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Advanced Ensemble Adversarial Example on Unknown Deep
Neural Network Classifiers

Hyun KWON†, Yongchul KIM††, Nonmembers, Ki-Woong PARK†††a), Member, Hyunsoo YOON†, Nonmember,
and Daeseon CHOI††††b), Member

SUMMARY Deep neural networks (DNNs) are widely used in many
applications such as image, voice, and pattern recognition. However, it has
recently been shown that a DNN can be vulnerable to a small distortion
in images that humans cannot distinguish. This type of attack is known
as an adversarial example and is a significant threat to deep learning sys-
tems. The unknown-target-oriented generalized adversarial example that
can deceive most DNN classifiers is even more threatening. We propose a
generalized adversarial example attack method that can effectively attack
unknown classifiers by using a hierarchical ensemble method. Our pro-
posed scheme creates advanced ensemble adversarial examples to achieve
reasonable attack success rates for unknown classifiers. Our experiment
results show that the proposed method can achieve attack success rates for
an unknown classifier of up to 9.25% and 18.94% higher on MNIST data
and 4.1% and 13% higher on CIFAR10 data compared with the previous
ensemble method and the conventional baseline method, respectively.
key words: adversarial example, neural networks, ensemble adversarial
example, machine learning

1. Introduction

Machine learning techniques have recently begun receiving
significant attention as a potential primary technology in the
field of recognition. This is especially true for deep neural
networks (DNNs) [1], which have shown good performance
in many applications such as image recognition [2], voice
recognition [3], pattern recognition [4], autonomous vehi-
cles [5], and natural language processing [6]. Unfortunately,
DNN systems have been introduced that have vulnerabilities
to an adversarial example attack [7], [8]. The attack causes
misclassification by the DNN system by adding only a lit-
tle noise to the original image. The main goal of this attack
is to maximize the misclassification while minimizing the
distortion so that a human cannot recognize the difference.
This attack is a serious threat to DNN classifiers. For exam-
ple, when a left-turn road sign is modified by the adversar-
ial example attack, an autonomous vehicle with DNN might
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recognize the sign as a right-turn sign, while human drivers
cannot detect any problem with the road sign.

There are two types of attacks: the white box at-
tack [7], [9], [10] and the black box attack. The white box
attack is used when the attacker has detailed information
about the target model, i.e., model architecture, parameters,
and probabilities of output classifications. Hence, the suc-
cess rate of a white box attack is almost 100%. Some arti-
cles that have been recently published [11], [12] show that
defending a DNN from a white box attack is extremely dif-
ficult. However, it is unrealistic that an attacker would know
every piece of information about the target model. Even if
the attacker has an autonomous vehicle, a separate attack
such as tampering is still needed to obtain the probabilities
of each class for recognizing traffic signs. It is even more
difficult if the target model works on servers such as in the
cloud. For this reason, the black box attack is more interest-
ing and is currently receiving more attention.

The black box attack only assumes that attackers can
query target models. For example, when an autonomous ve-
hicle is a target model, an attacker can query the autonomous
vehicle by using distorted images to see the responses from
the target model. A substitute-model attack proposed in [13]
is a well-known black box attack example. In this scheme,
an attacker can create a substitute network that is similar to
the target model by repeating the query process. Once a sub-
stitute network is created, the attacker can perform a white
box attack. The authors of [13] created a substitute network
against Amazon and Google services and showed that their
success rate on MNIST [14] data is 81.2%. Therefore, it is
clear that the query process is a key task in the black box
attack.

However, a query process is not applicable to the case
of an unknown classifier. This means that it is neither a
white box nor a black box. There are three cases that are
considered unknown classifier scenarios: 1) Query-limited
model. In a civilian environment, repeated queries of a
system might be limited because many systems block such
queries if they come from a single source IP. 2) Unreleased
model. When a target model has not yet been released, it
is impossible to query. However, there is a need to create
effective adversarial examples for attacking even upcoming
models. 3) Minor model. Creating a substitute network re-
quires more query processing and time. However, there exist
trivial models that do not require time to process queries to
attack an unknown classifier. In such cases, attacks that do
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not require query processing are needed.
The work in [7], [15] introduces the concept of transfer-

ability, based on the idea that an adversarial example mod-
ified for a single target model is effective for other mod-
els that classify the same kind of data. Thus, it seems that
the conventional adversarial example will affect an unknown
classifier. However, the attack success rate is very low in
those cases. The latest study [16] proposed an ensemble
adversarial example method that employed multiple target
models to attack the other models; it achieved a higher at-
tack success rate. In this study, we propose an advanced
ensemble adversarial attack, which achieves a better attack
success rate than the previous method. Our contributions are
as follows:

• To increase general transferability, we propose a hierar-
chical method that can achieve high attack success rates
for unknown classifiers by step-by-step generation and
an adversarial training method.

• For learning multiple target models, scalability needs
to be considered, and in this study, the performance
of the proposed method and the ensemble method are
analyzed in terms of their scalability.

• We show the effectiveness of our proposed scheme
through an experiment with unknown classifiers, using
the MNIST and CIFAR10 [17] datasets.

The remainder of this paper is structured as follows: Sec-
tion 2 reviews the background and related work. After the
problem definition is addressed in Sect. 3, our proposed ad-
versarial example attack is presented in Sect. 4. Section 5
briefly explains the setup of each experiment test model.
The experiment results are shown in Sect. 6, and a discus-
sion of the proposed system is presented in Sect. 7. Finally,
conclusions are drawn in Sect. 8.

2. Background and Related Work

The study of adversarial examples was introduced by
Szegedy et al. [7] in 2014. The main goal of using an ad-
versarial example is to induce the DNN to make a mistake
by adding a small amount of noise to the original image such
that humans cannot tell the difference between the original
and the distorted image.

The basic method for generating adversarial examples
is described in Sect. 2.1. Adversarial examples can be cate-
gorized in four ways: recognition of an adversarial example,
target model information, distance measure, and generation
method, as described in Sects. 2.2–2.5, which follow.

2.1 Adversarial Example Generation

The basic architecture that generates an adversarial example
consists of two elements: a target model and a transformer.
The transformer takes the original sample, x, and original
class, y, as input data. The transformer then creates as out-
put a transformed example x∗ = x + w, with noise value w
added to the original sample x. The transformed example x∗

is given as input data to the target model. The target model
then provides the transformer with the class probability re-
sults for the transformed example. The transformer updates
the noise values w in the transformed example x∗ = x+w so
that the other class probabilities are higher than the original
class probabilities while minimizing the distortion distances
between x∗ and x.

2.2 Categorization by Recognition on Adversarial Exam-
ple

According to the class that the target model recognizes from
the adversarial examples, we can divide the adversarial ex-
amples into two subcategories: targeted adversarial exam-
ples and untargeted adversarial examples. A targeted ad-
versarial example is an adversarial example that causes the
target model to recognize the adversarial image as a partic-
ular intended class. It can be expressed mathematically as
follows.

Given a target model and original sample x ∈ X, the
problem is an optimization problem that generates a targeted
adversarial example x∗,

x∗ : argmin
x∗

L(x, x∗) s. t. f (x∗) = y∗ (1)

where L(·) is a distance measure between the original sam-
ple x and the transformed example x∗, and y∗ is a particular
intended class. f (·) is an operation function that provides
class results for the input values of the target model.

An untargeted adversarial example is an adversarial ex-
ample that causes the target model to recognize the adver-
sarial image as a class other than the original class. It can be
expressed mathematically as follows.

Given a target model and original sample x ∈ X, the
problem is an optimization problem that generates an untar-
geted adversarial example x∗,

x∗ : argmin
x∗

L(x, x∗) s. t. f (x∗) � y (2)

where y ∈ Y is the original class.
Because the untargeted adversarial example has the

advantages of less distortion from the original image and
shorter learning time than the targeted adversarial example,
we focus on the untargeted adversarial example scenario in
this study.

2.3 Categorization by Target Model Information

Attacks that generate adversarial examples can also be di-
vided into two types according to how much information
about the target is required for the attack: white box attacks
and black box attacks. As mentioned in the previous section,
the black box attack is a more realistic approach because it
only requires the response of an input; no additional infor-
mation about the target is needed.

2.4 Categorization by Distance Measure

There are three ways to measure the distortion between the
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original sample and the adversarial example [9], [12]. The
first distance measure, L0, represents the sum of the number
of all changed pixels:

n∑
i=0

|xi − xi
∗| (3)

where xi is the original ith pixel and xi
∗ is an adversarial ex-

ample ith pixel. The second distance measure, L2, represents
the standard Euclidean norm, as follows:

n∑
i=0

√
(xi − xi

∗)2 (4)

The third distance measure, L∞, is the maximum distance
value between xi and xi

∗. Therefore, the smaller the three
distance measures, the more similar the sample image is to
the original sample from a human’s perspective.

2.5 Categorization by Adversarial Example Generation
Method

There are four typical attacks that generate adversarial ex-
amples. The first method is the fast-gradient sign method
(FGSM) [15], which can find x∗ through L∞:

x∗ = x + ε · sign(�lossF,t(x)) (5)

where F is an object function and t is a target class. In every
iteration of the FGSM, the gradient is updated by ε from
the original x, and x∗ is found through optimization. This
method is simple and demonstrates good performance.

The second method is iterative FGSM (I-FGSM) [18],
which is an updated version of FGSM. Instead of changing
the amount ε in every step, a smaller amount, α, is updated
and eventually clipped by the same ε:

xi
∗ = xi−1

∗ − clipε(α · sign(�lossF,t(xi−1
∗))) (6)

This I-FGSM method provides better performance than the
FGSM.

The third is the Deepfool method [10], which is an
untargeted attack and uses the L2 distance measure. This
method generates an adversarial example that is more ef-
ficient than FGSM and as close as possible to the original
image. To generate an adversarial example, the method in-
volves the construction of a neural network and looks for x∗
using the linearization approximation method. However, be-
cause the neural network is not completely linear, we have
to find the adversarial example through multiple iterations;
i.e., it is a more complicated process than FGSM’s.

The fourth method is the Carlini attack [9], which is
the latest attack method and delivers better performance
than the FGSM and I-FGSM methods. This method can
achieve a 100% success rate even against the distillation
structure [11], which was recently introduced in the litera-
ture. The key principle of this method involves the use of a
different objective function:

D(x, x∗) + c · f (x∗) (7)

Instead of using the conventional objective function
D(x, x∗), this method proposes a way to find an appropriate
binary c value. In addition, it suggests a method to control
the attack success rate even with some increased distortion
by reflecting the confidence value as follows:

f (x∗) = max(Z(x∗)t −max {Z(x∗)t : i � t} ,−k) (8)

where Z(·) represents the pre-softmax classification result
vector and t is a target class.

In this study, we construct the model by applying the
Carlini attack, which is the most powerful of the four meth-
ods, and use L2 as the distance measure.

2.6 Transferability for Generalized Attack

The concept of transferability was first introduced by
Szegedy et al. [7]. An adversarial example created through
an arbitrary target model that the attacker already knows can
also attack unknown models. Using the MNIST dataset,
transferability was shown when the models and learning
data were different. If the MNIST learning data were dif-
ferent in the same model, the attack success rate was about
8% in a general case. Goodfellow et al. [15] first pro-
posed an algorithm for universal perturbations. Moosavi
Dezfooli et al. [19] have proposed an advanced algorithm
for universal perturbation following the study of Goodfellow
et al. [15]. This method is a generalized attack method on
decision boundaries similar to the ensemble method that can
fake multiple classifiers. By comparing generalized attacks
on different networks using ImageNet [20], it was shown
that the greater the number of images, the greater the fool-
ing rate, and an attack success rate of approximately 50%
was achieved. Liu et al. [16] recently proposed an ensemble-
based approach to generate transferable adversarial exam-
ples. Additionally, Baluja and Fischer [21] generate adver-
sarial examples against a target network or set of networks.
They showed that the adversarial examples generated using
ensemble-based approaches can successfully attack black
box image classification systems.

In these previous studies, however, there was not
enough research conducted on scalability analysis. As the
number of target models increases, a more advanced ensem-
ble method with better performance is required. Therefore,
this study proposes a hierarchical ensemble for scalability.

3. Problem Definition

Table 1 shows an adversarial example image that can be mis-
classified as target class “2” by the target model for the orig-
inal sample “0”. In Table 1, the score for the “2” class (9.98)
is slightly higher than the score for the original class (9.96).
This result shows that the process of creating an adversar-
ial example continues until any other class score is slightly
higher than the original class score. This is because the dis-
tance between the original sample and the adversarial exam-
ple should be minimized. Therefore, when the target model
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Table 1 Classification of adversarial example

Fig. 1 An example of transferability for adversarial examples of single
target model A and multiple target models A, B, and C.

is changed, there is a possibility that the adversarial exam-
ple will be correctly classified by the changed target model
as the original class because the score of the misclassified
class is similar to that of the original class.

Figure 1 (a) shows an example of transferability for ad-
versarial examples for a single target model A. Transferabil-
ity is the property that an adversarial example for a target
model can attack another target model. In Fig. 1 (a), A, B,
and C are convolutional neural network models, and the red
circle is the decision boundary of the target model A. If the
sample lies within the red circle, the sample is correctly clas-
sified as the original class by the target model A. The adver-
sarial example is generated around the red circle of the tar-
get model A because it is incorrectly classified as the wrong
class while minimizing the distance from the original sam-
ple. In Fig. 1 (a), each red dot is an adversarial example x∗.
Because these adversarial examples are aimed at model A, it
is possible that they can be correctly classified by the other
models, B and C. Therefore, to generate an adversarial ex-
ample that is misclassified by multiple models, it should be
outside the decision boundaries of those models.

Figure 1 (b) shows an example of transferability for en-
semble adversarial examples of models A, B, and C. Ensem-
ble adversarial examples can be misclassified by all three
models because the ensemble adversarial examples gener-
ated are not included within the decision boundaries of any
of the models. Therefore, the ensemble adversarial exam-
ples generated for multiple models may have higher attack
success rates for an unknown classifier than the adversar-
ial examples generated for a single target model. This is
because the decision boundary of the unknown classifier
is more likely to be included in the decision boundaries
of multiple models than in that of a single model decision
boundary.

Although the conventional ensemble method has a high
attack success rate for an unknown classifier, it is difficult to
generate an ensemble adversarial example when there is a
large number of target models. Because the conventional
ensemble method has too many conditions to be satisfied
for misclassification by all the target models, the gradient
descent will have a higher probability of becoming stuck in
a local minimum during the process of generating ensemble
adversarial examples. Therefore, it is possible that the ad-
versarial examples generated for multiple target models will
be correctly recognized by some of the target models. To
avoid this problem, we used a hierarchical approach to con-
sider the scalability of the target model. This method gener-
ates an ensemble adversarial example for two of target mod-
els (even though there are many target models) to reduce
the probability of becoming stuck in a local minimum of
the gradient descent. In addition, this method increases the
probability of misclassification by all target models by using
step-by-step generation and an adversarial training method.

4. Proposed Scheme

The proposed method generates an ensemble adversarial
example by hierarchically creating and training adversarial
examples.

Figure 2 shows an example of the generation of a hier-
archical adversarial example. This method consists of two
procedures: generation of an ensemble adversarial example
and an adversarial training method. First, ensemble adver-
sarial examples are generated for each pair of target models
by hierarchically partitioning a number of pretrained target
models. Second, in the adversarial training process [15], one
of the two target models is trained on the ensemble adver-
sarial examples generated above. These two procedures are
repeated until there are only two target models remaining.
When this point is reached, hierarchical adversarial exam-
ples are generated for the last two target models.

4.1 Step 1: Generation of Ensemble Adversarial Example
for Two Target Models

Given two target models Da and Db by hierarchically parti-
tioning a number of pretrained target models, the process
for generating an ensemble adversarial example targeting
the two models is as follows:

The transformer takes the original sample x ∈ X and
the original class y ∈ Y as input values and generates a trans-
formed example x∗ as an output value. Neither target Da
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Fig. 2 Example of the proposed architecture.

nor Db changes during the transformation; they take x∗ as
input values and provide the respective classification results
(losses) to the transformer. The goal of this architecture is
that x∗ will be misclassified by both targets Da and Db with
minimal distortion.

The attack type in the proposed method is that of an
untargeted adversarial example. It can be expressed mathe-
matically as follows: fa(·) and fb(·) are the operation func-
tions of Da and Db, respectively. Given the original input x
and pretrained target models Da and Db, the problem is an
optimization problem that generates an adversarial example
x∗:

x∗ : argminx∗L(x, x∗) s. t. fi(x∗) � y (i = a, b) (9)

where L(·) is the distance measure between x and x∗, and y is
the original class. fi(·) is an operation function that provides
the classification result for the input value by target model i.

Algorithm 1 Ensemble adversarial example for the two tar-
get models

Origianl sample: x
Original class: y
Number o f iteration: r
procedure Generation(x, y, r)
w← 0
x∗ ← 0
for r step do

x∗ ← tanh(x+w)
2

ga(x∗)← Za(x∗)y − max
{
Za(x∗) j : j � y

}
gb(x∗)← Zb(x∗)y − max

{
Zb(x∗) j : j � y

}
g(x∗)← ca · ga(x∗) + cb · gb(x∗)
temp←

√
(x∗ − tanh(x)

2 )2 + g(x∗)
U pdate w by minimizing the gradient o f temp

end for
return x∗

end procedure

The procedure to generate an ensemble adversarial
example that targets two models has two steps. The first step
is a pre-learning process for both targets Da and Db to cor-
rectly classify the original samples as their original classes:

fi(x) = y ∈ Y, i = a, b (10)

The second step is to generate ensemble example x∗ using
a transformer on the original sample x and original class y.
In this study, the transformer architecture [9] was modified,
and x∗ was defined as:

x∗ =
tanh(x + w)

2

where w is a modifier and is used when optimizing with a
gradient. tanh is applied to soften the gradient. The loss of
each target Da and Db for x∗ is provided to the transformer.
The transformer then generates an ensemble adversarial ex-
ample by calculating lossT and minimizing lossT . lossT is
defined as follows:

lossT = lossdistortion + ca · loss fa + cb · loss fb (11)

where lossdistortion is the distortion of x∗, loss fi is the classifi-
cation loss of target model i, and ci is a weight parameter of
target model i. lossdistortion is the distance measure between
x and x∗:

lossdistortion =

√(
x∗ − tanh(x)

2

)2

To satisfy loss fi � y, loss fi should be minimized:

loss fi = gi(x∗), i = a, b (12)

where gi(k) = Zi(k)org − max
{
Zi(k) j : j � y

}
and y is the

original class. fi(x∗) predicts the probability of the original
class to be lower than the probability of the other class by
optimally minimizing loss fi . The process of the proposed
method is given in detail as Algorithm 1.
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4.2 Step 2: Adversarial Training

One of the two target models in the pair trains on the ensem-
ble adversarial examples generated in Step 1. The number of
training epochs is ten. When the target model trains on the
adversarial examples, the decision boundaries of the target
model expand to correctly classify the ensemble adversar-
ial examples into their original class. As shown in Fig. 2,
Step 1 and Step 2 are repeated until the last pair of models
is reached. At this point, hierarchical adversarial examples
are generated for the last two target models.

5. Experiment Setup

The experiment setup consisted of the adversarial exam-
ples generated by the proposed method tested against un-
known classifiers, which are different architectures. We
used TensorFlow [22], one of the most widely used open
source libraries for machine learning. Xeon E5-2609 1.7-
GHz servers were used in the experiment.

5.1 Datasets

MNIST [14] and CIFAR10 [17] were used as datasets in the
experiment. MNIST is a standard dataset with handwritten
images from 0 to 9. This dataset is widely used for machine
learning because the learning time is fast and it can be easily
applied to experiments. CIFAR10 is a standard dataset that
consists of ten images of planes, cars, birds, cats, deer, dogs,
frogs, horses, ships, and trucks. For MNIST, 60,000 train-
ing data and 10,000 test data were used, and for CIFAR10,
50,000 training data and 10,000 test data were used.

5.2 Pretraining of Target Models

The pretrained target models have two configurations: ho-
mogeneous architecture and heterogeneous architecture.
Homogeneous architectures are neural networks with the
same structures but different parameters, whereas heteroge-
neous architectures are different neural networks with dif-
ferent parameters.

5.2.1 MNIST

Table A· 1 of the Appendix shows the Dsame-i (1 ≤ i ≤ 12)
models used to generate homogeneous architectures, which
are convolutional neural network architectures [23]. Ta-
ble A· 2 shows the Dsame-i (1 ≤ i ≤ 12) model parameters.
As shown in Table A· 3, pretrained target models Dsame-i

(1 ≤ i ≤ 12) were created by learning different training
data, while maintaining the accuracy of the original sample
at over 97%. The target models thus generated were fixed
models, so they remained unchanged during the generation
of adversarial examples.

Table A· 4 of the Appendix shows the Ddiffer-i (1 ≤ i ≤
12) models used to generate heterogeneous architectures.

Table A· 6 shows the Ddiffer-i (1 ≤ i ≤ 12) model parame-
ters and the accuracy of the original data. Models Ddiffer-i

(1 ≤ i ≤ 12) were trained by learning about 60,000 training
data. The results (Table A· 4) show that the pretrained target
models Ddiffer-i (1 ≤ i ≤ 12) have more than 98% accuracy
for about 10,000 test data.

5.2.2 CIFAR10

Table A· 1 of the Appendix shows Dsame-i (1 ≤ i ≤ 8) models
used to generate homogeneous architectures, which are six-
layer neural networks with four convolution layers [9], [11].
Table A· 2 shows the Dsame-i (1 ≤ i ≤ 8) model parameters.
As shown in Table A· 3, pretrained target models Dsame-i

(1 ≤ i ≤ 8) were created by learning different training data,
while maintaining the accuracy of the original sample at ap-
proximately 80%. This method uses the CIFAR10 model of
the Carlini method [9] and the distillation method [11]. The
CIFAR10 model is a state-of-the-art method of using unaug-
mented data. The target models thus generated were fixed
models, so they remained unchanged during the generation
of adversarial examples.

Table A· 5 of the Appendix shows Ddiffer-i (1 ≤ i ≤ 8)
models used to generate heterogeneous architectures using
the VGG-19 model [24]. Table A· 6 shows the Ddiffer-i (1 ≤
i ≤ 8) model parameters and the accuracy of the original
data. Models Ddiffer-i (1 ≤ i ≤ 8) were trained by learning
approximately 50,000 training data. The results (Table A· 5)
show that the pretrained target models Ddiffer-i (1 ≤ i ≤ 8)
have approximately 80% or 91% accuracy for about 10,000
test data.

5.3 Test Adversarial Example Generation for Each
Method

For testing, adversarial examples were generated for the
baseline method, the ensemble method [16], and the pro-
posed method. The goal of including the baseline method
was to generate an adversarial example aimed at one normal
target. The goal of the ensemble method was the conven-
tional ensemble adversarial example method aimed at mul-
tiple target models. In terms of data, 1000 random test data
were used to generate adversarial examples for testing.

Adam [25] uses the optimizer as a parameter of the
transformer to generate the adversarial example s. On
MNIST, the learning rate was 0.1, the initial constant was
0.001, and the number of iterations was 1000. On CIFAR10,
the learning rate was 0.01, the initial constant was 0.001, and
the number of iterations was 10,000.

5.4 Test Classifier

5.4.1 MNIST

As shown in Table A· 7 and Table A· 8 of the Appendix,
the test classifier consisted of three different unknown
classifiers [26]: a five-layer fully connected network, a
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five-layer fully connected network with dropout 0.75, and a
convnet (a five-layer neural network with three convolution
layers). These three classifiers provided 95.41%, 98.17%,
and 98.90% original sample accuracy, respectively.

5.4.2 CIFAR10

As shown in Table A· 9 and Table A· 10 of the Appendix,
the test classifier consisted of two different unknown clas-
sifiers [26]: an eight-layer neural network with six convolu-
tion layers, and the Mishkin method [27]. These two classi-
fiers provided approximately 82% and 90% original sample
accuracy, respectively.

6. Experimental Results

The experimental results are divided into two sections, ho-
mogeneous architectures and heterogeneous architectures,
according to the type of pretrained target models.

6.1 MNIST

6.1.1 Homogeneous Architectures

For the pretrained target models Dsame-i (1 ≤ i ≤ 12), Table 2
shows examples of original samples and adversarial exam-
ples generated by the baseline method, ensemble method,
and proposed method. In Table 2, the adversarial examples
generated by these three methods depict images similar to
the original samples perceived by humans.

For the pretrained target models Dsame-i (1 ≤ i ≤ 12),
Fig. 3 shows the training time, average distortion, and attack
success rates of the baseline method, the ensemble method,
and the proposed method when testing unknown classifiers
that were a five-layer neural network, a five-layer neural net-
work with dropout, and a convnet classifier.

Figure 3 (a) shows the training time required by each
method to generate 1000 adversarial examples. For the
baseline method, the training time was 0.2 h. For the en-
semble method and the proposed method, as the number of
target models increased, the training time increased. With
the homogeneous architecture, the training time for the en-
semble method was faster than the training time of the pro-
posed method.

Figure 3 (b) shows the average distortion of the base-
line method, the ensemble method, and the proposed
method. The baseline method results in less distortion be-
cause it generates adversarial examples that target a single
model. The ensemble method is more distorted than the
baseline method because it generates an adversarial exam-
ple that targets multiple models. The proposed method re-
sults in more distortion than the ensemble method because it
generates an adversarial example that targets multiple mod-
els step by step. This is because the “divide and conquer”
approach requires more processing.

Figure 3 (c) shows the attack success rates of the
baseline method, the ensemble method, and the proposed

method when testing an unknown classifier that was a five-
layer neural network. The baseline method shows a 73% at-
tack success rate because it generates an adversarial exam-
ple targeting a single model. In the ensemble method, the
attack success rate increased slightly as the number of lo-
cal target models increased because in solving optimization
problems it is difficult to satisfy the conditions of the multi-
ple target models at the same time. The proposed method
demonstrated higher attack success rates than the ensem-
ble methods. This is because the proposed method targets
a smaller number of local models than the previous ensem-
ble method, similar to the concept of “divide and conquer.”
Therefore, as the number of target models increased, the at-
tack success rate of the proposed method increased at a rate
faster than the other methods because of its better learning.

Figure 3 (d) shows the attack success rates of the
baseline method, the ensemble method, and the proposed
method when testing an unknown classifier that was a five-
layer network with dropout 0.75. The attack success rate
of the baseline method was 64.2% for this unknown clas-
sifier. The proposed method and the ensemble method had
higher attack success rates than the baseline method for an
unknown classifier. In particular, the proposed method had a
higher attack success rate than the ensemble method because
it generates an adversarial example with a high probability
of escaping the decision boundary of the unknown classifier
due to the hierarchical technique.

Figure 3 (e) shows the attack success rates of the
baseline method, the ensemble method, and the proposed
method when testing an unknown classifier that was a
convnet (a five-layer neural network with three convolution
layers). As the figure depicts, the proposed method had
higher attack success rates than the ensemble method and
the baseline method.

6.1.2 Heterogeneous Architectures

Table 3 shows examples of original samples and adversar-
ial examples generated by the baseline method, ensemble
method, and proposed method when the number of target
models was 12. Table 3 shows that the adversarial exam-
ples generated by these three methods produce images that
are similar to the original samples derived by human percep-
tion, similar to the cases shown in Table 2.

For the pretrained target models Ddiffer-i (1 ≤ i ≤ 12),
Fig. 4 shows the training time, average distortion, and attack
success rates of the baseline method, the ensemble method,
and the proposed method when testing unknown classifiers
corresponding to the five-layer neural network, five-layer
neural network with dropout, and convnet classifiers.

The pattern results in Fig. 4 are similar to the pattern
results in Fig. 3. Although the proposed method results in
slightly more distortion than the other methods, the pro-
posed method demonstrates a higher attack success rate
than the other methods while maintaining human percep-
tion. Figure 4 focuses on the differences from the results
that are shown in Fig. 3.
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Table 2 A sampling of adversarial examples for baseline method, ensemble method, and proposed
method for pretrained target models Dsame-i (1 ≤ i ≤ 12).

Fig. 3 Results of comparison of baseline method, ensemble method, and proposed method for pre-
trained target models Dsame-i (1 ≤ i ≤ 12).

Unlike Fig. 3 (a), Fig. 4 (a) shows that the training time
for the ensemble method was higher than the training time
for the proposed method. This is because the ensemble
method trains multiple different target models simultane-
ously in heterogeneous architectures. Additionally, the over-
all average training time for each method was generally
higher than those shown in Fig. 3 (b).

Unlike Fig. 3 (b), Fig. 4 (b) shows that the distortion by
the ensemble method increased to almost the same levels

as that by the proposed method as the number of target
models increased. This result shows that the distortion of the
ensemble method increases as the number of target models
increases in the case of heterogeneous architecture.

Figure 4 (c) and Fig. 4 (d) show that the proposed
method demonstrates a better attack success rate than the
other methods, similar to Fig. 3 (d) and Fig. 3 (d). However,
the difference in the attack success rate between the pro-
posed method and the ensemble method shown in Fig. 4 (c)
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Table 3 A sampling of adversarial examples for baseline method, ensemble method, and proposed
method for pretrained target models Ddiffer-i (1 ≤ i ≤ 12).

Fig. 4 Results of comparison of baseline method, ensemble method, and proposed method for pre-
trained target models Ddiffer-i (1 ≤ i ≤ 12).

and Fig. 4 (d) is 67.62% and 49.02% less than that of
Fig. 3 (c) and Fig. 3 (d), respectively.

Figure 4 (e) shows that the attack success rate of the
proposed method increased at a higher rate than the other
methods as the number of target models increased, as de-
picted in Fig. 3 (e). For the unknown classifier of the
convnet, the proposed method was more effective, as shown
by Fig. 3 (e) and Fig. 4 (e).

6.2 CIFAR10

6.2.1 Homogeneous Architectures

For pretrained target models Dsame-i (1 ≤ i ≤ 8), Table 4
shows examples of original samples and adversarial exam-
ples generated by the baseline method, ensemble method,
and proposed method. The adversarial examples gener-
ated by these three methods are more similar to the original
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Table 4 A sampling of adversarial examples for baseline method, ensemble method, and proposed
method for pretrained target models Dsame-i (1 ≤ i ≤ 8).

Fig. 5 Results of comparison of baseline method, ensemble method, and proposed method for pre-
trained target models Dsame-i (1 ≤ i ≤ 8).

samples than those on MNIST.
For pretrained target models Dsame-i (1 ≤ i ≤ 8), Fig. 5

shows the training time, average distortion, and attack suc-
cess rates of the baseline method, the ensemble method, and
the proposed method when testing the unknown classifiers
that were the eight-layer neural network with six convolu-
tion layers, and the Mishkin method.

Figure 5 (a) shows the training times for the baseline
method, the ensemble method, and the proposed method.

Unlike the case in Fig. 3 (a) (for MNIST), the training time
for the ensemble method was similar to the training time
for the proposed method. However, the average training
time for each method was longer than that in Fig. 3 (a) (on
MNIST).

Similar to Fig. 3 (b) (MNIST), Fig. 5 (b) shows that the
average distortion by the proposed method was greater than
with the other methods. However, there was no difference
in human perception, as shown in Table 4.
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Table 5 A sampling of adversarial examples for baseline method, ensemble method, and proposed
method for pretrained target models Ddiffer-i (1 ≤ i ≤ 8).

Fig. 6 Results of comparison of baseline method, ensemble method, and proposed method for pre-
trained target models Ddiffer-i (1 ≤ i ≤ 8).

Figure 5 (c) shows the attack success rates of the
baseline method, the ensemble method, and the proposed
method when testing an unknown classifier that was an
eight-layer neural network with six convolution layers. The
baseline method, ensemble method, and proposed method
showed a 32%, 44%, and 47% attack success rate, respec-
tively. For the proposed method and the ensemble method,
the attack success rate slightly increased as the number of
local target models increased.

Figure 5 (d) shows the attack success rates of the

baseline method, the ensemble method, and the proposed
method when testing the unknown classifier of the Mishkin
method. The baseline method, ensemble method, and pro-
posed method showed a 23%, 35%, and 39% attack success
rate, respectively. Similar to Fig. 5 (c), this result shows an
attack success rate of the proposed method 4% higher than
that of the ensemble method. However, the overall attack
success rate was lower than that shown in Fig. 5 (c).



2496
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.10 OCTOBER 2018

6.2.2 Heterogeneous Architectures

Table 5 shows examples of original samples and
adversarial examples generated by the baseline method, en-
semble method, and proposed method when the number of
target models was eight. The table shows that the adversar-
ial examples generated by these three methods have images
that are similar to the original sample derived by human per-
ception, similar to Table 4.

For pretrained target models Ddiffer-i (1 ≤ i ≤ 8), Fig. 6
shows the training time, average distortion, and attack suc-
cess rate of the baseline method, the ensemble method, and
the proposed method when testing unknown classifiers that
were an eight-layer neural network with six convolution lay-
ers, and the Mishkin method.

Figure 6 (a) shows the training times for the baseline
method, the ensemble method, and the proposed method.
Unlike the case in Fig. 5 (a), the training time of the ensem-
ble method is higher than the training time of the proposed
method. This is because the ensemble method requires more
time in a heterogeneous architecture to train different and
complex target models simultaneously.

Figure 6 (b) shows the average distortion of the base-
line method, the ensemble method, and the proposed
method. Unlike the case in Fig. 5 (b), there is little difference
between the ensemble method and the proposed method.

Figure 6 (c) and Fig. 6 (d) show that the proposed
method achieved a better attack success rate than the other
methods, similar to Fig. 5 (c) and Fig. 5 (d). Unlike MNIST,
however, the attack success rate of the proposed method is
slightly higher than that of the ensemble method in Fig. 6 (c)
and Fig. 6 (d), by 4% and 5%, respectively.

7. Discussion

In this section, we discuss several aspects and findings of
our proposed scheme.

Transferability. Transferability is a transfer attack
method in which an adversarial example generated by a
known target model can also cause the misclassification of
an unknown target model. Such an attack is possible be-
cause the unknown classifier basically has high accuracy
for the original sample. Thus, it is likely that the unknown
classifier has a classification boundary similar to that of the
other models that demonstrate a high accuracy for the origi-
nal sample.

The experimental results show that the proposed
method can perform a transfer attack to achieve a reasonable
attack success rate for the unknown classifier. The baseline
method showed an average attack success rate of 49.75%
and 27.5% with MNIST and CIFAR10, respectively. The
ensemble method showed an average attack success rate
of 59.44% and 36.4% with MNIST and CIFAR10, respec-
tively. By comparison, the proposed method achieved an av-
erage attack success rate of 68.69% and 40.5% with MNIST

and CIFAR10, respectively.

Scalability. We investigated the variations in distortion
and the attack success rates of each classifier by increasing
several models in terms of scalability. It was observed that
the attack success rates for the unknown classifiers increase
as the number of target models increases.

Distortion. It was shown that even if the number of
target models increases, the distortion does not change sig-
nificantly. This is because the change in the decision bound-
ary, which is the union of that of several target models, is
not significant. Basically, target models are pretrained mod-
els that recognize the original sample as the original class
with high accuracy. Therefore, it is highly probable that
the decision boundaries of several target models are close
to each other, which ensures high accuracy with the original
sample. The ensemble method that attacks multiple target
models finds an adversarial example at a point outside the
decision boundary of the union of the target models. Thus,
even if the number of target models increases, the variation
in the distortion with the ensemble method is not large.

In general, the proposed method results in more distor-
tion than the other methods while maintaining human per-
ception. This is because more processes are required to
generate hierarchical adversarial examples using the divide-
and-conquer method than with the ensemble method.

Dataset. We evaluated the performance of the pro-
posed method using the MNIST and CIFAR10 datasets. The
experiment results show that the training time, average dis-
tortion rate, and attack success rate depend on the dataset.
In terms of the average distortion, although the distortion
on CIFAR10 is higher than that on MNIST, human recog-
nition with CIFAR10 is more similar to that of the original
sample than that with MNIST. This result shows that with
an adversarial example generated for a 3D image such as
in CIFAR10, no problem can be detected by human eye. In
terms of attack success rate, the proposed method shows bet-
ter performance on MNIST than on CIFAR10. In terms of
training time, CIFAR10 needs to train longer than MNIST
because CIFAR10 is 3D and has larger image sizes.

Type of pretrained model. We studied the transfer-
ability between homogeneous architectures, which create
different target models by learning different data from the
same models. Moreover, we studied the transferability be-
tween heterogeneous architectures, which create different
target models by learning training data from different mod-
els. Therefore, this study provides an experimental analy-
sis of both the homogeneous architecture and the heteroge-
neous architecture.

Target. For the unknown classifier scenario, the pro-
posed method is effective. For example, if an attacker is
attempting to attack an unknown enemy tank or an armored
fighting vehicle or is attempting to attack any unknown clas-
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sifier for a new car that has not yet been released, the at-
tacker will have a higher attack success rate using the pro-
posed method.

Training time. We evaluated the training time for each
method. The experiment results show that the training time
required for the proposed method is generally higher when
the multiple target models are the same simple model. The
proposed method divides multiple target models hierarchi-
cally and processes them step by step. However, in the
case of heterogeneous architectures, the ensemble method
requires more time than the proposed method. With the en-
semble method, when the multiple target models are differ-
ent and complex, more time is required to train them at the
same time.

Application. With traffic signs, adversarial example at-
tacks against unknown classifiers are more practical because
it is difficult to change the signs after they are distributed on
the road. From this practical point of view, it is considered
that a sign generated using the proposed method would be
effective.

Limitation. In terms of scalability, we only tested up to
twelve models and eight models in MNIST and CIFAR10,
respectively.

8. Conclusion

In this study, we proposed the hierarchical adversarial exam-
ple, which achieves a reasonable attack success rate against
unknown classifiers. The hierarchical adversarial example
is generated by step-by-step generation and an adversarial
training method. The experimental results show that our
proposed method can achieve an attack success rate for an
unknown classifier of up to 9.25% and 18.94% higher with
MNIST, and 4.1% and 13% higher with CIFAR10, com-
pared with the previous ensemble method and the conven-
tional baseline method, respectively. We also observed the
scalability aspect. Even though there is less change in dis-
tortion, the attack success rate increases as the number of
target models increases.

In future research, we will extend our experiments
to other standard image datasets, such as ImageNet. As
the transformer, we will use a generative adversarial net-
work [28] instead of the Carlini attack method [9]. From
an application point of view, the proposed method will ex-
tend the range of voice [29], [30], music [31], face [32], and
CAPTCHA systems [33], [34] to attack unknown classifiers.
The evaluation and analysis of the higher scalability of the
target model will also be a part of future studies. Finally,
developing a countermeasure for the proposed scheme will
be another challenge.
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Appendix

Table A· 1 Dsame−i model architecture.

Layter type MNIST shape CIFAR10 shape
Convolution+ReLU [3, 3, 32] [3, 3, 64]
Convolution+ReLU [3, 3, 32] [3, 3, 64]
Max pooling [2, 2] [2, 2]
Convolution+ReLU [3, 3, 64] [3, 3, 128]
Convolution+ReLU [3, 3, 64] [3, 3, 128]
Max pooling [2, 2] [2, 2]
Fully connected+ReLU [200] [200]
Fully connected+ReLU [200] [200]
Softmax [10] [10]

Table A· 2 Dsame−i model parameter.

Parameter MNIST CIFAR10
Learning rate 0.1 0.001
Momentum 0.9 0.9
Dealy rate - 10
Dropout 0.5 0.5
Batch size 128 128
Epochs 50 50

Table A· 3 Dsame−i pre-trained target models.

Model
MNIST CIFAR10

Training data Rate Training data Rate
Dsame−1 0∼5000 97.75% 5000∼50000 80.8%
Dsame−2 5000∼10000 97.74% 10000∼50000 80.2%
Dsame−3 10000∼15000 97.85% 15000∼50000 80.1%
Dsame−4 15000∼20000 97.44% 5000∼45000 80.3%
Dsame−5 20000∼25000 97.7% 5000∼40000 80.0%
Dsame−6 25000∼30000 97.56% 0∼45000 80.9%
Dsame−7 30000∼35000 97.89% 0∼40000 80.3%
Dsame−8 35000∼40000 97.56% 0∼50000 81.3%
Dsame−9 40000∼45000 97.62%
Dsame−10 45000∼50000 97.90%
Dsame−11 50000∼55000 97.48%
Dsame−12 55000∼60000 97.09%

Table A· 4 In MNIST, Ddi f f er−i (1 ≤ i ≤ 12) pre-trained target models
and accuracy of the original data; FC is fully-connected neural network and
CNN is a convolution neural network. 1-FC: [200], 2-FC: [512, 200], 3-
FC: [512, 512, 200], 4-FC: [512, 512, 200, 100], 1-CNN: [3, 3, 32] with
max pooling [2, 2], 2-CNN: [[3, 3, 32], [3, 3, 32]] with max pooling [2, 2],
and Softmax [10].

Model MNIST Architecture Accuracy
Ddi f f er−1 LeNet: 2-CNN+1-FC 98.86%
Ddi f f er−2 1-FC (Dropout 0.5) 93.83%
Ddi f f er−3 2-CNN+2-FC 98.65%
Ddi f f er−4 1-CNN+1-FC 98.29%
Ddi f f er−5 3-FC (Dropout 0.2) 98.29%
Ddi f f er−6 RCNN: 1-CNN+1FC (Dropout 0.5) 98.39%
Ddi f f er−7 2-CNN+2-FC (Dropout 0.5) 98.76%
Ddi f f er−8 2-FC (Dropout 0.2) 98.35%
Ddi f f er−9 1-CNN+2-FC (Dropout 0.5) 98.31%
Ddi f f er−10 2-CNN+3-FC (Dropout 0.5) 98.62%
Ddi f f er−11 4-FC (Dropout 0.2) 98.76%
Ddi f f er−12 1-CNN+3-FC (Dropout 0.5) 98.34%

http://dx.doi.org/10.1109/cvprw.2009.5206848
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1145/3133956.3134052
http://dx.doi.org/10.1109/tmm.2015.2478068
http://dx.doi.org/10.1109/tifs.2017.2718479
http://dx.doi.org/10.1587/transinf.2017edl8175
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Table A· 5 In CIFAR10, Ddi f f er−i (1 ≤ i ≤ 8) pre-trained target models
and accuracy of the original data; Ddi f f er−2 is VGG-19 model [24], F is
fully-connected neural network, and C is a convolution neural network.
2F: [4096, 4096], 3F: [4096, 4096, 4096], 5F: [4096, 4096, 4096, 4096,
4096], 2F(256): [256, 256], 5F(256): [256, 256, 256, 256, 256], 2C(64):
[[3, 3, 64]. [3, 3, 64] with max pooling [2, 2], 3C(64): [[3, 3, 64], [3, 3,
64], [3, 3, 64]] with max pooling [2, 2], 4C(64): [[3, 3, 64], [3, 3, 64], [3,
3, 64], [3, 3, 64]] with max pooling [2, 2], 5C(64): [[3, 3, 64], [3, 3, 64],
[3, 3, 64], [3, 3, 64], [3, 3, 64]] with max pooling [2, 2], 2C(128): [[3, 3,
128]. [3, 3, 128] with max pooling [2, 2] and Softmax [10].

Model CIFAR10 Architecture Accuracy
Ddi f f er−1 2C(64)+2C(128)+2F(256) 81.3%
Ddi f f er−2 2C(64)+2C(128)+4C(256)+4C(512)+2F 91.3%
Ddi f f er−3 2C(64)+2C(128)+4C(256)+4C(512)+3F 91.5%
Ddi f f er−4 3C(64)+2C(128)+5F(256) 80.1%
Ddi f f er−5 4C(64)+2C(128)+2F(256) 80.3%
Ddi f f er−6 2C(64)+2C(128)+4C(256)+4C(512)+5F 91.2%
Ddi f f er−7 5C(64)+2C(128)+2F(256) 80.5%
Ddi f f er−8 3C(64)+2C(128)+4C(256)+4C(512)+2F 91.0%

Table A· 6 Ddi f f er−i model parameter.

Parameter MNIST CIFAR10
Learning rate 0.1 0.001
Momentum 0.9 0.9
Dealy rate - 10
Dropout - 0.5
Batch size 128 128
Epochs 50 50

Table A· 7 In MNIST, the unknown classifier of 5-layer fully-connected
network; wi is a weight of ith layer. bi is a constant of ith layer.

Layer type MNIST shape
Input layer [batch, 784]
1 layer+ReLU w1[784, 200], b1[200]
2 layer+ReLU w2[200, 100], b2[100]
3 layer+ReLU w3[100, 60], b3[60]
4 layer+ReLU w4[60, 30], b4[30]
5 layer+ReLU w5[30, 10], b5[10]
One-hot encoded labels [batch, 10]

Table A· 8 In MNIST, the unknown classifier of convnet; convnet is 5-
layer neural network with 3 convolution layers. wi is a weight of ith layer.
bi is a constant of ith layer.

Layer type MNIST shape
Input layer [batch, 784]
1 convolution layer+ReLU w1[5,5, ,1,C1], b1[C1]
2 convolution layer+ReLU w2[3,3,C1,C2], b2[C2]
Max pooling [2, 2]
3 convolution layer+ReLU w3[3,3,C2, C3], b3[C3]
Max pooling [2, 2]
4 fully connected layer+ReLU w4[7*7*C3, FC4], b4[FC4]
5 output layer w5[FC4, 10], b5[10]
One-hot encoded labels [batch, 10]

Table A· 9 In CIFAR10, the unknown classifier of 8 layer neural net-
work with 6 convolution layers with dropout 0.5.

Layer type CIFAR10 shape
Convolution+ReLU [3, 3, 64]
Convolution+ReLU [3, 3, 64]
Max pooling [2, 2]
Convolution+ReLU [3, 3, 128]
Convolution+ReLU [3, 3, 128]
Convolution+ReLU [3, 3, 128]
Convolution+ReLU [3, 3, 128]
Max pooling [2, 2]
Fully connected+ReLU [500]
Fully connected+ReLU [200]
Softmax [10]

Table A· 10 In CIFAR10, the unknown classifier of Mishkin
method [27] with dropout 0.2.

Layer type CIFAR10 shape
Convolution+ReLU [3, 3, 32]
Convolution+ReLU [3, 3, 32]
Convolution+ReLU [3, 3, 32]
Convolution+ReLU [3, 3, 48]
Convolution+ReLU [3, 3, 48]
Max pooling [2, 2]
Convolution+ReLU [3, 3, 80]
Convolution+ReLU [3, 3, 80]
Convolution+ReLU [3, 3, 80]
Convolution+ReLU [3, 3, 80]
Max pooling [2, 2]
Convolution+ReLU [3, 3, 128]
Convolution+ReLU [3, 3, 128]
Convolution+ReLU [3, 3, 128]
Convolution+ReLU [3, 3, 128]
Max pooling [8, 8]
Fully connected+ReLU [500]
Softmax [10]
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