
APPLIED COMPUTING REVIEW VOL. 11 NO.4 38

Efficient Page Caching Algorithm with Prediction and
Migration for a Hybrid Main Memory

Hyunchul Seok, Youngwoo Park, Ki-Woong Park, and Kyu Ho Park
KAIST

Daejeon, Korea

{hcseok, ywpark, woongbak}@core.kaist.ac.kr and kpark@ee.kaist.ac.kr

ABSTRACT
Emerging next generation memories, NVRAMs, such as Phase-
change RAM (PRAM), Ferroelectric RAM (FRAM), and
Magnetic RAM (MRAM) are rapidly becoming promising
candidates for large scale main memory because of their high
density and low power consumption. Many researchers have
attempted to construct a main memory with NVRAMs, in order to
make up for the limits of NVRAMs. However, we find that the
preexisting page caching algorithms, such as LRU, LIRS, and
CLOCK-Pro, are often sub-optimal for NVRAMs due to its
DRAM-oriented design including uniform access latency and
unlimited endurance. Consequently, the algorithms cannot be
directly adapted to the hybrid main memory architecture with
PRAM.

To mitigate this design limitation, we propose a new page caching
algorithm for the hybrid main memory. It is designed to overcome
the long latency and low endurance of PRAM. On the basis of the
LRU replacement algorithm, we propose a prediction of page
access pattern and migration schemes to maintain write-bound
access pages to DRAM. The experiment results have convinced us
that our page caching algorithm minimizes the number of the
write access of PRAM while maintaining the cache hit ratio. The
results show that we can reduce the total write access count by a
maximum of 52.9% and the consumed energy by 19.9%.
Therefore, we can enhance the average page cache performance
and reduce the endurance problem in the hybrid main memory.4

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles Cache memories; D.4.2
[Operating Systems]: Storage Management - Allocation
/deallocation strategies, Main memory

General Terms
Page cache algorithm

Keywords
Page Cache, Hybrid Main Memory, PRAM, Migration

1. INTRODUCTION
The main memory of today's computer systems is showing
significant change with the emergence of next generation types of

4 This work is based on an earlier work: SAC '11 Proceedings of

the 2011 ACM Symposium on Applied Computing, Copyright
2011 ACM 978-1-4503-0113-8/11/03.

 http://doi.acm.org/10.1145/1982185.1982312

memory, NVRAMs, such as Phase-change RAM (PRAM),
Ferroelectric RAM (FRAM), and Magnetic RAM (MRAM)
[20][24][14]. Several studies have observed that DRAM based
main memory, while it significantly increases the computing
power, also greatly increases the cost of a computer system [4].
Therefore, many trials have been made to replace DRAM. One
such trial attempted to use hybrid memory by including
NVRAMs.

Among these memories, PRAM is the most promising candidate
for uses in large scale main memory because of its high density
and low power consumption [20]. While DRAM stores each bit of
data in a separate capacitor, PRAM uses the phase of the material
to represent each bit. PRAM density is expected to be much
greater than that of DRAM (about four times). Also, PRAM is a
non-volatile memory because the phase of the material does not
change after power-off. It has negligible leakage energy
regardless of the size of the memory. Table 1 shows the properties
of PRAM compared to those of DRAM [17]. Though PRAM has
attractive features such as high density, non-volatility, low idle
power, and good scalability, the access latency of PRAM is still
not comparable to DRAM latency. PRAM also has a worn-out
problem caused by limited write endurance. In previous research,
the hybrid main memory approaches of DRAM and PRAM have
been adopted to make up for the latency and endurance limits of
PRAM [10][20][18]. Those researchers proposed several
hardware and software schemes to manage the hybrid main
memory.

On the other hand, in modern computer systems, a large part of
main memory is used as a page cache to hide disk access latency,
as can be seen in Figure 1(a). Many page caching algorithms such
as LRU, LIRS [12], and CLOCK-Pro [19] have been developed
and show good performance for current DRAM based main
memory. However, such previous page caching algorithms only
considered the main memory with uniform access latency and

Figure 1. Page caching system architecture

APPLIED COMPUTING REVIEW VOL. 11 NO.4 39

unlimited endurance. They cannot be directly adapted to the
hybrid main memory architecture with DRAM and PRAM, as
shown in Figure 1(b).

This paper is an extended work related to our previous work in
[22]. The previous work mainly focused on a page caching
algorithm design to enhance the average page cache performance
and to reduce the endurance problem. In this paper, attempts are
made to integrate a prediction and page migration mechanisms as
the key primitive for additional performance enhancement.

The main objective of this work is to propose a new page caching
algorithm for the hybrid main memory. The algorithm is designed
to overcome the long latency and endurance problem of PRAM.
On the basis of conventional cache replacement algorithms, we
propose a prediction of the page access pattern by page
monitoring and migration schemes to move write-bound access
pages to DRAM. In particular, we present analytic metrics for
PRAM endurance, energy, and latency, and illustrate that existing
page caching algorithms such as LRU, LIRS, and CLOCK-Pro are
suboptimal in the hybrid main memory. We present improved
algorithms for enhancing the page cache performance on the
hybrid main memory. It minimizes the write access of PRAM
while maintaining the cache hit ratio. Therefore, we can enhance
the average page cache performance and reduce the endurance
problem in the hybrid main memory. The remainder of the paper
is organized as follows. In Section 2, we briefly summarize the
conventional page caching algorithms and their limits when used
in hybrid memory. In Section 3 we present the design of our
algorithm and describe the prediction algorithm and migration
strategy. The performance evaluation results are given in Section
4, and we briefly discuss future work in Section 5. Section 6
concludes this paper.

2. BACKGROUND
A proper page caching algorithm can have a significant effect on
improving performance of I/O by hiding the long latency of disks.
Many studies have been undertaken to make efficient page cache
algorithms. However, most page cache replacement algorithms
have been designed for memory with uniform access latency and
unlimited endurance. In this paper, we evaluate the page caching
algorithms for hybrid memory, which has different read and write
latencies and different endurance. We propose a new page caching
algorithm that includes prediction and migration schemes for
efficiently hiding the bad effects derived from the different
properties of hybrid memory and compare the results. Although
we implement our algorithm based on the LRU replacement
algorithm, our technique can be utilized with the conventional
page caching algorithm and can improve the performance of page
caching in hybrid memory.

LRU (Least Recently Used) has been widely used as a cache
management and page cache replacement algorithm [6][2][8][9]
[11]. When the cache is full and a miss occurs, this algorithm
selects the page where it is in the LRU position as a victim. One
of the advantages is that it is very simple to implement this
algorithm. The algorithm also has constant time and space
overhead. But it has some disadvantages. It is known that LRU
shows the best performance on the workloads of Stack Depth
Distribution (SDD) [6]. However, LRU cannot operate well with
an access pattern with weak locality, such as sequential scans, a
cyclic pattern with slightly larger than cache size.

LIRS (Low Inter-Reference Recency Set) was proposed by Jiang
and Zhang in 2002 in order to solve the problems of LRU [12].
This algorithm uses Inter-Reference Recency (IRR) to determine

which page should be replaced. The objectives of LIRS are both
to effectively address the limits of LRU and to retain the low
overhead of LRU. As the history information of each page, IRR is
defined as the number of other pages accessed between two
consecutive references to the page. The algorithm assumes that if
the IRR of a page is large, the next IRR of the page is likely to be
large. Therefore, LIRS selects pages with large IRRs for
replacement.

CLOCK-Pro was proposed by Jiang, Chen, and Zhang in 2005
[19]. It is based on CLOCK which is a simple approximation of
the LRU replacement algorithm [7][5]. CLOCK can reduce the
overheads of the LRU algorithm, which are related to the
overhead of moving a page to the MRU position on every page hit
[3]. The objectives of CLOCK-Pro are to obtain a low
computational requirement and to remove the disadvantages,
which are the same disadvantages as those of LRU with the
workload of weak locality. Therefore, CLOCK-Pro was designed
to include the way in which LIRS and CLOCK work.

In addition to the replacement algorithms mentioned above, there
are many caching algorithms, most of which have the goal of
improving the performance problems of LRU. In studies of such
methods, FBR [21], LRU-2 [16], 2Q [13], LRFU [15], and MQ
[25] were proposed and researchers tried to combine "recency"
(LRU) and "frequency" (LFU) in order to compensate for the
disadvantages of LRU. These disadvantages are derived from the
access patterns such as the sequential stream and a cyclic pattern
with larger than cache size. However, these methods cannot
consider the physically different properties of hybrid memory. For
example, PRAM has about ten times larger write latency than
DRAM does, as can be seen in Table 1. Therefore, if some pages
are frequently accessed by write accesses and these pages are in
PRAM memory, the overall performance will degrade. In such a
case, we can improve the performance if the page cache algorithm
can make a decision to put the write-bound pages into DRAM
rather than into PRAM. In this case, the performance is affected
by the position of the pages.

Table 1. Properties of PRAM

Attributes DRAM PRAM

Non-volatility No Yes

Cost/TB Highest
(~4x PRAM) Low

Read Latency 50ns 50-100ns

Write Latency 20-50ns ~ 1us

Read Energy ~ 0.1nJ/b ~ 0.1nJ/b

Write Energy ~ 0.1nJ/b ~ 0.5nJ/b

Idle Power ~ 1.3W/GB ~ 0.05W

Endurance 108 for write

APPLIED COMPUTING REVIEW VOL. 11 NO.4 40

3. PAGE CACHING ALGORITHM FOR
HYBRID MAIN MEMORY

In this section, we describe the design of a new page caching
algorithm for the hybrid main memory; this design consists of
DRAM and PRAM. Although the conventional cache algorithms
show good performance, they cannot be directly adapted to the
hybrid main memory. Because the hybrid main memory uses two
different types of memories, it is important to consider their
properties in order to maximize the performance and efficiency.
As can be seen in Table 1, PRAM has a very long latency
compared to DRAM when writing a page. If the page cache
algorithm causes a lot of writes to PRAM, the average page cache
performance gets worse. In addition, PRAM has low endurance
compared to DRAM. If there are many write accesses, PRAM will
be worn-out quickly. Consequently, the page cache algorithm on
the hybrid main memory should be designed to overcome the long
latency and endurance problem of PRAM. To solve these
problems, we propose a new page caching algorithm with
prediction of page access pattern and migration schemes.

3.1 Basic Operation

To satisfy the requirements, we designed the new page caching
algorithm according to the conventional cache algorithm. We add
a prediction of page access pattern and migration schemes.
Although any conventional cache replacement algorithm can be
adapted, we chose the LRU replacement algorithm, which is very
simple but works well. In order to monitor the pages and to adapt
the migration scheme, we use four monitoring queues, which
consist of a DRAM read queue, a DRAM write queue, a PRAM
read queue, and a PRAM write queue, as shown in Figure 2.
When one page block is accessed, it is retained into both the LRU
list and one of the four queues by its access pattern and the
memory type where it is located.

Figure 2 shows the basic operation of our algorithm. When a page
fault occurs, we put the page into the MRU position in the LRU
list with the LRU replacement algorithm. In addition, we put the
page into one of the monitoring queues according to the page
access type. For example, if the page's access request is read and a
selected memory page is on DRAM, we put the page into the
DRAM read queue. If there is no free memory when a miss occurs,
the least recently used page block is selected as a victim page,
which also follows the LRU replacement algorithm. At the same
time, we evict the page related to the victim page. For example, if
a type of the victim page is read cache and resides in PRAM, we

eliminate the page from the PRAM read queue by evicting the
page in LRU list. When the page hits, the page in both the LRU
list and the monitoring queue is promoted, as can be seen in
Figure 2.

3.2 Prediction and Page Migration

The write-bound pages on PRAM cause performance degradation
and worn-out problem because of PRAM's long latency and low
endurance. To solve these problems, we need to move the write-
bound pages from PRAM to DRAM. Additionally, we must move
the read-bound pages from DRAM to PRAM because we have to
gather the read-bound pages to PRAM. In order to effect the
efficient migration of pages, we have to know which pages are
write-bound and which pages are read-bound. For prediction of
the access pattern, we calculate the weighting values, which
indicate how close the values are to write-bound or read-bound.
By monitoring the request type of the page requests, the weighting
value can be calculated by using a moving average with weight

[0,1] as follows:

Wcur = Wprev + (1-)RT (1)

, where RT means the requested type of the page; its value is 1 if
the page request is write and -1 if the page request is read. When a
page fault occurs, the page is inserted into both the LRU list and
one of the monitoring queues. We selected the value of as 0.5.
We will explain in detail in section 4.2.1.

There are two migration cases, as shown in Figure 3: one is the
migration of write-bound pages from PRAM to DRAM; the other
is the migration of read-bound pages from DRAM to PRAM. To
determine when migration occurs, we calculate the Wcur value at
every request. According to equation 1, this value is increased

Figure 2. Overview of page caching algorithm

Algorithm 1 : Page Migration Function
input: page address and request type
Wcur: Current weight value
Trmig: Threshold value for determining migration
Trq: Threshold value for determining movement between

read and write queues

Calculate Wcur
if page in PRAM then
 if Wcur Trmig then
 migrate the page to DRAM
 else if Wcur Trq and page in read queue then
 the page moves to write queue
 else if Wcur Trq and page in write queue then
 the page moves to read queue
 end if
else if page in DRAM then
 if Wcur Trmig then
 migrate the page to PRAM
 else if Wcur Trq and page in write queue then
 the page moves to read queue
 else if Wcur Trq and page in read queue then
 the page moves to write queue
 end if
end if

APPLIED COMPUTING REVIEW VOL. 11 NO.4 41

when write requests occur and is decreased at every read request.
Algorithm 1 shows how the cached pages are migrated. When a
page request hits, Wcur of the hit page is calculated by equation 1
and we determine whether migration occurs. For example, if the
write access is hit on a page in the PRAM write queue, PW, as
shown in Figure 3(a), and its weighting value is over Trmig, this
page will migrate to the DRAM write queue. Similarly, as can be
seen in 3(b), if a page in the DRAM read queue, DR, is hit by a
read request and its Wcur value is under Trmig, this page will
migrate to the PRAM read queue. We use two threshold values for
determining the migration and the movement between read and
write queues in the same memory. Trmig is the threshold value for
determining whether a page is migrated and Trq is the threshold
value for determining movement between read and write queues.

Figure 3(a) shows an example of migration from PRAM to
DRAM. If there is no free space in DRAM, we have to select a
victim page on DRAM. In this case, we select the victim page
from the bottom of the DRAM read queue and remove it from
DRAM. The write-bound page in PRAM is moved to the DRAM
where the victim page was located. In the DRAM write queue,
this page is put into the top of the queue. If there is no element in
the DRAM read queue when we find a victim page for migration,
we choose a victim page from the bottom of the DRAM write
queue, which means that the victim page is the least recently used.
The migration of read-bound pages is similar to the migration of
write-bound pages, as shown in Figure 3(b). To select a victim
page, we select the bottom page of the PRAM write queue first,
and if there are no pages in the PRAM write queue, we choose the
bottom page of the PRAM read queue. When we remove a victim
page for migration, we just remove it from the memory, the LRU
list, and the monitoring queue. The reason why we do not change
the pages between the victim page for migration and the page that
will migrate is that such an action would cause an additional write
on PRAM.

4. EXPERIMENT
In order to evaluate the proposed page cache algorithm for the
hybrid main memory, we used a trace-driven simulation. We
implemented our algorithm and designed the hybrid main memory
architecture. In this section, we present the performance results of
our hybrid cache algorithm. First, we demonstrate the overall
experimental environment. We then describe the evaluation
results in terms of hit ratio, write access count on PRAM, and
energy consumption.

4.1 Experiment Setup
In order to evaluate the performance of our page cache scheme,
we have to define the hybrid main memory. We assume that the
hybrid main memory consists of DRAM and PRAM, which are
divided by a memory address. The memory which has the low
memory address is DRAM and the high section is allocated to
PRAM, as shown in Figure 4. PRAM density is generally
expected to be higher than that of DRAM [17][23][20], so that we
allocate larger amount of memory to PRAM. Because PRAM
density is expected to be four times higher than that of DRAM
[17][23], we mainly select that the PRAM-to-DRAM ratio is four.
However, this density value can be varied in several researches
[20] so that we additionally evaluated out page caching algorithm
with various PRAM-to-DRAM ratios.

(a) Migration of the write-bound page (b) Migration of the read-bound page

Figure 3. Migration of cached pages between DRAM and PRAM

Figure 4. Composition of the hybrid main memory

APPLIED COMPUTING REVIEW VOL. 11 NO.4 42

To evaluate the performance characteristics of the proposed page
caching algorithm, we constructed a trace-driven simulation
environment and coupled it to the OLTP traces. The objective of
the simulator is to evaluate the performance of the page caching
algorithms with regard to a real hybrid main memory and practical
workload. Figure 5 shows the overall simulation environment.

As the workloads for the performance evaluation, we exploited an
Online Transaction Processing (OLTP) application I/O, which has
high throughput and is insert/update-intensive. We use two
workload traces from the OLTP of two large financial institutions.
These traces were made available courtesy of Ken Bates from HP,
Bruce McNutt from IBM, and the Storage Performance Council
[1]. These two traces are related to requests to a storage and
suitable to test the page caching algorithm. The first financial
workload has 9 million traces, and among them, about 80% of
traces are write accesses. The second financial workload has 5
million traces and about 19% of traces are write accesses, as
shown in Table 2. By using two financial workloads, we can test
the performance with the cases of write-intensive and read-
intensive workloads.

4.2 Evaluation Results

In this section, we show the trace-based simulation results in
terms of hit ratio, write access count on PRAM and consumed
energy in order to show the performance of our page caching
algorithm. We compared the experimental results for our
algorithm with those of the conventional page caching algorithms
such as LRU, LIRS, and CLOCK-Pro.

4.2.1 Parameters used in evaluation
In order to predict a page's access pattern, we use equation 1,
which includes one parameter, . In addition, we use two
threshold values to determine the time when migration occurs and
when a page cache changes its status between read-bound and
write-bound pages. The two values are Trmig and Trq, explained in
section 3.2. Before we test our page cache algorithm, we have to
determine the values of these parameters in order to minimize the
total access counts on PRAM.

We chose the parameter values through experiments. Figure 6
shows the total number of write accesses on PRAM with the
Financial1 workload when we change , Trmig, and Trq values.
Figure 6(a) shows the total access count on PRAM with various
and Trmig when Trq is fixed at 0.35. From Figure 6(a), the
evaluation results convince us that the write-access count is
minimized when is 0.5 and when Trmig is 0.45 or 0.5. Therefore,
we select as 0.5. Figure 6(b) shows the results when is 0.5.
From this graph, we can know that the results are the smallest
when Trq is larger than 0.3. Finally, we select the values of Trmig
and Trq as 0.5 and 0.35, respectively.

Figure 6. The experiment results with various parameters when the memory size is 2000 on Financial1 workload

Figure 5. Trace-driven simulation for evaluation of page-
caching algorithms

Table 2. A summary of the workloads used in this paper

Trace Name Number of
Requests

Ratio of Write-
access pages

Financial1 9156833 80.59%

Financial2 5436256 18.95%

APPLIED COMPUTING REVIEW VOL. 11 NO.4 43

4.2.2 Hit ratio
The first experiment measures the hit ratio, which is important in
determining the performance of the page caching algorithm. We
compared the hit ratio of our page caching algorithm to the hit

ratios of the conventional page caching algorithms. We tested it
with many sizes of main memory. The results are shown in Figure
7.

From the results, it can be seen that the LRU replacement
algorithm shows the highest hit ratio through the whole range of
memory sizes. While the hit ratio of our algorithm is lower than
that of LRU, the results show that the hit ratio is similar to those
of the LRU, LIRS, and CLOCK-Pro algorithms. Actually, we
designed our algorithm on the basis of the LRU replacement
algorithm and added the prediction and migration schemes. We
expected the hit ratio of our algorithm to be similar to that of the
LRU replacement algorithm. Because we designed the selected
victim page for migration to simply be eliminated, as explained in
section 3.2, it is possible that the page faults will occur more.
Consequently, the hit ratio is lower than that of the LRU.
Although the migration scheme causes a degradation of the hit
ratio, the hit ratio is still larger than that of LIRS and CLOCK-Pro
for small sizes of the main memory.

The next experiment measures the hit ratio with varying the ratio
of the size of PRAM to the size of DRAM, as shown in Figure 8.

We compare the hit ratio of the proposed scheme with the hit ratio
of LRU replacement algorithm. In overall region, the hit ratio of
the proposed scheme shows a similar hit ratio in comparison with
LRU. In case of the results of Financial1, when the size of
memory is set to 500 pages, the hit ratio of proposed scheme is

decreased from 64.9% to 61.2% as the size of PRAM increases.
This can be seen in Figure 8(a). It is due to the size reduction of
DRAM, which leads to hit ratio degradation by the victim process
when many migrations of write-bound pages occur. When the size
of memory is set to 60,000 pages, the experiment result also
shows a gap between hit ratio of proposed scheme and the hit ratio
of LRU. The main reason is that even infrequently accessed pages
can be remained to LRU list as the size of DRAM increases. On
the other hand, the above pages in the proposed scheme can be
frequently selected as victim so that the pages can be evicted from
LRU list, which leads to more cache miss. In case of the results of
Financial2, the hit ratio at 500-page size of a memory is barely
changed. With read-intensive workload like Financial2, hit ratio
degradation by the victim process of a read-bound page does not
affect largely because the size of PRAM is larger than DRAM.

4.2.3 Write access count on PRAM
The write access count on PRAM is important because it is related
to the total latency of the page cache and the lifetime of PRAM.
PRAM has a very long latency compared to DRAM, so the
performance of page caches degrades if many write pages hit on
PRAM. In addition, PRAM wears out more quickly because of its

(a) Financial1 (b) Financial2

Figure 7. Hit ratio of proposed algorithm and conventional algorithms on financial workloads

(a) Financial1 (b) Financial2

Figure 8. Hit ratio of proposed algorithm with different PRAM-to-DRAM ratio on financial workloads

APPLIED COMPUTING REVIEW VOL. 11 NO.4 44

low endurance. Therefore, in order to use a page cache on the
hybrid main memory of DRAM and PRAM, a page caching
algorithm must be able to reduce the write access count on
PRAM.

To show that the proposed scheme reduces the write access count
on PRAM, and conversely increases the read access count on
PRAM, an experiment was designed by profiling the value of the
read/write access distribution when the start address was varied
from 0 to 500. In this experiment, it was assumed that the first 100
blocks would be mapped to DRAM, and the other would be
mapped to PRAM. As can be seen in Figure 9(a), the minimized
write access distribution is suitable for PRAM characteristics.
Conversely, as shown in Figure 9(b) the maximized read access
distribution implies that the read-bound data is migrated to the
PRAM region, and so, in comparison with the LRU scheme, the
proposed page-caching algorithm is more suitable for a hybrid
main memory system.

In this experiment, we evaluated the write access count on PRAM
and compared it with the results of the conventional algorithms.
During the simulation, we counted read and write accesses of
DRAM and PRAM. Figure 10 shows the total number of write
accesses on PRAM with workloads, denoted as financial1 and
financial2. We measured the count number with several memory
sizes. The memory size is the total size of DRAM and PRAM. In
Figure 10, the number of accesses for the four algorithms
decreases as the memory size grows. Because the number of faults

is decreased with the increase of the size of memory, the total
number of write accesses on PRAM decreases when the memory
size increases.

When using our algorithm, we can know that the total number of

write accesses is reduced compared to that for the conventional
page caching algorithm. We can reduce the total write access
count on PRAM by 34.8% for financial1 and 6.97% for financial2
when we use the hybrid main memory with 2000-page sizes. We
can reduce the total write access count by a maximum of 52.9%
for financial1 and 27.8% for financial2. The reason why the gain
of financial2 is smaller than that of financial1 is that the workload
of financial2 has a small number of write accesses and we can
obtain performance improvement by reducing the write access
request on PRAM by using migration.

The next experiment shows the total write access count on PRAM
when the ratio of the size of PRAM to the size of DRAM varies.
Figure 11 shows the results when the total size of hybrid memory
is 2000 pages. Because the size of PRAM is increased with the
increasing the ratio of PRAM to DRAM, total write counts are
increased with both two workloads. However, in case of
financial1, the proposed algorithm can maintain the total number
of write access in all cases while the results of other algorithms
are increased, shown in Figure 11(a). Therefore, the proposed
algorithm can efficiently decrease the total write access number
with write-intensive workload like financial1. In case of
financial2, although the total number of write access on PRAM is
increase when using our algorithm, it can reduce the write counts

(a) Write access distribution

(b) Read access distribution

Figure 9. Write and read access distribution in the hybrid
main memory

(a) Financial1

(b) Financial2

Figure 11. The total write access count with different
PRAM-to-DRAM ratio when the memory size is 2000 on

financial workloads

APPLIED COMPUTING REVIEW VOL. 11 NO.4 45

compared to other algorithms. We also evaluated the total number

of write access with all cases of memory sizes and we find that the
patterns of the total number of write access are the same through
all cases of the PRAM-to-DRAM ratio.

4.2.4 Total Energy
We measured the total energy, which consists of operation energy
and idle energy. Operation energy is the energy when memory
accesses occur. During the evaluation, we can obtain the total
access count for the various memory sizes. By using measured

count values, we can calculate the operation energy with the read

and write energy of both DRAM and PRAM, as can be seen in
table 1. The idle energy is the energy continuously consumed by
memory devices even if they do not operate. Idle energy can be
calculated according to the operation time and the idle power of
each memory. We also measured the operation time, which is the
time for running the workload. Figure 12 shows the consumed
energy of a memory when using the proposed algorithm and the
LRU algorithm. In the case of the LRU algorithm, we use hybrid
memory and DRAM-only memory for comparison. DRAM shows

(a) Financial1 (b) Financial2

Figure 10. The total write access count of PRAM on financial workloads

(a) Financial1

(b) Financial2

Figure 12. Consumed energy on memory of proposed
algorithm and conventional algorithms on finalcial

workloads

(a) 2000-page size of hybrid memory

(b) 40000-page size of hybrid memory

Figure 13. Consumed energy on the hybrid memory of
proposed algorithm and LRU algorithm with different

PRAM-to-DRAM ratios on finalcial1 workload

APPLIED COMPUTING REVIEW VOL. 11 NO.4 46

low read and write energy but has large idle power compared to
PRAM. Therefore, by increasing the size of the memory, the
power consumed by DRAM can be increased, as shown in Figure
12. From this result, we can use a page cache on the hybrid main
memory in order to reduce the consumed energy if we use the
memory with over 20000-page size. If we consider the results
with the hybrid main memory, the proposed page caching
algorithm uses lower energy than LRU does. Normally, PRAM
write energy is large, but we can reduce the write counts on
PRAM so that we can reduce the total energy. We can maximally
reduce the total consumed energy by 19.9% for financial1.

Figure 13 shows the total energy which a memory consumes with
various ratios of PRAM to DRAM, in which we selected two
memory sizes. In case of 2000-page size which is lower than
20000-page size, the consumed energy by only DRAM with LRU
is the lowest, as can be seen in Figure 13(a). As increasing the
ratio of PRAM to DRAM, total energy consumed by memory
with both LRU and proposed algorithms tend to increase. It is
because the total number of write access on PRAM is increasing
as increasing the ratio of PRAM to DRAM, as shown in Figure
11(a). However, the idle power of DRAM cannot affect the total
energy because a size of DRAM is still small. In case of 40000-
page size, DRAM size is large so that its consumed power
occupies most of the total energy. Therefore, as increasing the
ratio of PRAM to DRAM, total energy consumed by memory is
decreasing even if the write-access counts on PRAM are increased,
as shown in Figure 13(b). When comparing the consumed
energies by the proposed and LRU algorithms, the proposed
algorithm uses the lower power compared to the power by LRU
through the all cases of PRAM-to-DRAM ratios because the
proposed algorithm can reduce the total access counts on PRAM.

5. FUTURE WORK
As to future work, we need to evaluate our algorithm with more
workloads. In our evaluation, we used only two workloads, which
show the write-bound and read-bound features. Therefore, we
have to explore our algorithm with various characteristics such as
sequential read/write patterns or mixed write and read patterns.

We also used a trace-driven simulator to evaluate our algorithm
with traces. For future work, we will apply our algorithm to the
page cache algorithm of the Linux kernel code and evaluate it
with benchmark programs like SPEC. In order to implement our
algorithm, we will have to emulate PRAM because PRAM is not
currently available. By analyzing the read/write time for PRAM,
we can emulate PRAM with DRAM, albeit with software delay.

6. CONCLUSIONS
We propose a new page caching algorithm for a hybrid main
memory. The hybrid main memory is organized by heterogeneous
types of memories, which have different properties of the access
latency, density, and endurance. In modern computer systems, a
large amount of main memory is used as a page cache to hide disk
access latency. Because the conventional page caching algorithms
only deal with uniform access latency and endurance, a new page
caching algorithm is needed. When using PRAM to make a hybrid
main memory, the important things to consider are the long write
latency and the low endurance of PRAM. Therefore, we proposed
a page caching algorithm with page monitoring and migration
schemes to keep read-bound access pages in PRAM and write-
bound access pages in DRAM.

The experimental results show that out algorithm can reduce the
total number of write accesses by a maximum of 52.9%. Our
algorithm shows that a hit ratio is similar to the hit ratio of the
conventional page caching algorithms, such as LRU, LIRS, and
CLOCK-Pro. Our algorithm minimizes the write access of PRAM
while maintaining the cache hit ratio. Therefore, we can enhance
the average page cache performance and reduce the endurance
problem in hybrid main memory. In addition, we can reduce the
consumed energy by a maximum of 19.9%.

7. ACKNOWLEDGMENTS
The work presented in this paper was supported by MKE
(Ministry of Knowledge Economy, Republic of Korea), Project
No. 10035231-2010-01.

8. REFERENCES
[1] UMass TraceRepository,

http://traces.cs.umass.edu/index.php/Storage/Storage.
[2] Aven, E. G. Coffmann, and I. Kogan. Stochastic Analysis of

Computer Storage. Amsterdam: Reidel, 1987.
[3] S. Bansal and D. S. Modha. CAR: Clock with Adaptive

Replacement. Proceedings of the 3rd USENIX Conference on
File and Storage Technologies, 2004.

[4] L. A. Barroso and U. Holzle. The case for energy-
proportional computing. Computer, 40(12):33–37, December
2007.

[5] R. W. Carr and J. L. Hennessy. WSClock - A Simple and
Effective Algorithm for Virtual Memory Management.
Proceedings of the eighteh ACM symposium on Operating
systems principles (SOSP'81), pages 87–95, 1981.

[6] E. G. Coffman and P. J. Denning. Operating Systems Theory.
Prentice-Hall, 1973.

[7] F. J. Corbato. A Paging Experiment with the Multics System.
MIT Project MAC Report MAC-M-384, May 1968.

[8] Dan and D. Towsley. An Approximate Analysis of the LRU
and FIFO Buffer Replacement Schemes. Proceedings of the
1990 ACM SIGMETRICS conference on Measurement and
modeling of computer systems, pages 143–152, April 1990.

[9] P. J. Denning. The Working Set Model for Program
Behavior. Communications of the ACM, 11(5):323–333, May
1968.

[10] G. Dhiman, R. Ayoub, and T. Rosing. Pdram:a hybrid pram
and dram main memory system. In Proceedings of the 46th
Annual Design Automation Conference, July 2009.

[11] E. Horowitz, D. D. Sleator, and R. E. Tarjan. Amortized
Efficiency of List Update and Paging Rules.
Communications of the ACM, 28(2):202–208, February
1985.

[12] S. Jiang and X. Zhang. Lirs: An efficient low inter-reference
recency set replacement policy to improve buffer cache
performance. In Marina Del Rey, pages 31.42. ACM Press,
2002.

[13] T. Johnson and D. Shasha. 2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm.
Proceedings of the 20th VLDB Conference, pages 297.306,
1994.

APPLIED COMPUTING REVIEW VOL. 11 NO.4 47

[14] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting
Phase Change Memory as a Scalable DRAM Alternative.
Proceedings of the 36th annual international symposium on
Computer architecture, June 2009.

[15] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho,
and C. S. Kim. LRFU: A Spectrum of Policies that Subsumes
the Least Recently Used and Least Frequently Used Policies.
IEEE Transactions on Computers, 50(12):1352.1361,
December 2001.

[16] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K Page
Replacement Algorithm for Database Disk Buffering.
Proceedings of the ACM SIGMOD international Conference
on Management of data, pages 297.306, May 1993.

[17] K. H. Park, Y. Park, W. Hwang, and K.-W. Park. Mn-mate:
Resource management of manycores with dram and
nonvolatile memories. 12th IEEE International Conference
on HPCC, September 2010.

[18] Y. Park, S. K. Park, and K. H. Park. Linux kernel support to
exploit phase change memory. Linux Symposium, July 2010.

[19] S. J. Performance and S. Jiang. Clock-pro: An effective
improvement of the clock replacement. In Proceedings of
USENIX Annual Technical Conference, 2005.

[20] M. K. Qureshi, V. Srinivassan, and J. A. Rivers. Scalable
high performance main memory system using phase-change
memory technology. In Proceedings of the 36th Annual

International Symposium on Computer Architecture, June
2009.

[21] J. T. Robinson and M. V. Devarakonda. Data Cache
Management Using Frequency-Based Replacement.
Proceedings of ACM SIGMETRICS conference, pages
134.142, 1990.

[22] H. Seok, Y. Park, and K. H. Park. Migration Based Page
Caching Algorithm for a Hybrid Main Memory of DRAM
and PRAM. Proceedings of the 2011 ACM Symposium on
Applied Computing, March 2011.

[23] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie.
Hybrid Cache Architecture with Disparate Memory
Technologies. Proceedings of the 36th annual international
symposium on Computer architecture, June 2009.

[24] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A Durable and
Energy Efficient Main Memory Using Phase Change
Memory Technology. Proceedings of the 36th annual
international symposium on Computer architecture, June
2009.

[25] Y. Zhou and J. F. Philbin. The Multi-Queue Replacement
Algorithm for Second Level Buffer Caches. Proceedings of
the USENIX Annual Technical Conference, pages 91–104,
June 2001.

APPLIED COMPUTING REVIEW VOL. 11 NO.4 48

ABOUT THE AUTHORS:

Hyunchul Seok received the BS degree in Electrical Engineering from Pohang
University of Science and Technology (POSTECH) in 2001 and the MS degree in
electrical engineering from the Korea Advanced Institute of Science and Technology
(KAIST) in 2008. He is currently working toward the PhD degree in the division of
electrical engineering at KAIST. His research interests include storage systems,
memory systems, and embedded systems.

Youngwoo Park received the BS and MS degrees in the division of electrical
engineering from the Korea Advanced Institute of Science and Technology (KAIST)
in 2004 and 2006, respectively. He is currently working toward the PhD degree in
the division of electrical engineering at KAIST. His research interests include
storage systems, flash file systems, and embedded systems. He is a member of the
IEEE and the IEEE Computer Society.

Ki-Woong Park received the BS degree in computer science from Yonsei University
in 2005 and the MS degree in electrical engineering from the Korea Advanced
Institute of Science and Technology (KAIST) in 2007. He is currently working
toward the PhD degree in the Division of Electrical Engineering at KAIST. His
research interests include cloud computing systems, security protocol, and network
security. . He received a 2009–2010 Microsoft Graduate Research Fellowship. He is
a member of the ACM, IEEE and the IEEE Computer Society.

Kyu Ho Park received the BS degree in electrical engineering from Seoul National
University, Korea in 1973, the MS degree in electrical engineering from the Korea
Advanced Institute of Science and Technology (KAIST) in 1975, and the DrIng
degree in electrical engineering from the University de Paris XI, France in 1983. He
has been a Professor of the Division of Electrical Engineering at KAIST since 1983.
He was a president of the Korea Institute of Next Generation Computing for the
period 2005-2006. His research interests include computer architectures, storage
systems, cloud computing, and parallel processing. He is a member of ACM and
IEEE.

