IEICE TRANS. INFE. & SYST., VOL.E100-D, NO.10 OCTOBER 2017

2373

| LETTER Special Section on Security, Privacy and Anonymity in Computation, Communication and Storage Systems

Doc-Trace: Tracing Secret Documents in Cloud Computing via

Steganographic Marking

Sang-Hoon CHOI', Joobeom YUNT, and Ki-Woong PARK'®, Members

SUMMARY The secret document leakage incidents have raised aware-
ness for the need to better security mechanisms. A leading cause of the
incidents has been due to accidental disclosure through via removable stor-
age devices. As a remedy to the issue, many organizations have been em-
ploying private cloud platform or virtual desktop infrastructure (VDI) to
prevent the leakage of the secret documents. In spite of the various se-
curity benefits of cloud-based infrastructure, there are still challenges to
prevent the secret document leakage incidents. In this paper, we present
a novel scheme, called Doc-Trace, to provide an end-to-end traceability
for the secret documents by inserting steganographic pattern into unused
regions of the secret documents on private cloud and VDI platforms. We
devise a computationally efficient storage scanning mechanism for provid-
ing end-to-end traceability for the storage scanning can be performed in an
event-driven manner since a steganographic mark are encoded into a well-
regulated offset address of the storage, which decrease the computation
overhead drastically. To evaluate the feasibility of the proposed scheme,
this work has been undertaken on a real cloud platform based on Open-
Stack.

key words: data traceability, cloud computing

1. Introduction

The secret document leakage incidents is defined as the ac-
cidental or unintentional distribution of sensitive data to an
unauthorized parties [1]. A leading cause of the incidents
has been through network or via removable storage devices.
As a countermeasure, many organizations are employing
virtual desktop infrastructure (VDI) to prevent the leakage
of the secret documents [2], [3]. In spite of the various secu-
rity benefits of VDI, there is still challenges to prevent the
secret document leakage incidents [4].

In this paper, we propose a novel scheme, called Doc-
Trace, to provide a traceability framework for the secret
documents in cloud computing environment. The works of
inserting steganography into file have been carried out to
send/receive secret data [5]-[7]. Our proposal is utilized for
providing traceability of the secret document rather than for
hiding the data. The steganography technology we proposed
acts as a core not only to allow a host-level traceability but
also to provide tamper-resistant trace mechanism for the se-
cret documents. Overall contributions of this work can be
summarized as follow:

First, we devised a steganography-based document

Manuscript received December 15, 2016.
Manuscript revised May 21, 2017.
Manuscript publicized July 21, 2017.
"The authors are with Department of Computer and Informa-
tion Security, Sejong University, Korea.
a) E-mail: woongbak @sejong.ac.kr (Corresponding author)
DOI: 10.1587/transinf.2016INL0002

trace mechanism for cloud computing environment, termed
Doc-Trace. It injects a steganographic mark into the secret
documents for providing end-to-end traceability. Therefore,
steganography technology is utilized for providing trace-
ability of the secret document rather than for hiding the data.
In result, the steganography technology acts as a core not
only to allow a host-level traceability but also to provide
tamper-resistant trace mechanism for the secret documents.

Second, we devised a computationally efficient storage
scanning mechanism for providing end-to-end traceability
for the secret documents in a real cloud computing environ-
ment. More specifically, the storage scanning can be per-
formed in an event-driven manner since a steganographic
mark are encoded into a well-regulated offset address of the
storage, which decrease the computation overhead drasti-
cally. This mechanism is implemented as a driver module
in hypervisor layer. The driver is triggered whenever the
steganographic marks inside the secret documents is mod-
ified so that the secret documents containing the mark are
traced by the event-driven monitoring mechanism.

Last but not least, this work has been undertaken on an
OpenStack-based real cloud computing testbed.

We devised mechanism to maximize the efficiency of
file tracking documents in cloud platform. To exmaple it,
we investigate thoroughly Compound File Binary Format
(CFBF) [8] used in Microsoft Office as a standard file for-
mat. We then identified spare or unused regions of CFBF-
based files. Based on the investigation, we devised an en-
coding scheme for injecting steganographic mark and usage
logs into the secret document files in cloud, which allows
trace to be identified by the centralized security center.In
this paper, we proposed scanning method for CFBF (such as
PPT, XLS, DOC, MSI). But if the position of the inserted
pattern can be fixed, regardless of private cloud or VDI en-
vironment, tracking file and leakage detection could be pos-
sible. Our proposed scheme is fully compatible and inde-
pendent with existing computing environment: the stegano-
graphic mark and usage logs are embedded into the secret
documents without any violation of standard; Doc-Trace in-
spects the secret documents from outside for providing an
end-to-end visibility for file transactions.

Doc-Trace, which we proposed, can be applied in en-
vironment as Fig. 1. Doc-Trace can also be used in cloud
platforms where multiple VMs are running. When the docu-
ment is edited in private cloud, our system monitors it in hy-
pervisor layerl which manages block-storage [9], [10]. So,
tracing document can be possible even without installing

Copyright © 2017 The Institute of Electronics, Information and Communication Engineers

2374
A B Malicious behavior C
1 Blocistorage | i Block Storage | B'F"a copy Block Storage |
‘ o ‘o o O
e m Y, -]
et Pt [
C T gL block 8 j
m"/\
Commit
| Hypervisor \M"iﬂml’| LVM (Logical Volume Management) |
| Host 0S | | Host OS \

Hardware (Compute Node) | [Hardware (Storage Node)

IIIIIIII i G - E%

Fig.1 Overview of Doc-Trace on cloud platform

agent inside VM. Therefore, malicious user will not be able
to evade the trace.

Composition of this paper is as follows. In Sect. 2, we
discuss the details about analyzed contents of filesystem to
utilize Doc-Trace. In Sect. 3, we describe the scenario and
algorithm of Doc-Trace. In Sect.4, we explain result of
Doc-Trace experiment. Finally, at Sect. 5, conclusion.

2. Prototyping Doc-Trace in Cloud
2.1 Identifying Regions for Steganographic Marking

CFBF is a compound document file format by Microsoft for
storing numerous files and streams within a single file on a
storage. The format manages to several blocks that have 512
bytes and has a structure that can be saved as a directory and
file like a file system. As shown in Fig.2, CFBF is divided
into three sections: Sector Allocation Table (SAT) that holds
the size of 512 bytes; Short-SAT (SSAT) that holds smaller
size than SAT’s; and Directory Entry (DE) that holds the
size of 128 bytes. In order to identify the proper regions
to insert steganographic marking, we extracted spare or un-
used regions by means of referring to the sector table on
each section and tracing the file stream. The sections of
SAT and SSAT are identified to inappropriate regions to in-
sert the steganographic marking since the section may not be
ensured depending on the size of the corresponding file. In
contrast, the DE is considered to an appropriate region since
one CFBF contains multiple DE, and the DE is an essential
elements of CFBF. Therefore, we focused on searching the
spare regions in DEs and we found the start position of the
first DE by referring to the CFBF header located in offset
0x30. Each DE (size of 128 bytes) consists of two parts.
The first part (64 bytes) is for storing the entry name. The
remaining part (64 bytes) contains the offset of the next DE.
It allows to traverse the whole DE of the CFBF, looking up
the offset of each successive DE as a chain until the end of
the DE is reached. Among the DEs, the first DE is a special
DE, called RootEntry that marks the beginning of the DE,
used by every CFBF. The size of RootEntry is static (22
bytes), so that the remaining regions (42 bytes) can be used
as the first spare region to insert a steganographic marking
into the corresponding file.

IEICE TRANS. INF. & SYST., VOL.E100-D, NO.10 OCTOBER 2017

Spare or Unused Regions . Steganographic Marking |

DE

RlojJo[t|E[n|t]|r 22bytes
42bytes
Next DE Offset, DE Type Etc. 64bytes

Header Offset
0x30

Next DE Offset, DE Type Etc.

SAT: Sector Allocation Table
SSAT: Short-Sector Allocation Table
DE: Directory Entry

Fig.2 Overview of compound file binary format architecture

Steganographic Pattern Usage Logs

CFBF
Header Offset| . L L L
0x30 “ . . f
. ! 42bytes '
DE
. Wed, 18 May
____________ EE 2016 01:33:12 GMT
_________________)
158 C6 3B 57

Fig.3 Steganographic marking into compound file binary format
(CFBF)

2.2 Inserting Steganographic Mark into Secret Documents

Figure 2 shows how the steganographic mark and usage logs
can be encoded into the identified spare region of CFBF. The
first rule is that the steganographic mark is inserted into the
first spare region located in the first DE. Since the size of
the first spare region is static (42 bytes), the first 38 bytes is
used to store the steganographic mark to prevent the secret
documents from occurring false positive. The remaining 4
bytes are used to record the offset for the spare region of the
next DE. The second rule is that the next spare regions are
used for storing usage logs. Consequently, by referring to
the two offsets (for the next DE and for the next spare re-
gion of the next DE), whole spare region can be accessed as
a linked list of spare regions. This two-rules-based encoding
scheme allows Doc-Trace not only to comply the file for-
mat of CFBF, but also to utilize a large size of spare region
for storing usage logs of the file. The usage logs contains
following information: access users, access times, modified
time, last saved time, access IP, file location, etc.

2.3 Applying Doc-Trace into Cloud Platform

To gain end-to-end visibility for the transactions of the se-
cret documents, we present our prototype applying Doc-
Trace scheme on an OpenStack-based cloud platform. Doc-
Trace Driver is implemented as a driver module in hyper-
visor layer. The driver is triggered whenever the embed-
ded marks inside the secret documents are modified so that

LETTER

User VMM 0s

()

" 9

Edit Data
— Modified

Virtual Resource (CPU, Memory, Block

M VM VM Write(ADDR, DATA) VM

ONR
< T 5

?;;ii::: H Hypervisorl Doc-Trace Driverr—>"“| LVM (Logical Volume Management) ‘
Host OS Host OS |

| Hardware (Compute Node) H Hardware (Compute Node) ‘

Fig.4 Deploying Doc-Trace in cloud platform

the secret documents containing the mark are traced by the
event-driven monitoring mechanism. When write request is
valid on storage, the request is passed to LVM and applied
to block storage. If the request is invalid, it is blocked in
Host-Level. Therefore, the system we proposed can detect
malicious user trying to copy the file or delete steganogra-
phy by tracking files. This mechanism has been undertaken
on an OpenStack-based real cloud computing testbed. The
details of algorithm are followed.

2.3.1 Detection of Steganographic Mark Change for Se-
cret Document Tracking

The monitoring operations based on Doc-Trace are per-
formed as a driver module on the host layer, which is tightly
coupled with LVM (Logical Volume Manager). LVM acts
as a device mapper that provides block storage to users on
private cloud or VDI platforms. LVM is divided into PV
(Physical Volume) which is typically a hard disk, PE (Phys-
ical Extent) which has the same size as the logical extents
for the volume group, and LE (Logical Extent) which is split
into chunks of data. Users who use virtual block storage
are allocated to LV (Logical Volume) which is visible as a
standard block device. Because LV acts as block device in
host, direct access to virtual disk can be possible. That is,
files injected steganography can be scanned directly in host.
Doc-Trace utilizes such features of LVM to trace secret doc-
uments efficiently.

Algorithm 1 shows the pseudo code of detection al-
gorithm. When the user requests write operations on stor-
age, addr and data are delivered to Doc-Trace function. If
1716) is the value of the delivered addr modulo 512 bytes,
size of a sector, steganography could be embedded in addr
(Line 9). If the above condition is satisfied, addr-29(;6) can
be used to derive the last written time of the correspond-
ing secret document (Line 10). Then if addris not included
in a set of addresses storing steganographic mark and data
matches with signature stored in addr, the requested opera-
tion is considered as file-copying operation (Line 11-12). If
addr is included in a set of addresses storing steganographic
mark and data does not match with signature stored in addr,
the requested operation is considered as operation to modify
signature (Line 13-14). Otherwise, if addr is included in a
set of addresses storing steganographic mark and time does
not match with last written time stored in addr, we update
the trace log of d.addr into database (Line 15-17).

2375

Algorithm 1 Detection of steganographic mark change for
secret document tracking

1: procedure Doc-Trace(addr, data) >
2: addr: access address, data: data to be written into storage

3: S block: size of a sector (512 bytes)

4: D: a set of elements in log database for secret document tracking
5: - D.addr: a set of addresses storing steganographic mark

6: - D.addr.sig: signature corresponding to the element stored in addr

7: - D.addr.time: last written time of the element stored in addr

8: - D.addr.log: log data corresponding to the element stored in addr

9: if (addr mod S pjocr) = 17(16) then
10: time « time data stored on (addr — 291¢))
11: if (addr ¢ D.addr) A (data = D.addr.sig) then
12: Operation < Filecopy
13: else if (addr € D.addr) A (data # D.addr.sig) then
14: Operation «— Malicious behavior
15: else if (addr € D.addr) A (time ¢ D.addr.time) then
16: Operation < Update for the trace log of D.addr
17: D.addr.log < TraceLog
18: end if
19: end if

20: end procedure

3. Experminet

3.1 Measuring Operation Overhead Occurs while Moni-
toring

To retain traceability of secret documents, it is essential to
scan storage. To compare Doc-trace scanning and agent
based scanning, we measured each operation overhead.
Scanning storage makes overhead inevitably. For details,
we conducted the following experiments. We used ubuntu
16.04, 16GB of memory and normal HDD as storage server
and used Windows 7 SP1 64bit, 4GB of memory and SO0GB
of block storage as VM. We measured CPU utilization and
memory utilization while scanning storages. Details of the
performance results are as follows. CPU utilization took
6% share and memory utilization took 11% share for agent-
based scanning. On the other hand, CPU utilization took 0%
share and memory utilization took 0% for Doc-trace scan-
ning we proposed. Because Doc-trace we designed does not
require agent on VM, the scheme does not make overhead
at all.

3.2 Efficiency of Storage Scanning Mechanism Based on
Doc-Trace

In order to evaluate the efficiency of the proposed storage
scanning scheme, we compared agent-based and host-based
storage scanning with storage scanning scheme based on
Doc-Trace. We measured the storage scanning latency of
each method with varying the size of storage. Figure 5
shows the performance comparison. In the storage of 1GB,
storage scanning based on agent took 1.5s, storage scanning
based on host took 0.98s while the mechanism we proposed
took 0.002s. In the storage of 10GB, agent-based scanning
took 117.8s, host-based scanning took 76.97s while the pro-

2376

Latency Time (sec)

120 [1177]
m Agent-based Storage Scanning
100 B Host-based Storage Scanning
@ Doc-Trace Storage Scanning
. [7697]
60
4
1502
2
0 002 II I 0 ot
0
1

10 20 30 40 50 60 70 80 el 100 storage Size(GB)

Fig.5 Measuring storage scanning latency with varying storage size

posed scheme took only 0.12s. The results show the mech-
anism we designed is 975 times faster in performance than
agent-based scanning, and 633 times faster than host-based
scanning. Doc-trace outperforms other scanning methods.
This is clear given that other scanning methods require more
latency times to find steganography, as shown in Fig. 1. In
addition, this mechanism is implemented as a driver mod-
ule in hypervisor layer. The driver is triggered whenever the
embedded marks inside the secret documents is modified so
that the secret documents containing the mark are traced by
the event-driven monitoring mechanism.

4. Conclusion

Our task has been to provide an end-to-end visibility for se-
cret documents by inserting steganographic pattern in cloud
computing environment such as VDI. To accomplish this
task, we proposed Doc-Trace to gain end-to-end visibility
for the transactions of the secret documents by inserting
steganographic pattern into spare or unused regions of the
secret documents. To evaluate the feasibility of the proposed
scheme, we applied the proposed Doc-Trace scheme into a
real cloud platform based on OpenStack. To track the docu-
ment efficiently, we proposed the searching-friendly mech-
anism. The results showed the mechanism we designed is
975 times faster in performance than agent-based scanning,
and 633 times faster than host-based scanning. Last but
not least, the operational resilience of Doc-Trace should be
guaranteed for providing sustainability. Our next step is to
consider the trustworthiness for the steganographic marking.
Currently, we are investigating Doc-Trace from the perspec-

IEICE TRANS. INF. & SYST., VOL.E100-D, NO.10 OCTOBER 2017

tives of traceability without the consideration of operational
resilience. We believe that putting trusted platform mech-
anism and trusted marking schemes is an appropriate way
forward. We are working towards an advanced Doc-Trace-
based leakage prevention system with more trustworthiness
against anti-trace attacks.

Acknowledgements

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (NRF-2017R1C1B2003957, NRF-
2016R1A4A1011761)

References

[1] T.A. Center, “Global data leakage report, h1 2015,”
https://infowatch.com/, p.5, 2015.

[2] F. Bellard, “Qemu, a fast and portable dynamic translator,” USENIX
Annual Technical Conference, FREENIX Track, pp.41-46, 2005.

[3] A. Velte and T. Velte, Microsoft virtualization with Hyper-V,
McGraw-Hill, Inc., 2009.

[4] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L.P. Cox,
J. Jung, P. McDaniel, and A.N. Sheth, “Taintdroid: an informa-
tion-flow tracking system for realtime privacy monitoring on smart-
phones,” ACM Transactions on Computer Systems (TOCS), vol.32,
no.2, p.5, 2014.

[5S] AM.S. Rahma, B. AbdulWahab, and A. Al-Noori, “Proposed
steganographic method for data hiding in microsoft word documents
structure,” Al-Mansour Journal, no.15, pp.1-29, 2011.

[6] M.A. Mohamed, O.G. Altrafi, M.O. Ismail, and M.O. Elobied, “A
novel method to protect content of microsoft word document us-
ing cryptography and steganography,” International Journal of Com-
puter Theory and Engineering, vol.7, no.4, p.292, 2015.

[71 M.M. Amin, M. Salleh, S. Ibrahim, M.R. Katmin, and M.Z.I.
Shamsuddin, “Information hiding using steganography,” Telecom-
munication Technology, 2003. NCTT 2003 Proceedings. 4th Na-
tional Conference on, pp.21-25, IEEE, 2003.

[8] V. Roussev and S.L. Garfinkel, “File fragment classification-the
case for specialized approaches,” Systematic Approaches to Digital
Forensic Engineering, 2009. SADFE’09. Fourth International IEEE
Workshop on, pp.3-14, IEEE, 2009.

[9] L.D. Baranovsky, L.F. Cabrera, C. Chin, and R. Rees, “Logical vol-
ume manager and method having enhanced update capability with
dynamic allocation of storage and minimal storage of metadata in-
formation,” 1999. US Patent 5,897,661.

[10] M.A. Grubbs, G.F. McBrearty, and G.H. Neuman, “File system
backup in a logical volume management data storage environment,”
2004. US Patent 6,829,688.

http://dx.doi.org/10.1145/2619091
http://dx.doi.org/10.1109/nctt.2003.1188294
http://dx.doi.org/10.1109/sadfe.2009.21

