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a b s t r a c t

The flash-based SSD is used as a tiered cache between RAM and HDD. Conventional
schemes do not utilize the nonvolatile feature of SSD and cannot cache write requests.
Writes are a significant, or often dominant, fraction of storage workloads. To cache write
requests, the SSD cache should persistently and consistently manage its data and metadata,

frequent metadata changes and causes high overhead. Some researchers insist that a
nonvolatile persistent cache requires new additional primitives that are not supported by
general SSDs in the market. We proposed a fully persistent read/write cache, which
improves both read and write performance, does not require any special primitive, has a
low overhead, guarantees the integrity of the cache metadata and the consistency of the
cached data, even during a crash or power failure, and is able to recover the flash cache
quickly without any data loss. We implemented the persistent read/write cache as a block
device driver in Linux. Our scheme aims at virtual desktop infra servers. So the evaluation
was performed with massive, real desktop traces of five users for ten days. The evaluation
shows that our scheme outperforms an LRU version of SSD cache by 50% and the read-only
version of our scheme by 37%, on average, for all experiments. This paper describes most of
the parts of our scheme in detail. Detailed pseudo-codes are included in the Appendix.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The advent of flash-based solid-state drive (SSD) has
spurred a proliferation of studies on new storage archi-
tectures. Flash memory is widely used in mobile phones
and embedded systems because it is smaller and more
resistant to shock than mechanical storage devices such as
hard disk drives (HDD). In addition, SSD that utilizes tens
or hundreds of independent flash chips is superior to HDD
in terms of bandwidth and response time. Thus, SSD has
been replacing HDD in devices ranging from desktop
computers to enterprise servers.

The capacity per price of SSD is greater than that of
RAM and lower than that of HDD. In the aspect of per-
formance, SSD is slower than RAM but faster than HDD.
Especially, HDD exhibits much longer latency for non-
sequential requests than SSD due to its mechanical com-
ponents, while SSD provides a short constant response
time regardless of request patterns.

In terms of the performance, the capacity, and the
price, SSD is in between RAM and HDD. Hence, various
tiered architectures where SSD is used as a second level
cache between RAM and HDD have been studied [1,2].

Many researchers have studied the nonvolatile memory
(NVRAM) such as phase-change memory and magnetoresistive
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RAM as an intermediate tier between RAM and HDD [3–6]. The
byte-addressing feature of NVRAM makes persistent cache
management easy but SSD is not byte-addressable. SSD, how-
ever, is superior to NVRAM in terms of performance per price
and has been used as a cache below RAM in commercial sto-
rage systems [7–9].

Approaches to use the raw flash memory as a tiered
cache have been introduced [10,11]. Consequences of the
drive to lower the price and increase the capacity of flash
memory, have been that the reliability of flash cells con-
tinues to diminish and a variety of error patterns has arisen.
The flash architecture turned into 3D NAND from planar
NAND [12], and its error types greatly changed. The man-
ufacturers have investigated various solutions for these
errors and keep them secret for market advantage. It is
difficult for a third party company to manage the low-level
flash memory. However, SSD provides us an error-free
interface; thus, it can easily be managed as a tiered cache.

Many studies on databases that use flash SSDs as a mid-
tier cache have been carried out [13–15]. Canim et al.
introduced a read cache replacement algorithm that esti-
mates I/O costs between SSD and HDD for each region to
determine which region is best to be promoted to SSD [14].
Do et al. showed that a write cache can give a significant
gain to database systems [15]. However, a cache metadata
management scheme that has no data staleness is needed
for database systems to adopt a write cache.

1.1. Persistency and consistency

The conventional second-level cache schemes for flash-
based SSDs are variations of traditional RAM-based cache
policies. Hence, they do not utilize the nonvolatile feature
of SSD. Cached data in SSD cannot be used at the next
restart because they store metadata in RAM for fast pro-
cessing. Data stored in SSD does not volatilize but the data
cannot be used after a restart because the metadata in
RAM is lost and we cannot know which sector the cached
data is related to [1,2,8,16–18].

The capacity of SSD as the second level cache is much
bigger than the main memory by two or three orders of
magnitude. The conventional second cache schemes ignore all
data stored in SSD at a restart and require too long time until
the SSD cache is filled with data at the rate of application I/O.
This process takes several hours or even days to fill the SSD.

A warm-start scheme was proposed [19] that would
shorten the restart time of the storage-class second level
cache. It makes a log of warmup data to fill the second level
cache at the next boot time. However, this scheme still
requires at least several hours to fill the storage-class cache.

A cache is persistent if its cache data is immediately
reusable after a power failure. The proposed system is
persistent, does not need a warming process, and has a
low overhead. The cache metadata and data are stored in a
nonvolatile device such as SSD and is consistent without
data loss even after a crash or a power failure.

1.2. Write cache and overhead

“Writes are significant, or often dominant, fraction of
storage workloads” [20–23], thus, a write cache can greatly
improve the write performance. The traditional caches do
not safely manage their cache metadata during a crash, so
they cache only read requests and cannot retain dirty data,
even though the cache device is nonvolatile.

Most tiered cache technologies use a write-through
policy that prohibits dirty data in SSD. In other words, a
write request invalidates a block that is cached in SSD and
is directly delivered to HDD, thus all the newest data are
stored in HDD. This means that conventional technologies
utilize SSD as a read-only cache that cannot improve the
write performance.

Even though SSD is a nonvolatile device, it is very dif-
ficult to apply the write-back policy to the tiered cache. To
persistently maintain dirty data in SSD, cache metadata
must be stored in a nonvolatile device and consistently
updated whenever a block is evicted or cached. In addi-
tion, cached data and cache metadata must not be lost and
be consistent even at a crash. A persistent cache that
employs dirty data may require a high real-time overhead
for consistent metadata management.

A persistent read/write cache improves both read and
write performance but it must also guarantee the integrity
of the cache metadata and the consistency of the cached
data even during a crash or a power failure.

Saxena et al. [24] proposed a durable (same as persis-
tent) write cache with a small overhead. They insisted that
storage provide new primitives (write-dirty, write-clean,
evict, clean, exists) to consistently manage a write cache
with a low overhead. However, general SSDs, though they
support only the basic primitives, read and write; have the
benefits of fast development time, low cost, and popularity.

An approach using general SSDs was introduced [25]. It
can cache write data and does not return stale data but
may restart with an empty cache if a crash occurred while
updating its cache metadata.

The system proposed herein is a fully persistent read/
write cache with low overhead, it never return stale data,
and it utilizes general SSDs that are now available in the
retail market.

1.3. Lossless recovery and no-write-back

Koller et al. [20] introduced a write-back policy for an
SSD cache, which is journaled write-back that makes a
block-level journal that aggregates multiple write requests
with a header block and a commit block, while limiting the
amount of data loss. The journaling cache quickly recovers
by replaying the last completed transaction to its home
location. However, it cannot provide a recovery point
objective (RPO) of zero (i.e., no data loss). It loses the last
journaled data if a crash occurs in the middle of journaling.

Holland et al. [26] investigated flash write policies,
which are write-through, asynchronous write-through,
and periodic write-back. The write-through policy does
not permit dirty data on flash. The other write policies
may return stale data after a crash or a power failure. Some
SSD caches use the write-back policy for the write per-
formance by sacrificing a risk of data loss [8,23,27]. How-
ever, our solution never loses dirty data for highly available
systems.
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The traditional write-back policy flushes dirty data by a
periodic write-back scheduler [28] or a write-barrier [29]
of journaling file systems. The non-persistent write cache
cannot retain many dirty data for a long time because it
has a possibility of data loss.

In contrast, the proposed persistent read/write cache
can adopt a no-write-back policy, which can permanently
retain dirty data in the cache and does not flush dirty data
because it does not lose dirty data even if a crash occurs.
This policy flushes a dirty block to the backing storage only
when the dirty block is evicted from the persistent cache.

If a crash or power failure occurs, the write cache has to
recover the data and cache metadata. Recoverability is mea-
sured by the amount of data loss and recovery time that a
recovery process takes until the whole data is available again.

Fig. 1 shows trade-offs in write policies. A write-back
policy will incur data staleness [20]. The write-back policy
accumulates the dirty pages in the SSD cache and writes
these pages to the HDD in sequential order [14]. This
policy loses all accumulated dirty pages when a crash
occurs. If it accumulates fewer dirty pages, it returns less
stale data after a crash, but its performance falls toward
that of the write-through policy.

The performance of the write-back policy would be
better or worse than that of the no-write-back-policy
depending on the number of accumulated dirty pages.
The journaled write-back policy [20] is better than the
normal write-back policy in terms of consistency, but it
also loses dirty data in an incomplete transaction that has
no commit block.

The most important advantage of the proposed no-
write-back policy against the write-back policy is the write
cache with zero-staleness.

The proposed system quickly recovers the flash cache
without any data loss and employs the no-write-back policy
that does not flush dirty data to the backing storage until
the dirty data is evicted for capacity reasons. This provides
sustained high write performance and reduces the band-
width consumed by writing back dirty data.
Staleness 

Performance 

Write-through 
(Read-only cache) 

No-write-back 
(persistent write cache) 

Write-back 

0%

Fig. 1. Trade-offs in write caching: a write-back policy will incur data
staleness. The no-write-back (persistent write cache) and write-through
policies support zero staleness.
1.4. Memory usage and workload

The memory usage of the cache management is pro-
portional to the cache size. The memory usage of the
storage-class cache cannot be ignored. A page-based LRU
scheme uses 512 MiB of memory for 64 GiB SSD. The
proposed scheme adopted segment-based tables that
require 21.5 MiB in our implementation.

The proposed system focuses on desktop workloads.
Anti-virus scan, disk defragmentation, and copying video
files can invalidate most of the cache. Recent activities of
such processes may not predict the future desktop I/O. Our
system considers desktop workloads and analyzes recency
and frequency for a long period. Our scheme is suitable for
desktop computers and virtual desktop infra servers [30],
which run virtual machines to deliver the desktop envir-
onment to the remote clients.
2. Persistent read write cache

Our cache management policy is quite different from
traditional cache policies. We propose a storage-class, per-
sistent, and consistent read/write cache (PRWC), which
(1) can retain dirty data in SSD with zero RPO (no data loss)
even after a crash or a power failure; (2) has a small over-
head for cache consistency; (3) does not need a warm-start;
(4) does not need a new SSD interface; (5) considers both
recency and frequency in its cache replacement policy;
(6) requires a small amount of main memory for cache
management; and (7) recovers the cache metadata a short
time after a crash, thereby supporting a storage-class cache.

PRWC learns and analyzes I/O accesses for a long-term
period. Updating the cache content is periodically per-
formed during idle time after long-term learning. Hence,
this policy may decrease the hit rate in comparison with
on-demand cache policies; however on-demand cache
replacement policies consume a considerable portion of
the SSD bandwidth. The SSD bandwidth is much less than
that of RAM by an order of magnitude (SATA III is 600 MB/
s; PC3-17000 is 17066 MB/s). The second-level storage
cache must consider not only hit rate but also throughput,
which include bandwidth, fetching cost, eviction cost, and
access pattern. The bandwidth of memory-level SSDs such
as PCIe SSDs or memory channel storage devices (ULL-
traDIMM SSD, eXFlash DIMM) is very close to that of RAM.
However, we focus on storage-level SSD. Our evaluation
shows that the reduced fetching cost (SSD bandwidth)
compensates for the decreased hit rate in PRWC.

PRWC does not change the cache metadata during most
of the running time because it completes cache updates
during idle time after long-term learning. For perfect per-
sistency and consistency during the cache-update procedure,
PRWC employs a journaling scheme for the cache metadata.
The changed parts of the cache metadata are appended as a
log in SSD. When the log region is full or the cache-update
procedure finishes, the main cache metadata is combined
with all of the logs and is written as the latest one.

PRWC also does not use a special primitive (e.g., atomic
write or transactional write). We established consistency
using only the basic read and write primitives that are
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supported by general SSDs. The cache update policy of
PRWC can aggregate multiple logs into a single write, thus
it has a low update overhead.

PRWC manages the SSD cache in segment unit that
divides the storage volume, is the minimum unit for the
cache management, and ranges tens of KiB to several MiB.
If a segment becomes hot, the segment is brought from the
backing storage to SSD.

There are many cache replacement policies that con-
siders both recency and frequency for RAM cache,
including LRFU [31], ARC [32], CAR [33], and L2ARC [18].
However, these schemes make persistency management
very complicated. A way to easily maintain consistency
and persistency is needed. PRWC is managed with mini-
mal information (an indicating value for recency and fre-
quency, mapping information) in a form of table. Each
segment has a value that is an indicator representing the
recency and frequency of I/O accesses to it.

If a crash occurs in the middle of the cache metadata
update, the next restart reads only the metadata area and
reconstructs the cache metadata in a short time without
any data loss.

In this paper, we present the detailed algorithm,
structure, and codes of the persistent read/write cache. We
implemented PRWC as a module driver in Linux. The
Appendix includes the detailed pseudo-codes of the
implementation.

2.1. Addressing

Fig. 2 shows the proposed structure of the tiered sto-
rage that uses an SSD or SSD RAID [34–36] as the second
level storage cache. A single HDD or HDD RAID [37,38] is
the backing storage device.

The storage volume is divided by segment unit, which
is the minimum unit for cache management and ranges
from 128 KiB to 1 MiB in the evaluation. The frequently
and recently used segments (hot segments) of the main
storage are mapped to SSD.

Each segment in the HDD has an RF value that indicates
the level of recency and frequency. The HDD segment
HDD RAIDSSD RAID

SSD
HDD

Default
address

mapping

cold segmenthot segment 

The capacity of HDD Storage

An address mapping for a hot segment
mapped cold segment

unmapped hot segment

Fig. 2. Segment mapping.
whose RF value is greater than a threshold value is cached
to SSD. A mapping table that maps SSD segments to HDD
segments is managed in both SSD and main memory. A
radix tree in main memory provides mapping from HDD
segments to SSD segments.

If an I/O request is delivered, the system investigates
whether the requested HDD segment is mapped to an SSD
segment using the radix tree. If the requested HDD seg-
ment is mapped to an SSD segment, the request is redir-
ected to the SSD segment; otherwise, the request is
delivered to the HDD.

2.2. Write cache policy – no-write-back

A segment where reads and writes are frequently and
recently requested becomes a hot segment and is pro-
moted to SSD at the next cache-update procedure. The
deferred caching may be a shortcoming, but is compen-
sated by the following strong points.

Requests for cold segments are not cached in SSD.
Requests only for cached segments are redirected to SSD. If
all write requests are cached regardless of the segment
temperature, data written in cold segments must be
evicted in the near future, which requires one more write
and read, thereby consuming the limited SSD bandwidth.

This write-back policy causes data synchronization
from SSD to HDD in the near future, to reduce the amount
of data loss [20]. Our write policy is no-write-back. PRWC
is fully persistent and flushes dirty data only when the
dirty data is evicted, because this guarantees no data loss.
In addition, it does not cause frequent evictions because
hot segments are determined by long-term learning.

A read-only cache invalidates a cached region where a
write is delivered, whereas PRWC just redirects a write or
read request to SSD when a write or read request for a hot
segment is delivered.

The proposed cache is resistant to cache pollution. A
recently accessed data segment is valuable in the least
recently used (LRU) cache, but a recently first accessed
data segment is not hot and is not cached in PRWC. A big
data backup pollutes the LRU cache, whereas PRWC pro-
tects hot data against cache pollution.

The write-back scheme of the RAM cache buffers all
write requests, aggregates multiple requests into a single
request, and reorders them for an optimal seek time.
However, buffering all write requests is less beneficial to
the SSD cache because the aggregation and reordering is
already performed in the RAM cache.

2.3. Caching all writes

PRWC does not buffer all writes. Write requests only for
cached segments are redirected to SSD. Writes for cold
segments are directly written to HDD. If a system supports
a write cache for all writes and long and continuous I/Os
are requested, the write cache capacity become full
eventually and a new cold data should evict the oldest cold
data. Caching a cold data and eviction another cold data
consume considerable SSD bandwidth. Therefore, caching
all writes is worse than bypassing writes for cold data.
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To cache all writes, we may add the write-back jour-
naling for uncached segments as in Koller's scheme [20].
This would be useful for a sporadically busy system. Jour-
naling may slowdown a long-term busy system after the
journaling region becomes full. A very busy system may
not have idle time sufficient to move the cold data in a
journal region to their home location, and would consume
the limited SSD bandwidth for cold data. PRWC does not
presently include the write-back journaling.

2.4. Cache metadata

PRWC should preserve data even after a power failure
or a crash, and it does this by storing the cache metadata
in a nonvolatile device such as an SSD. If a system modifies
the metadata whenever the cache is updated, it suffers
severe performance degradation. Hence, we need a com-
pletely different cache policy.

To reduce the update overhead of the cache metadata,
the proposed scheme learns the recency and frequency of
segment accesses for a given period, which could be a
couple of hours or a day. Updating the contents of the
cache is scheduled for idle time and is suspended any time
the system is not idle.

A long-term cache update may be adequate for a
storage-class cache for the following two reasons. First,
there are two common access patterns across various
applications: daily re-accesses and hourly re-accesses [19].
Second, it takes several hours or days for workloads to
exceed the capacity of the SSD cache. Even a rate of one
update per day was superior to an on-demand cache
policy in our performance evaluation.

Fig. 3 shows the metadata structure of the proposed
system. The metadata is stored in SSD. There are two
metadata regions for integrity. The metadata is stored
alternatively in the two metadata regions. If a crash occurs
while writing a main metadata to one region, the latest
Fig. 3. Metadata structure: the cache data is persistently managed by the
metadata saved in a nonvolatile device (SSD).
main metadata is corrupted. However, we can then use the
metadata in the other metadata region, which still con-
tains intact metadata. A metadata region consists of a
metadata header, main metadata, and log area.

The version field of the metadata header indicates the
latest main metadata and increases by one after every
main metadata update. The header hash field guarantees
the integrity of the metadata header. The payload hash
checks errors of the main metadata. The cleared clean bit
indicates a crash. The update bit informs whether the
crash occurred in the middle of the cache update.

The recency/frequency table (RF table) consists of RF
entries allocated to each HDD segment. The RF value is the
index of recency and frequency. The greater RF value
indicates that the HDD segment has been used more
recently and frequently. The cached bit indicates if the
corresponding HDD segment is cached in SSD.

Each entry of the mapping table corresponds to a SSD
segment. If the corresponding SSD segment caches an HDD
segment, the entry contains the address of the cached
HDD segment. Otherwise, it contains NULL.

Each bit in the dirty bitmap is allocated to an SSD
segment to indicate whether the cached data in the SSD
segment is dirty.

Another copy of the mapping table and the RF table is
in memory to lookup the metadata quickly (called the in-
memory metadata). A radix tree and a lock table are only
in memory. Fig. 4 shows the in-memory metadata.

The radix tree is used to search for the SSD segment
where a given HDD segment is cached. Namely, the radix
tree is a reverse mapper of the mapping table. The radix
tree can be rebuilt from the mapping table, thus is not
stored in the metadata region.

The lock table is used for exclusive access to the
metadata. Each lock entry corresponds to an HDD seg-
ment. When an I/O is requested to a segment, the corre-
sponding lock-counter increases by one. When the request
finishes, the counter decreases by one. While caching or
evicting a segment, the corresponding update lock bit is
set. For each lock entry, all I/Os to the segment are blocked
while the update lock bit is set. Caching and evicting the
segment is prohibited while the lock counter is non-zero.

The cache update procedure locks a segment that is being
promoted or evicted. Then, any I/O access to the locked seg-
ment is blocked until the segment is unlocked. While an I/O to
a segment is being processed, the cache update procedure is
blocked from accessing the segment until the I/O finishes.

I/Os can be requested during the cache update proce-
dure even though this is very rare. Hence, we need these
locks to prevent a race condition in which I/O requests and
the cache update procedure compete with each other for
the cache metadata.

The cache update procedure locks only one segment at a
time, so the possibility that an I/O request is for the locked
segment is very low. If the I/O request has a uniform dis-
tribution and there are 1 million of segments, the possibility
of blocking is 0.00001% only when the cache update pro-
cedure runs. In addition, there is no locking in most cases.

SSD is better to store the metadata region with high
performance than HDD but the metadata region may
reduce the effective cache size a little. Table 1 shows the
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Table 1
The size of the metadata region (MiB).

HDD size (TiB) SSD size (GiB)

8 16 32 64

1 6.2 6.3 6.4 6.6
2 8.3 8.4 8.5 8.8
4 12.6 12.6 12.8 13.0
8 21.1 21.1 21.3 21.5
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size of the metadata region. The HDD size dominates the
size of the metadata region but the SSD size lightly affects it.
We need to avoid from frequently updating the metadata
region because it is not small. In our proposed policy, the
metadata region updated only once after the completion of
the cache update procedure which runs hourly or daily.

2.5. Recency and frequency

The cache replacement policy of PRWC considers both
recency and frequency, and is a straightforward way to
maintain consistency and persistency. Many researches on
recency and frequency have been proposed [31–33,39].
The traditional cache replacement policies consider var-
ious aspects of I/Os such as not only recency and frequency
but also marginal gain [32,33], and access-pattern-based
cost [39,14]. However, these schemes make persistency
management very difficult. The traditional cache replace-
ment policies modify their cache metadata for every I/O
request. If the metadata is managed in a secondary storage
device, it causes a high overhead.

The proposed cache analyzes hourly or daily workloads
and gives each HDD segment a recency/frequency value
(RF value) that is a combination of the level of recency and
the level of frequency. The greater the RF value, the hotter
the HDD segment.

For every hit to a HDD segment, the RF value increases
by a predefined value (20 is used in the implementation).
Successive hits on the same segment are considered a
single hit. If the RF value exceeds a predefined hot
threshold value (50 is used in the implementation), the
corresponding HDD segment becomes a hot segment.
Otherwise, it is a cold segment. The optimal hot threshold
value varies according to workloads. Finding the optimal
value is not trivial. We plan to study it in future work.

For recency, all RF values decrease by multiplying a
decay value (less than one) to them in a decay process that
is invoked when the number of hot segments exceeds the
capacity of the SSD.

The decay process requires the time complexity of O(N).
However, it is rarely called and runs in a dedicated thread
that is independent of I/O threads. Thus it does not affect
the I/O response time and causes unnoticeable perfor-
mance degradation.

At the beginning of the empty SSD cache, it takes too long
to fill the big SSD cache with hot segments (perhaps several
days). To boost the filling process for an empty cache, any
HDD segment that is accessed at least once becomes a hot
segment until the SSD cache is first fully filled.

2.6. Cache replacement policy

The storage-class cache has properties different from
traditional caches. The storage-class cache does not need
to frequently evict for a cache miss because it has a huge
amount of cache space, and it takes a long time to fill the
cache. Various applications exhibit the common patterns
of hourly or daily re-accesses in a storage-class cache [19].

The proposed caching and eviction occur only in a
cache-update procedure, which is scheduled to run hourly
or daily with a low priority at an idle time (e.g., midnight
or lunchtime). Any busy I/O can suspend the cache-update
procedure at any time.

Traditional cache policies that need an eviction and
caching on every cache miss are better in terms of hit rate;
however, caching and eviction consumes a considerable
portion of the SSD bandwidth unlike for RAM. Our
experiment shows that the reduced consumption of SSD
bandwidth by the proposed periodic cache update com-
pensates for the decreased hit rate.

The cache-update procedure caches all of uncached hot
segments to SSD, and evicts cached cold segments. Fig. 5
shows exemplary metadata for each step of the decay
procedure, and the cache-update procedure with four SSD
segments and eight HDD segments.

The decay procedure decreases all RF values in the RF
table so that the number of hot segments is less than or
equal to the SSD capacity. The system always keeps the
number of hot segments below the number of SSD segments.

The RF table and the mapping table form circles like
CLOCK. Each entry of the RF table contains its RF value and
a cached bit (denoted by ‘/’ in Fig. 5) for each HDD seg-
ment. Each entry of the mapping table contains the
address of an HDD segment that is cached to the corre-
sponding SSD segment.

At the beginning of the cache-update procedure, the
HDD clock starts at zero, rotates clockwise, and then stops
at an uncached hot segment. The SSD clock starts from the
last position, rotates clockwise, and stops at a victim SSD
segment that contains a cached cold segment. The HDD
segment that is cached in the victim SSD segment is
evicted, and its data is flushed to its original HDD segment,
if the segment is dirty. The HDD segment pointed to by the
HDD clock is cached to the SSD segment pointed to by the
SSD clock. If the HDD clock rotates one revolution, the
cache-update procedure saves current in-memory meta-
data as the main metadata in the next metadata region.
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In Step 0 of Fig. 5, the number of hot segment (¼6)
exceeds the number of SSD segments (¼4). To reduce the
number of hot segments below the number of SSD seg-
ments, the decay procedure multiplies every RF values by
the decay value (¼4/5).

In Step 1 of Fig. 5, the HDD segments ‘2’ and ‘4’ are the
uncached hot segments, and the HDD segments ‘0’ and ‘3’
are cached cold segments.

Step 2 of Fig. 5 shows the cache metadata after evicting
HDD segment ‘0’ and caching HDD segment ‘2’ in SSD seg-
ment ‘1’. The SSD clock points to ‘1’. SSD segment ‘1’ contains
HDD segment ‘0’; which is evicted. The HDD clock points to
‘2’. HDD segment ‘2’ is cached to SSD segment ‘1’. Step 3 of
Fig. 5 shows the cache metadata after evicting HDD segment
‘3’ and caching HDD segment ‘4’ in SSD segment ‘3’.

2.7. Metadata log and dual metadata regions

A journaling for the metadata is used for persistency and
consistency. The logs are produced only during the cache-
update procedure. Even if a crash occurs during the cache-
update procedure, the metadata can be reconstructed by
combining the last saved main metadata with the logs.
PRWC utilizes a logging scheme like database write-
ahead logging [15,40,41] and general file system journaling
[42–46]. However, PRWC has two metadata regions for
higher reliability. Reliability is much important in the
cache metadata because a failure on even a single sector in
a cache metadata leads to a tremendous amount of cor-
rupted data. If an error occurs in the latest main metadata,
we can recover it from the alternate metadata region. In
addition, the dual metadata regions make the recovery
procedure simple.

Fig. 6 shows how the two metadata regions are used.
The main metadata and logs are recorded alternatively in
two metadata regions. If a crash occurs while the main
metadata is being written, the last metadata is corrupt, but
the system can rebuild the latest metadata from the other
metadata region.

Themain metadata that is in SSD is not changed during the
cache-update procedure but the in-memory metadata changes
in real time. The changed parts from the main metadata
against the in-memory metadata are recorded as logs during
the cache-update procedure (Steps 2 and 3 in Fig. 6).

The final main metadata (in-memory metadata) is
equal to the combination of the last saved main metadata
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and the logs, and it is saved in the other metadata region
at the end of the cache-update procedure (Step 4 in Fig. 6).
If a crash occurs in Step 4, the partially written metadata is
unusable; however, the latest main metadata can be
rebuilt using the alternate main metadata and the logs of
the previous step (Step 3 in Fig. 6).

A log consists of a mapping pair (SSD segment number
and HDD segment number), which means that the SSD
segment caches the HDD segment. The log sector size is
512 B that is minimum I/O unit of storage devices, but the
pair is much smaller than the sector size. Thus we can
reduce the logging overhead by aggregating multiple
mapping pairs into a single log sector.

Fig. 7 shows the in-memory metadata, metadata
regions, storage data, and cache data during the cache-
update procedure. Steps 1–3, and the exemplary values of
Fig. 7 are the same as those of Fig. 5.

In Step 1 (decay process) of Fig. 7, the metadata region
1 contains the metadata before the decay, but the in-
memory metadata is the latest one after the decay process.

The more detailed sub-steps in Step 2 or Step 3 is as
follows:

� Step i: The system determines an uncached hot HDD
segment that is pointed by the HDD clock, and an SSD
segment that contains a cold segment (pointed by the
SSD clock). This step is safe from a crash.

� Step ii: The system copies (flushes) the data in the SSD
segment to its home location, if the data in the SSD
segment is dirty. Then it deletes the caching information
(cached bit, dirty bit, radix tree) related with the SSD
segment in the in-memory metadata. This step is safe
from a crash.

� Step iii: The system makes a new mapping (cached bit,
radix tree) from the hot HDD segment (HDD clock) to
the SSD segment (SSD clock) in the in-memory meta-
data. This step is safe from a crash.

� Step iv: The system appends a log, 〈SSD clock;HDD clock〉,
to the log area of the current metadata region.

� Step v: The data of the hot HDD segment is copied to the
SSD segment.

In Step 2 (caching process), the cached cold HDD segment
‘0’ is evicted from SSD segment ‘1’ and the uncached hot HDD
segment ‘2’ is cached to the SSD segment. In the metadata
region, the system appends only a log 〈1;2〉, which means SSD
segment ‘1’ is caching HDD segment ‘2’. We do not need to
make a record that HDD segment ‘0’ is evicted because we
know the evicted segment number (HDD segment ‘0’) from
the old mapping table of the metadata region.

In Step 3 (caching process), the cached cold HDD seg-
ment ‘3’ is evicted from SSD segment ‘3’ and the uncached
cold HDD segment ‘4’ is cached to SSD segment ‘3’. In the
metadata region, the system appends only a log 〈3;4〉,
which means SSD segment ‘3’ is caching HDD segment ‘4’.

In Step 4 (main metadata update process), the cache-
update procedure finishes, the version of the metadata
header of the in-memory metadata increases, and the in-
memory metadata is written to the other metadata region.

For consistency between I/O request services and the
cache-update procedure, an I/O request for a segment is
blocked while the cache-update procedure is processing
the segment of the I/O request. The cache-update proce-
dure that processes a segment is blocked while an I/O
request for the segment is being processed.

2.8. Recovery and consistency

PRWC recovers the cache metadata without any data
loss in a short time after a crash. It does not need any
warm-up process. Most of the cached data are retained.

Fig. 8 illustrates a simplified recovery process. At the
beginning of a restart, the highest version of the main
metadata between the two metadata regions is loaded into
the in-memory metadata. If the latest metadata region has
valid log sectors, the in-memory metadata is combined
with its logs. At the end of recovery, we should rollback
with the last log sector because we cannot guarantee that
the last log sector is valid.

2.8.1. Verification of lossless recovery
This section describes that the recovery process is

correct in each crash step. Neither cache data nor meta-
data changes most of the time except for the cache update
procedure that runs at an idle time. A recovery process is
needed only if a crash occurs in the middle of the cache
update procedure, which consists of the decay process
(Step 1), the caching process for each uncached hot seg-
ment (Steps 2 and 3), and the main metadata update
process (Step 4). Steps 1–4 are illustrated in Figs. 5 and 6.

The following describes how metadata is recovered and
why there is no data loss when a crash occurs in each step.

1. Decay process (Step 1): Only the RF values in the in-
memory metadata are changed. Nothing changes in the
metadata and data in the storage.

2. Caching process (Step 2 or 3): It consists of the more
detailed sub-steps (Steps i–v) that are described in
Section 2.7.
� Step i: The system changes the HDD clock and SSD

clock, which are not the part of the cache metadata.
� Step ii: The system copies the dirty data of a SSD

segment to a HDD segment but none of the cache
metadata in the storage changes (not in-memory).
After a crash, the metadata indicates that the SSD
segment is still dirty but it is actually clean. However,
this error does not lose any data.

� Step iii: Only the in-memory metadata is modified
and the main metadata in SSD is unchanged; thus,
there is no consistency problem caused by a crash.

� Step iv: A log is appended. The hot segment that is
indicated by the log is not yet cached to SSD, which
means that the SSD segment still contains the cold
HDD segment of the old mapping. Hence, the recov-
ery process deletes the cache mapping for the last log.
In other words, the SSD segment that is indicated by
the last log is set to be uncached. We can erase the
mapping of the SSD segment without data loss
because the cold HDD segment that is contained in
the SSD segment was clean in Step ii.

� Step v: This sub-step makes the metadata and data
consistent by copying the data of the hot HDD
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segment to the SSD segment according to the log that
is stored in Step iv. By the way, we cannot determine
whether a crash occurred in Step iv or Step v because
the last metadata of Step iv is the same as that of this
sub-step. Hence, we just erase the mapping of the SSD
segment that is indicated by the last log, even though
the metadata and data are consistent. However, there
is no data loss because all related data are clean
before this sub-step. All the other logs except for
the last log are not discarded.

3. Main metadata update process (Step 4): The system
writes the in-memory metadata to the next metadata
region. The mapping information of the latest in-
memory metadata is equal to the combination of the
main metadata and the logs. If a crash occurs while the
newest main metadata is being written, the system can
notice an error by the payload hash of the newest main
metadata and reconstruct the final main metadata from
the previous main metadata and the logs in the pre-
vious version of the metadata region.

2.8.2. Recovery from repeated crashes
This section investigates what happens if a crash occurs

during the recovery process. Fig. 8 illustrates a simplified
recovery process. If the latest valid metadata region has
valid log sectors in metadata region X, a new main meta-
data is built by combining the latest main metadata with
logs and written in the alternate metadata region Y. If a
crash occurs during writing the new main metadata, the
system will find a corrupted main metadata in metadata
region Y and a valid main metadata and logs in metadata
region X at the next restart. The system takes the metadata
region X as the latest region and again builds a new main
metadata in the same way of the recovery at the first crash.

2.8.3. Recovery example
Fig. 9 shows cases of recovery using a main metadata

and logs. There exist two different data sets in the cache
shown in Fig. 9(a) and (b) with the same metadata shown
in Fig. 9(c).

Fig. 9 (a) shows the storage data in Step iv of Step 3.
Fig. 9(b) shows the storage data in Step v of Step 3. SSD
segment ‘3’ that is pointed at by the last log 〈3;4〉 contains
different data between Step iv and Step v. SSD segment ‘3’
in Step iv contains the data of old mapping (HDD segment
‘3’) but SSD segment 3 in Step v contains the data of new
mapping (HDD segment ‘4’). The two cases have the same
metadata and logs because the log is added in Step iv.

The SSD segment pointed at by the last log (SSD segment
‘3’) is invalidated in the recovery process because its cached
data is different between Step iv and Step v. Fig. 9(e) shows
how this is done. The old mapping that SSD segment ‘3’ caches
HDD segment ‘3’ is removed (clear the cached bit of HDD
segment ‘3’, erase the mapping entry of SSD segment ‘3’ in the
mapping table, and clear the dirty bit of SSD segment ‘3’). There
is no consistency problem because the dirty data of the deleted
segment is already flushed to its home location before Step iv.

Logs, except for the last one, are applied to the in-memory
metadata in their order. Fig. 9(d) shows an example inwhich a
log is applied to the in-memory metadata. The log indicates
that SSD segment ‘1’ caches HDD segment ‘2’. The old main
metadata indicates that SSD segment ‘1’ caches HDD segment
‘0’. Applying the log is as follows: (1) The cached bit of the old
mapping (HDD segment 0) is cleared. (2) The mapping table
entry of the SSD segment is updated with the new mapping
(HDD segment ‘2’). (3) The cached bit of the new mapping is
set (HDD segment 2). (4) The dirty bit of the cache is cleared
(SSD segment 1).

2.8.4. Miscellaneous concerns
The combination of the main metadata and logs in the

previous version of the metadata region is always equal to the
latest main metadata in the alternate metadata region; thus,
there is a kind of redundancy. Therefore, if the latest main
metadata is corrupted due to a bad sector, it can be rebuilt from
the alternate metadata region. If a 512 B sector in the mapping
table is bad, then 64 segments are lost. If the segment size is
1MiB, we lose 64MiB of data due to the 512 B error. That is
why we maintain the redundant metadata in the two regions.

An error may occur if the same SSD segment numbers
or the same HDD segment numbers appear among logs in
the same metadata region. However, the clock-based cache
policy does not cause such an error because SSD clock and
HDD clock rotate, at most, one revolution.

When a write request is delivered to a clean SSD seg-
ment, the SSD segment becomes dirty and the SSD seg-
ment number is journaled as a dirty log in the log area
before the write request is processed. After a crash, the
final dirty bitmap is rebuilt by combining the saved old
dirty bitmap and the dirty logs. The dirty log may degrade
the performance of normal I/O services.

We can choose another policy without the dirty log for
faster write response time. After a crash, the dirty bitmap
must be ignored and all SSD segments must be treated as
dirty. No-dirty-log policy may make the cache update
procedure longer after a crash (longer Step ii). Evaluation
of the dirty log is left as a further work.
3. Performance evaluation

3.1. Experimental environment

There are two major concerns of this evaluation.
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First, is the periodic cache update better than an on-
demand cache update? To resolve this issue, we imple-
mented an SSD cache with the LRU policy, which caches a
segment for each a cache miss, and evicts the least
recently used segment on the fly. This LRU implementation
does not persistently manage the cache metadata and is a
read-only cache because it loses data in a crash. Depending
on the crash, the LRU cache may restart with an empty
cache. Thus, we evaluated two types of LRU: SLRUr (SSD-
LRU reset everyday) and SLRUn (SSD-LRU never reset).
SLRUr resets the SSD data every day. SLRUn retains its
cached data without any power-off.

The second issue involves how much the performance
differs between a read-only cache and a read–write cache.
We evaluated our proposed scheme, PRWC (Persistent
Read/Write cache) and an additionally implemented PROC
(Persistent Read Only Cache, a read-only version of PRWC),
PROC is almost same as PRWC, except that PROC does not
make any dirty data by forwarding write requests for
cached segments to both SSD and HDD.

In our experiment, PRWC and PROC executed the
cache-update procedure only once a day. SLRUr, SLRUn,
PROC, and PRWC were implemented as a block driver in
Linux kernel 2.6.35. A Samsung MZ-7PD512 SSD and a
Seagate ST2000DM001 HDD were used for storage. The
storage devices' interface was SATA III (6 Gbps). The
default capacity of the SSD is 32 GB. The capacity of the
HDD was 2 TB throughout the experiments. The achievable
maximum bandwidths of the SSD and the HDD are
566 MB/s and 210 MB/s, respectively. The maximum
throughputs of the SSD and the HDD are 100,000 and 600
IOPS, respectively.
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3.2. Workload

This evaluation used a large amount of traces that were
extracted using Xperf [47] from five users during ten days.
The users were a director, two programmers, and two
system engineers. They ran MS-Windows 7. Traces were
replayed with Direct IO, which bypasses the RAM cache.
Hence, the main memory size had no effect on this
evaluation.

Fig. 10 shows the workload coverage per day. The cov-
erage was analyzed in 1 MiB units as the segment size. The
coverage is defined as a set of segments that are requested
at least once. Fig. 10(a), (b), and (c) shows the write cov-
erage, read coverage, and total coverage, respectively, for
the workloads. The workload of User 1 consists of writes
on 33 GB of segments and reads on 65 GB of segments. The
workload coverage of User 4 consists of writes on 113 GB
of segments and reads on 101 GB of segments.

The total (read and write) workload coverage is 73 GB,
111 GB, 59 GB, 148 GB, and 112 GB for Users 1 to 5,
respectively.

Fig. 10 (d) is the portion of the write coverage over the
total coverage. The portion of the write coverage was 42%
on average, for all users. The portions of the write amount
are shown in Fig. 10(e). The portions of the write amount
were 24%, 36%, 29%, 34%, and 46%, for Users 1 to 5,
respectively, whereas the portions of the write coverage
were 34%, 40%, 45%, 53%, and 39% for each user. That
means that we can expect more spatial locality in writes
than in reads.

3.3. Bandwidth and latency

Fig. 11 shows the total (read and write) bandwidth.
PRWC had no cache hit on the first day because its cache
was updated after one day. The performance of PRWC sig-
nificantly increased from the first day to the fourth day
because the cache was not full until the fourth day. PRWC
outperformed SLRUn after the third day. PRWC showed the
best performance because only PRWC can cache write
requests. The bandwidth of PRWC was 54% better than that
of SLRUn by 54% and 48% better than PROC, on average.

The bandwidth of PROC was similar to that of SLRUn.
However, PROC never lost its cached data but SLRUn is an
artificial scenarios. A practical system using SLRU clears its
cache by a crash or power failure and thus exhibits the
same performance as SLRUr after a crash. SLRUr is the
performance after SLRU experiences a crash. The band-
width of SLRU was degraded by 41% at the first day after a
crash, on average, for all users.

Fig. 12 shows the write-part bandwidth, where both
read and write coexist in the workload. The write perfor-
mance of PRWC was significantly superior to the others
because only PRWC can retain dirty data. The write per-
formance of SLRUn and PROC was similar to HDD. PRWC
showed 3 times better write bandwidth than did the PROC.

Fig. 13 shows the read-part bandwidth. In read band-
width, PRWC was best for User 1 and User 4, PROC was
best for User 2, and SLRUn was best for User 3. The three
schemes, therefore, have similar read performance.

PRWC exhibited the shortest total latency as shown in
Fig. 14. This evaluation shows that latency tends to be
inversely proportional to bandwidth. This evaluation
shows that caching writes can significantly reduce latency.

PRWC provides zero-staleness, which means that it
does not return any stale data after a crash. Many write
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caches with write-back policies cannot support zero-
staleness. Hence, we evaluated PRWC with read-only cac-
hes that support zero-staleness.
3.4. SSD size

The bandwidth of User 5 is shown in Fig. 15 as the SSD
size varies. For all SSD sizes in this experiment, PRWC
worked best and PROC was second. PRWC outperformed
PROC by 30%, 35%, 34%, and 39% for 8, 32, and 128 GB of
SSD, respectively. PRWC outperformed SLRUn by 49%, 67%,
and 33% for 8, 32, and 128 GB of SSD, respectively.
The total workload coverage (see Section 3.2) of User
5 is 112 GB. Hence, all data can be cached to 128 GB of SSD.
In many cases, SLRUn is outperformed by PROC because
SLRUn needs more SSD traffic for on-demand caching.
However, if the cache size is greater than the workload
coverage, the on-demand cache update (SLRU) could out-
perform the periodic cache update (PROC) as shown in
Fig. 15(c).

On the eighth day, User 5 executed a big data backup
that produced sequential reads and writes, thus the cache
hit rate was low and the performance of ‘HDD only’ was
high. The big data backup polluted the LRU cache with
blocks that were not used again. SLRUn consumed a sig-
nificant portion of the SSD bandwidth, thus it was worse
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than ‘HDD only’ on the eighth day. PRWC and PROC are
resistant to sequential I/Os, which are usually considered
as requests on cold segments.

3.5. Hit rate

The write hit rate is the number of write requests that are
for the cached segment over the total number of write
requests from the upper layer. The total hit rate is the number
of read and write requests that are for the cached segmented
over the total number of read and write requests.

The hit rate of PRWC was zero on the first day as shown
in Figs. 16 and 17. This was because it executed the cache-
update procedure at midnight and had no cached data at
the first day. The hit rate of PRWC increased on the second
day but it was lower than that of SLURn. The read hit rate
of PWRC was a little smaller than SLRUn after the third day
but the total hit rate of PRWC was 23% better than SLRUn
(on average) because PRWC can cache write requests.

SLRUn updates its cached data on the fly, whereas PROC
updates the cache contents only once a day. Hence, the
read hit rate of PROC was smaller than SLRUn by 0.06%
point, as shown in Fig. 16. PROC, however, provided 4%
more bandwidth than SLRUn (on average).

Hit rate does not consider the limited bandwidth of the
cache. Unlike RAM, the SSD bandwidth is a limited
resource. Promoting data from HDD to SSD in SLRU con-
sumes the SSD bandwidth and makes SSD more congested.



Fig. 15. Total bandwidth as the SSD size varies.
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PROC and PRWC do not promote data while they are ser-
ving I/O requests, thus PROC can provide greater
throughput with less hit rate than SLRU.

3.6. Segment size

The storage volume is divided by segment unit, which
is the minimum unit for cache management. Fig. 18 shows
the bandwidth of User 5 as the segment size varied from
128 KiB to 1 MiB. The 1 MiB of segment showed the best
performance. Due to an implementation restriction, we
could not evaluate segments larger than 1 MiB. A big
segment is beneficial for spatial locality and total band-
width, despite wasting cache capacity.

PRWC outperformed SLRUn by 29%, 35%, 54%, and 67%
for 128, 256, 512, and 1024 KiB of the segment size,
respectively (on average). PRWC outperformed PROC by
19%, 29%, 31%, and 34% for 128, 256, 512, and 1024 KiB of
the segment size, respectively (on average).

The greater the segment size was, the greater the band-
width was in this evaluation. When a cache miss on a page
occurs, PRWC promotes the segment that includes the
requested page. This means that PRWC caches a lot of pages
that are located near the requested page. Hence, this evaluation
shows that desktop workloads exhibit great spatial locality.

The hit rate for various segment sizes is shown in
Fig. 19. The greater the segment size is, the higher the hit
rate is. The hit rates of PRWC are 0.46, 0.49, 0.51, and 0.58,
respectively, for 128, 256, 512, and 1024 KiB of the seg-
ment sizes (on average). This evaluation attests that a
group of blocks, as a cache management unit, is better
than a small block for managing a storage-class cache.

3.7. No-write-back vs. write-back

PRWC is a no-write-back policy, which does not flush
dirty pages in SSD until the pages are evicted, and it
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redirects write requests only for hot segments. The write-
back policy buffers all write requests but it needs to evict
the buffered pages when a write buffer becomes full.
Therefore, this eviction process requires one more SSD
read and one more HDD write and consumes the limited
SSD bandwidth. PRWC does not require the eviction pro-
cess while user I/Os are being serviced.

The write-back policy loses dirty pages when a crash
occurs, but there is no data loss in PRWC. If the write-back
policy reduces the amount of data loss by decreasing the
write buffer size or flushing dirty pages more frequently,
its performance approaches that of the write-through
policy. Hence, it is difficult to determine the reliability of
the write-back policy.
The write-back policy is completely different from the
structure of PRWC. Hence, we chose another imple-
mentation that supports the write-back policy. Fig. 20
compares the write-back policy and the write-through
policy that are implemented by flashcache [10] with the
workload of User 1 and the 32 GiB of cache size.

The read bandwidth of the write-back is similar to that of
the write-through, and the read bandwidth of PROC is similar
to that of PRWC as shown in Fig. 20(a). Fig. 20(b) compares
the write performance. The write bandwidth of the write-
back was greater than that of the write-through by 48%
on average. However, the write bandwidth of PRWC was



Fig. 19. Cache hit rate as the segment size varies.

Fig. 20. Write-back vs. no-write-back: the write bandwidth of the write-
back outperforms that of the write-through by 48% on average. However,
the write bandwidth of PRWC is 4.2 times better than that of PROC.

Table 2
Recovery time at various crash points.

Crash point (%) 0 25 50 75 99
Recovery time (s) 0.74 2.41 4.05 5.62 7.15
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4.2 times better than that of PROC on average. This evaluation
shows that the no-write-back policy can improve more write
performance than the write-back policy for the given work-
load. The great performance difference between PRWC and
flashcache is due to the caching unit, such as page and
segment.

3.8. Recovery time

We evaluated the recovery time at various crash points
as shown in Table 2. After the first day of User 1, we
generated a crash during the cache update procedure. The
percentage of the crash point indicates that a crash
occurred after a given percentage of the cache update
procedure had finished. A zero percent crash point indi-
cates a clean shutdown.

A clean shutdown required 0.74 s to load the metadata.
In the worst case, it took 7.15 s to recover the metadata in
this experiment. In comparison with a warm-start [19],
which requires several hours, the recovery time of PRWC is
inconsiderable.
4. Conclusions

We proposed a fully persistent read/write cache that
improves both read and write performance; guarantees
the integrity of the cache metadata and the consistency of
the cached data even at a crash or a power failure; does
not requires a special primitive, and has a low overhead. It
quickly recovers the flash cache without any data loss, and
considers both recency and frequency in its cache repla-
cement policy. It requires only a small amount of main
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memory for cache management, and employs a no-write-
back policy. This provides sustained high write perfor-
mance, and reduces the bandwidth consumption that is
required to write back dirty data. Our system relates to
desktop workloads and analyzes recency and frequency
over a long period. Our scheme is suitable for desktop
computers and virtual desktop infra servers.

The evaluation was performed with massive real
desktop traces. The experiments verify the following facts.
Our persistent read/write cache is significantly superior to
read-only caches. A big sequential workload pollutes the
LRU cache with blocks that are not used again, but the
proposed scheme is resistant to sequential I/Os. The pro-
posed long-term cache-update procedure decreases the
read hit rate but increases bandwidth in comparison with
on-demand caches because normal I/O services do not
share SSD bandwidth with the cache update in our system.
A large segment is beneficial for spatial locality and shows
better performance, despite wasting cache capacity.

We implemented this persistent read/write cache as a
block device driver of Linux. The evaluation with real desktop
workloads for 10 days shows that our scheme outperforms a
basic SSD cache (SLRU) by 50% and the read-only version of
our scheme by 37%, on average of all experiments. Thus, its
use would significantly benefit virtual desktop infra servers.
This paper describes most parts of our scheme in detail. The
metadata structure, the cache replacement policy, a metadata
management for consistency and persistency, and the recov-
ery procedure are fully disclosed in this paper.
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