertor since Analyzer occupies too many cores compared to workloads.
However, it is possible that frequent and unnecessary core reallocation can occur
with this policy. To prevent such situation, Resource Manager temporarily store
Q in Low when core reallocation occurs. In the next period, Resource Manger
continuously control the number of cores with a new Low until the state is
changed to State 2. On the other hand, State 4 is the case where Q is lower than
Low as described in Fig. 6d. In this situation, we reallocate cores since Convertor
processed too many binaries. Similarly, Resource Manager temporarily store Q
in High, when core reallocation occurs. Then, Resource Manger continuously
maintains a new High until the state is changed to State 2.
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4.5 Implementation

– Convertor: Convertor is responsible for unpacking, decompiling and struc-
turing. For unpacking, we use the unpacking function of UPX [5] because
malware authors widely use it to pack malware programs. After the unpack-
ing process, we decompile unpacked binaries using REC decompiler [4]. Then,
we convert decompiled binaries into SCFSs using the rule in Fig. 3a.

– Analyzer: This module measures similarities between input binaries and mal-
ware samples. The matching process starts with the global database. We first
select a table in the global database based on the total number of input
SCFCs. With the selected global database, we match only identical SCFSs
through I-Filter. In this step, we process near unique strings first and then
match duplicated SCFSs. Because such near unique strings are not normally
shared, they are useful in determining a specific malware candidate. If the
set similarity exceeds the set similarity threshold T, matching processes are
performed on the local database whose tables cover respective malware fami-
lies. If the highest set similarity is lower than min t even after all SCFSs are
processed, we consider this binary unmalicious. Otherwise, the top five can-
didate malware samples with similarities higher than the others are selected.
With the local database, we apply I-Filter first because all SCFSs could not be
matched through I-Filtering. Then, the similarity of the remaining SCFSs is
measured through C2C matching. We consider the target binary is malicious
if its similarity is larger than T.

In the above procedure, we define several parameters. We choose min t as
0.1 and determine the number of candidates as 5 based on our experiments.
We use 0.9 for T and 0.6 for t as used in related work [7]. However, we can
change these values according to additional experiments.

– Resource Manager: In Resource Manager, we use the Q variable to predict
workloads between Convertor and Analyzer. For actual parameters, we cur-
rently define High as 30 and Low as 10. With these values, there was no waste
of resources, such as too many converted SCFSs or no SCFSs for similarity
measurements, during our experiments. If we increase this value, the occur-
rence wasted resources will be reduced. In this case, even though more binaries
will not be analyzed, its effect is negligible in the long run. However, we should
consider that the most important factor for threshold values of Q is whether
their values can guarantee avoidance of unbalanced resource distribution. We
can change threshold values considering such conditions. Also, we define the
period of checking Q as 0.3 seconds. Although it can be changed, we should
choose checking period while considering core reallocation frequency. With a
small value, it cause performance degradation because core reallocation flushes
caches. With a large value, it cannot balance core distribution.

When we reallocate cores, we reassign VCPUs to allocate cores to VMs. For
efficient resource utilization, we assign memory on one node to each VM and
set the VCPU affinity to the node in order to avoid remote memory access.
Moreover, Resource Manager reallocates VCPUs to Analyzer and operates
one more analyzer process according to CPU usage.
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Fig. 7. Analyzer performance with a single core.

Fig. 8. The number of hash entries in each database.

Fig. 9. Analyzer performance with approximate matching of Malwise.
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Fig. 10. Analyzer performance with approximate matching and I-Filter.

Fig. 11. Analyzer performance with MalCore.

5 Performance Evaluation

This section presents module performance improvements, total performance
improvements, similarities between malware variants and validation of normal
program threshold. The experimental environment consists of the AMD Opteron
Processor 6282SE 64 core 2.6 Ghz, 128 GB RAM, SAS 10kbytes HDD, Cent OS
6.4 64 bit with Kernel 3.8.2 version, MN-MATE [16] and MySQL 14.14 for the
database, but we utilized 16 cores and 16 GB RAM. We implemented our data-
bases on MyISAM [2] which is a type of disk-based database. On the other hand,
Malwise [8] consists of BK-tree [6] indexed memory databases. In all experi-
ments, MalCore refers to application of I-Filter, Table division and Dynamic
Resource Allocation. But Dynamic Resource Allocation is not applied to single
process experiments. Also, MN-MATE means that we experimented on MN-
MATE. Without MN-MATE, we experimented on Xen 4.2.1. Finally, we used
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3,000 malware samples [3] and generated additional malware variants using the
code mutation tool.

5.1 Module Performance Improvements

In this section, we evaluate the performance of each module in malware variant
identification systems. This evaluation does not reflect the effect of dynamic core
allocation because it focuses on each module with a single core, but, we consider
the effect of VCPU pinning. First, we compare the performance of analyzer in
Fig. 7. For the Analyzer performance, the performance improvements between
approximate matching of Malwise [8] and application of all of our techniques on
MN-MATE are from 512 to 657 times. For comparison between I-Filter applica-
tion and MalCore, the performance improvements are from 60 % to 272 % and
the improvement increases as the number of malware samples increases. These
improvements are largely from table division because table division reduces on
average 33 % numbers of table entries for identical SCFSs matching procedure
as described in Fig. 8.

We describe the performance improvements in Figs. 9, 10 and 11. We can
discern several performance trends in these figures. The trends of performance
improvements are different from the malware families. This difference results
mainly from the number of SCFCs in each malware and each string. For Malwise,
the trend of performance difference between malware families results from the
fact that computation time depends on string matching measurements. On the
other hand, our approach relies on the number of hash entries in databases.

Finally, we describe the performance of Convertor. With a single core, Con-
vertor can convert on average 0.365 input malware binaries per second. As the
speed of Analyzer increases, the performance of Convertor creates a larger bot-
tleneck. Moreover, its performance trend is different from Analyzer because it
depends on how many instructions; not only branch instructions but also other
types of instructions, variables and other factors are included. This different
trend of processing speed causes unbalanced workload distributions even with
perfect static core allocation. This is why core allocation, a part of dynamic
resource allocation, is necessary.

5.2 Total Performance Improvements

In this section, we evaluate the total performance of the malware variant identi-
fication systems. We applied our Convertor to Malwise [8] because Malwise does
not have dynamic resource allocation functions. We randomly choose malware
samples for our experiments and show the performance evaluation in Figs. 12
and 13.

Performance improvements of MalCore with MN-MATE are on average
280.9 times compared to approximate matching proposed in Malwise and 71 %
improvements compared to only I-Filter application. Although improvements
are mostly from I-Filter for matching identical SCFSs and table division, the
performance gain is limited by Convertor performance and a waste of resources
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Fig. 12. Total performance (50 % of resource to Convertor and 50 % of resource to
Analyzer).

Fig. 13. Total performance (75 % of resource to Convertor and 25 % of resource to
Analyzer).

due to unbalanced resource distribution. However, our system can balance the
performance of each VM with our dynamic allocation.

5.3 Similarity of Malware Variants

In this experiment, we measure similarities using our approach. To determine
whether input binaries were malicious, we used the same set similarity thresh-
old value, 0.6, used in the related work [8]. Table 1 shows similarities between
malware variants in Klez, Roron and Netsky malware families.

According to our experiments, Klez, Roron and Netsky had 43, 62, 66 percent
matching rates. As the matching rates increase, new malware variants will more
probably be classified. However, we still can classify malware variants with low
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Table 1. Similarities between malware variants.

matching rates. For instance, the matching rates of the Klez family were only
43 percent. However, let us suppose a, b, c and d Klez variants are group A and
the other ones, e, g and i, Klez variants, are group B. In this case, one malware
sample from group A and the other one from group B are enough to classify all
Klez malware variants in Table 1. But, there is more chance to classify unseen
malware programs with higher matching rates.

Furthermore, we should compare our similarity results since the purpose of
our work is to accelerate Malwise. However, because we use REC decompiler
which is different from Malwise [8], we measure similarities in both Malwise and
our approach with REC decompiler. As a result, most similarities are identical,
and they are lower than 0.01, even if the similarities are different. The reason
for this small difference is that we match identical SCFSs first and then similar
SCFSs but Malwise matches similar SCFSs.

5.4 Validity of Normal Program Threshold

As we mentioned in implementation of Analyzer, we use a normal program
threshold, 0.1. If the set similarity is lower than 0.1, we consider the input as
a normal program after matching identical SCFSs with the global database. To
validate our parameter, we measure similarities of 3,256 normal programs from
the Windows system folders with malware samples. The result of our experi-
ments confirm that our threshold value is valid because set similarities of only
0.0012 % of normal programs exceeded 0.1 as shown in Fig. 14.
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Fig. 14. Similarity between normal programs and malwares.

6 Conclusion

Many researchers have proposed many control flow matching methods. However,
there is a trade-off between accuracy and performance. To solve such problems,
we designed MalCore which is composed of I-Filter, table division and dynamic
resource allocation and apply them incrementally on a real manycore comput-
ing platform called MN-MATE. As a result, we gained the total performance
improvement of on average 280.9 times in our experiments; especially, the per-
formance improvement of Analyzer is 593.2 times on average.
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