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ABSTRACT 
Emerging next generation memories, NVRAMs, such as Phase-
change RAM (PRAM), Ferroelectric RAM (FRAM), and 
Magnetic RAM (MRAM) are rapidly becoming promising 
candidates for large scale main memory because of their high 
density and low power consumption. Many researchers have 
attempted to construct a main memory with NVRAMs, in order to 
make up for the limits of NVRAMs. However, we find that the 
preexisting page caching algorithms, such as LRU, LIRS, and 
CLOCK-Pro, are often sub-optimal for NVRAMs due to its 
DRAM-oriented design including uniform access latency and 
unlimited endurance. Consequently, the algorithms cannot be 
directly adapted to the hybrid main memory architecture with 
PRAM. 

To mitigate this design limitation, we propose a new page caching 
algorithm for the hybrid main memory. It is designed to overcome 
the long latency and low endurance of PRAM. On the basis of the 
LRU replacement algorithm, we propose a prediction of page 
access pattern and migration schemes to maintain write-bound 
access pages to DRAM. The experiment results have convinced us 
that our page caching algorithm minimizes the number of the 
write access of PRAM while maintaining the cache hit ratio. The 
results show that we can reduce the total write access count by a 
maximum of 52.9% and the consumed energy by 19.9%. 
Therefore, we can enhance the average page cache performance 
and reduce the endurance problem in the hybrid main memory.4 

Categories and Subject Descriptors 
B.3.2 [Memory Structures]: Design Styles Cache memories; D.4.2 
[Operating Systems]: Storage Management - Allocation 
/deallocation strategies, Main memory 

General Terms 
Page cache algorithm 

Keywords 
Page Cache, Hybrid Main Memory, PRAM, Migration 

1. INTRODUCTION 
The main memory of today's computer systems is showing 
significant change with the emergence of next generation types of 

                                                           
4 This work is based on an earlier work: SAC '11 Proceedings of 

the 2011 ACM Symposium on Applied Computing, Copyright 
2011 ACM 978-1-4503-0113-8/11/03. 

   http://doi.acm.org/10.1145/1982185.1982312 

memory, NVRAMs, such as Phase-change RAM (PRAM), 
Ferroelectric RAM (FRAM), and Magnetic RAM (MRAM) 
[20][24][14]. Several studies have observed that DRAM based 
main memory, while it significantly increases the computing 
power, also greatly increases the cost of a computer system [4]. 
Therefore, many trials have been made to replace DRAM. One 
such trial attempted to use hybrid memory by including 
NVRAMs. 

Among these memories, PRAM is the most promising candidate 
for uses in large scale main memory because of its high density 
and low power consumption [20]. While DRAM stores each bit of 
data in a separate capacitor, PRAM uses the phase of the material 
to represent each bit. PRAM density is expected to be much 
greater than that of DRAM (about four times). Also, PRAM is a 
non-volatile memory because the phase of the material does not 
change after power-off. It has negligible leakage energy 
regardless of the size of the memory. Table 1 shows the properties 
of PRAM compared to those of DRAM [17]. Though PRAM has 
attractive features such as high density, non-volatility, low idle 
power, and good scalability, the access latency of PRAM is still 
not comparable to DRAM latency. PRAM also has a worn-out 
problem caused by limited write endurance. In previous research, 
the hybrid main memory approaches of DRAM and PRAM have 
been adopted to make up for the latency and endurance limits of 
PRAM [10][20][18]. Those researchers proposed several 
hardware and software schemes to manage the hybrid main 
memory. 

On the other hand, in modern computer systems, a large part of 
main memory is used as a page cache to hide disk access latency, 
as can be seen in Figure 1(a). Many page caching algorithms such 
as LRU, LIRS [12], and CLOCK-Pro [19] have been developed 
and show good performance for current DRAM based main 
memory. However, such previous page caching algorithms only 
considered the main memory with uniform access latency and 

 

Figure 1. Page caching system architecture
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unlimited endurance. They cannot be directly adapted to the 
hybrid main memory architecture with DRAM and PRAM, as 
shown in Figure 1(b). 

This paper is an extended work related to our previous work in 
[22]. The previous work mainly focused on a page caching 
algorithm design to enhance the average page cache performance 
and to reduce the endurance problem. In this paper, attempts are 
made to integrate a prediction and page migration mechanisms as 
the key primitive for additional performance enhancement. 

The main objective of this work is to propose a new page caching 
algorithm for the hybrid main memory. The algorithm is designed 
to overcome the long latency and endurance problem of PRAM. 
On the basis of conventional cache replacement algorithms, we 
propose a prediction of the page access pattern by page 
monitoring and migration schemes to move write-bound access 
pages to DRAM. In particular, we present analytic metrics for 
PRAM endurance, energy, and latency, and illustrate that existing 
page caching algorithms such as LRU, LIRS, and CLOCK-Pro are 
suboptimal in the hybrid main memory. We present improved 
algorithms for enhancing the page cache performance on the 
hybrid main memory. It minimizes the write access of PRAM 
while maintaining the cache hit ratio. Therefore, we can enhance 
the average page cache performance and reduce the endurance 
problem in the hybrid main memory. The remainder of the paper 
is organized as follows. In Section 2, we briefly summarize the 
conventional page caching algorithms and their limits when used 
in hybrid memory. In Section 3 we present the design of our 
algorithm and describe the prediction algorithm and migration 
strategy. The performance evaluation results are given in Section 
4, and we briefly discuss future work in Section 5. Section 6 
concludes this paper. 

2. BACKGROUND 
A proper page caching algorithm can have a significant effect on 
improving performance of I/O by hiding the long latency of disks. 
Many studies have been undertaken to make efficient page cache 
algorithms. However, most page cache replacement algorithms 
have been designed for memory with uniform access latency and 
unlimited endurance. In this paper, we evaluate the page caching 
algorithms for hybrid memory, which has different read and write 
latencies and different endurance. We propose a new page caching 
algorithm that includes prediction and migration schemes for 
efficiently hiding the bad effects derived from the different 
properties of hybrid memory and compare the results. Although 
we implement our algorithm based on the LRU replacement 
algorithm, our technique can be utilized with the conventional 
page caching algorithm and can improve the performance of page 
caching in hybrid memory. 

LRU (Least Recently Used) has been widely used as a cache 
management and page cache replacement algorithm [6][2][8][9] 
[11]. When the cache is full and a miss occurs, this algorithm 
selects the page where it is in the LRU position as a victim. One 
of the advantages is that it is very simple to implement this 
algorithm. The algorithm also has constant time and space 
overhead. But it has some disadvantages. It is known that LRU 
shows the best performance on the workloads of Stack Depth 
Distribution (SDD) [6]. However, LRU cannot operate well with 
an access pattern with weak locality, such as sequential scans, a 
cyclic pattern with slightly larger than cache size. 

LIRS (Low Inter-Reference Recency Set) was proposed by Jiang 
and Zhang in 2002 in order to solve the problems of LRU [12]. 
This algorithm uses Inter-Reference Recency (IRR) to determine 

which page should be replaced. The objectives of LIRS are both 
to effectively address the limits of LRU and to retain the low 
overhead of LRU. As the history information of each page, IRR is 
defined as the number of other pages accessed between two 
consecutive references to the page. The algorithm assumes that if 
the IRR of a page is large, the next IRR of the page is likely to be 
large. Therefore, LIRS selects pages with large IRRs for 
replacement. 

CLOCK-Pro was proposed by Jiang, Chen, and Zhang in 2005 
[19]. It is based on CLOCK which is a simple approximation of 
the LRU replacement algorithm [7][5]. CLOCK can reduce the 
overheads of the LRU algorithm, which are related to the 
overhead of moving a page to the MRU position on every page hit 
[3]. The objectives of CLOCK-Pro are to obtain a low 
computational requirement and to remove the disadvantages, 
which are the same disadvantages as those of LRU with the 
workload of weak locality. Therefore, CLOCK-Pro was designed 
to include the way in which LIRS and CLOCK work. 

In addition to the replacement algorithms mentioned above, there 
are many caching algorithms, most of which have the goal of 
improving the performance problems of LRU. In studies of such 
methods, FBR [21], LRU-2 [16], 2Q [13], LRFU [15], and MQ 
[25] were proposed and researchers tried to combine "recency" 
(LRU) and "frequency" (LFU) in order to compensate for the 
disadvantages of LRU. These disadvantages are derived from the 
access patterns such as the sequential stream and a cyclic pattern 
with larger than cache size. However, these methods cannot 
consider the physically different properties of hybrid memory. For 
example, PRAM has about ten times larger write latency than 
DRAM does, as can be seen in Table 1. Therefore, if some pages 
are frequently accessed by write accesses and these pages are in 
PRAM memory, the overall performance will degrade. In such a 
case, we can improve the performance if the page cache algorithm 
can make a decision to put the write-bound pages into DRAM 
rather than into PRAM. In this case, the performance is affected 
by the position of the pages. 

Table 1. Properties of PRAM 

Attributes DRAM PRAM 

Non-volatility No Yes 

Cost/TB Highest 
(~4x PRAM) Low 

Read Latency 50ns 50-100ns 

Write Latency 20-50ns ~ 1us 

Read Energy ~ 0.1nJ/b ~ 0.1nJ/b 

Write Energy ~ 0.1nJ/b ~ 0.5nJ/b 

Idle Power ~ 1.3W/GB ~ 0.05W 

Endurance  108 for write 
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3. PAGE CACHING ALGORITHM FOR 
HYBRID MAIN MEMORY 

In this section, we describe the design of a new page caching 
algorithm for the hybrid main memory; this design consists of 
DRAM and PRAM. Although the conventional cache algorithms 
show good performance, they cannot be directly adapted to the 
hybrid main memory. Because the hybrid main memory uses two 
different types of memories, it is important to consider their 
properties in order to maximize the performance and efficiency. 
As can be seen in Table 1, PRAM has a very long latency 
compared to DRAM when writing a page. If the page cache 
algorithm causes a lot of writes to PRAM, the average page cache 
performance gets worse. In addition, PRAM has low endurance 
compared to DRAM. If there are many write accesses, PRAM will 
be worn-out quickly. Consequently, the page cache algorithm on 
the hybrid main memory should be designed to overcome the long 
latency and endurance problem of PRAM. To solve these 
problems, we propose a new page caching algorithm with 
prediction of page access pattern and migration schemes. 

3.1  Basic Operation 
 

To satisfy the requirements, we designed the new page caching 
algorithm according to the conventional cache algorithm. We add 
a prediction of page access pattern and migration schemes. 
Although any conventional cache replacement algorithm can be 
adapted, we chose the LRU replacement algorithm, which is very 
simple but works well. In order to monitor the pages and to adapt 
the migration scheme, we use four monitoring queues, which 
consist of a DRAM read queue, a DRAM write queue, a PRAM 
read queue, and a PRAM write queue, as shown in Figure 2. 
When one page block is accessed, it is retained into both the LRU 
list and one of the four queues by its access pattern and the 
memory type where it is located. 

Figure 2 shows the basic operation of our algorithm. When a page 
fault occurs, we put the page into the MRU position in the LRU 
list with the LRU replacement algorithm. In addition, we put the 
page into one of the monitoring queues according to the page 
access type. For example, if the page's access request is read and a 
selected memory page is on DRAM, we put the page into the 
DRAM read queue. If there is no free memory when a miss occurs, 
the least recently used page block is selected as a victim page, 
which also follows the LRU replacement algorithm. At the same 
time, we evict the page related to the victim page. For example, if 
a type of the victim page is read cache and resides in PRAM, we 

eliminate the page from the PRAM read queue by evicting the 
page in LRU list. When the page hits, the page in both the LRU 
list and the monitoring queue is promoted, as can be seen in 
Figure 2. 

3.2  Prediction and Page Migration 
 

The write-bound pages on PRAM cause performance degradation 
and worn-out problem because of PRAM's long latency and low 
endurance. To solve these problems, we need to move the write-
bound pages from PRAM to DRAM. Additionally, we must move 
the read-bound pages from DRAM to PRAM because we have to 
gather the read-bound pages to PRAM. In order to effect the 
efficient migration of pages, we have to know which pages are 
write-bound and which pages are read-bound. For prediction of 
the access pattern, we calculate the weighting values, which 
indicate how close the values are to write-bound or read-bound. 
By monitoring the request type of the page requests, the weighting 
value can be calculated by using a moving average with weight 

[0,1] as follows:  

Wcur = Wprev + (1- )RT                          (1) 

, where RT means the requested type of the page; its value is 1 if 
the page request is write and -1 if the page request is read. When a 
page fault occurs, the page is inserted into both the LRU list and 
one of the monitoring queues. We selected the value of  as 0.5. 
We will explain in detail in section 4.2.1. 

There are two migration cases, as shown in Figure 3: one is the 
migration of write-bound pages from PRAM to DRAM; the other 
is the migration of read-bound pages from DRAM to PRAM. To 
determine when migration occurs, we calculate the Wcur value at 
every request. According to equation 1, this value is increased 

 

Figure 2. Overview of page caching algorithm 

Algorithm 1 : Page Migration Function 
input: page address and request type 
Wcur: Current weight value 
Trmig: Threshold value for determining migration 
Trq: Threshold value for determining movement between 

read and write queues 
 
Calculate Wcur 
if page in PRAM then 
     if Wcur  Trmig then 
          migrate the page to DRAM 
     else if Wcur  Trq and page in read queue then 
          the page moves to write queue 
     else if Wcur  Trq and page in write queue then 
          the page moves to read queue 
     end if 
else if page in DRAM then 
     if Wcur  Trmig then 
          migrate the page to PRAM 
     else if Wcur  Trq and page in write queue then 
          the page moves to read queue 
     else if Wcur  Trq and page in read queue then 
          the page moves to write queue 
     end if 
end if 
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when write requests occur and is decreased at every read request. 
Algorithm 1 shows how the cached pages are migrated. When a 
page request hits, Wcur of the hit page is calculated by equation 1 
and we determine whether migration occurs. For example, if the 
write access is hit on a page in the PRAM write queue, PW, as 
shown in Figure 3(a), and its weighting value is over Trmig, this 
page will migrate to the DRAM write queue. Similarly, as can be 
seen in 3(b), if a page in the DRAM read queue, DR, is hit by a 
read request and its Wcur value is under Trmig, this page will 
migrate to the PRAM read queue. We use two threshold values for 
determining the migration and the movement between read and 
write queues in the same memory. Trmig is the threshold value for 
determining whether a page is migrated and Trq is the threshold 
value for determining movement between read and write queues. 

Figure 3(a) shows an example of migration from PRAM to 
DRAM. If there is no free space in DRAM, we have to select a 
victim page on DRAM. In this case, we select the victim page 
from the bottom of the DRAM read queue and remove it from 
DRAM. The write-bound page in PRAM is moved to the DRAM 
where the victim page was located. In the DRAM write queue, 
this page is put into the top of the queue. If there is no element in 
the DRAM read queue when we find a victim page for migration, 
we choose a victim page from the bottom of the DRAM write 
queue, which means that the victim page is the least recently used. 
The migration of read-bound pages is similar to the migration of 
write-bound pages, as shown in Figure 3(b). To select a victim 
page, we select the bottom page of the PRAM write queue first, 
and if there are no pages in the PRAM write queue, we choose the 
bottom page of the PRAM read queue. When we remove a victim 
page for migration, we just remove it from the memory, the LRU 
list, and the monitoring queue. The reason why we do not change 
the pages between the victim page for migration and the page that 
will migrate is that such an action would cause an additional write 
on PRAM. 

4. EXPERIMENT 
In order to evaluate the proposed page cache algorithm for the 
hybrid main memory, we used a trace-driven simulation. We 
implemented our algorithm and designed the hybrid main memory 
architecture. In this section, we present the performance results of 
our hybrid cache algorithm. First, we demonstrate the overall 
experimental environment. We then describe the evaluation 
results in terms of hit ratio, write access count on PRAM, and 
energy consumption. 

4.1  Experiment Setup 
In order to evaluate the performance of our page cache scheme, 
we have to define the hybrid main memory. We assume that the 
hybrid main memory consists of DRAM and PRAM, which are 
divided by a memory address. The memory which has the low 
memory address is DRAM and the high section is allocated to 
PRAM, as shown in Figure 4. PRAM density is generally 
expected to be higher than that of DRAM [17][23][20], so that we 
allocate larger amount of memory to PRAM. Because PRAM 
density is expected to be four times higher than that of DRAM 
[17][23], we mainly select that the PRAM-to-DRAM ratio is four. 
However, this density value can be varied in several researches 
[20] so that we additionally evaluated out page caching algorithm 
with various PRAM-to-DRAM ratios. 

(a) Migration of the write-bound page (b) Migration of the read-bound page
 

Figure 3. Migration of cached pages between DRAM and PRAM 

 

Figure 4. Composition of the hybrid main memory 
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To evaluate the performance characteristics of the proposed page 
caching algorithm, we constructed a trace-driven simulation 
environment and coupled it to the OLTP traces. The objective of 
the simulator is to evaluate the performance of the page caching 
algorithms with regard to a real hybrid main memory and practical 
workload. Figure 5 shows the overall simulation environment. 

As the workloads for the performance evaluation, we exploited an 
Online Transaction Processing (OLTP) application I/O, which has 
high throughput and is insert/update-intensive. We use two 
workload traces from the OLTP of two large financial institutions. 
These traces were made available courtesy of Ken Bates from HP, 
Bruce McNutt from IBM, and the Storage Performance Council 
[1]. These two traces are related to requests to a storage and 
suitable to test the page caching algorithm. The first financial 
workload has 9 million traces, and among them, about 80% of 
traces are write accesses. The second financial workload has 5 
million traces and about 19% of traces are write accesses, as 
shown in Table 2. By using two financial workloads, we can test 
the performance with the cases of write-intensive and read-
intensive workloads. 

4.2  Evaluation Results 

 
In this section, we show the trace-based simulation results in 
terms of hit ratio, write access count on PRAM and consumed 
energy in order to show the performance of our page caching 
algorithm. We compared the experimental results for our 
algorithm with those of the conventional page caching algorithms 
such as LRU, LIRS, and CLOCK-Pro. 

 

4.2.1  Parameters used in evaluation 
In order to predict a page's access pattern, we use equation 1, 
which includes one parameter, . In addition, we use two 
threshold values to determine the time when migration occurs and 
when a page cache changes its status between read-bound and 
write-bound pages. The two values are Trmig and Trq, explained in 
section 3.2. Before we test our page cache algorithm, we have to 
determine the values of these parameters in order to minimize the 
total access counts on PRAM. 

We chose the parameter values through experiments. Figure 6 
shows the total number of write accesses on PRAM with the 
Financial1 workload when we change , Trmig, and Trq values. 
Figure 6(a) shows the total access count on PRAM with various 
and Trmig when Trq is fixed at 0.35. From Figure 6(a), the 
evaluation results convince us that the write-access count is 
minimized when  is 0.5 and when Trmig is 0.45 or 0.5. Therefore, 
we select  as 0.5. Figure 6(b) shows the results when  is 0.5. 
From this graph, we can know that the results are the smallest 
when Trq is larger than 0.3. Finally, we select the values of Trmig 
and Trq as 0.5 and 0.35, respectively. 

 

Figure 6. The experiment results with various parameters when the memory size is 2000 on Financial1 workload 

 

Figure 5. Trace-driven simulation for evaluation of page-
caching algorithms 

Table 2. A summary of the workloads used in this paper 

Trace Name Number of 
Requests 

Ratio of Write-
access pages 

Financial1 9156833 80.59% 

Financial2 5436256 18.95% 
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4.2.2  Hit ratio 
The first experiment measures the hit ratio, which is important in 
determining the performance of the page caching algorithm. We 
compared the hit ratio of our page caching algorithm to the hit 

ratios of the conventional page caching algorithms. We tested it 
with many sizes of main memory. The results are shown in Figure 
7. 

From the results, it can be seen that the LRU replacement 
algorithm shows the highest hit ratio through the whole range of 
memory sizes. While the hit ratio of our algorithm is lower than 
that of LRU, the results show that the hit ratio is similar to those 
of the LRU, LIRS, and CLOCK-Pro algorithms. Actually, we 
designed our algorithm on the basis of the LRU replacement 
algorithm and added the prediction and migration schemes. We 
expected the hit ratio of our algorithm to be similar to that of the 
LRU replacement algorithm. Because we designed the selected 
victim page for migration to simply be eliminated, as explained in 
section 3.2, it is possible that the page faults will occur more. 
Consequently, the hit ratio is lower than that of the LRU. 
Although the migration scheme causes a degradation of the hit 
ratio, the hit ratio is still larger than that of LIRS and CLOCK-Pro 
for small sizes of the main memory. 

The next experiment measures the hit ratio with varying the ratio 
of the size of PRAM to the size of DRAM, as shown in Figure 8. 

We compare the hit ratio of the proposed scheme with the hit ratio 
of LRU replacement algorithm. In overall region, the hit ratio of 
the proposed scheme shows a similar hit ratio in comparison with 
LRU. In case of the results of Financial1, when the size of 
memory is set to 500 pages, the hit ratio of proposed scheme is 

decreased from 64.9% to 61.2% as the size of PRAM increases. 
This can be seen in Figure 8(a). It is due to the size reduction of 
DRAM, which leads to hit ratio degradation by the victim process 
when many migrations of write-bound pages occur. When the size 
of memory is set to 60,000 pages, the experiment result also 
shows a gap between hit ratio of proposed scheme and the hit ratio 
of LRU. The main reason is that even infrequently accessed pages 
can be remained to LRU list as the size of DRAM increases. On 
the other hand, the above pages in the proposed scheme can be 
frequently selected as victim so that the pages can be evicted from 
LRU list, which leads to more cache miss. In case of the results of 
Financial2, the hit ratio at 500-page size of a memory is barely 
changed. With read-intensive workload like Financial2, hit ratio 
degradation by the victim process of a read-bound page does not 
affect largely because the size of PRAM is larger than DRAM. 

4.2.3  Write access count on PRAM 
The write access count on PRAM is important because it is related 
to the total latency of the page cache and the lifetime of PRAM. 
PRAM has a very long latency compared to DRAM, so the 
performance of page caches degrades if many write pages hit on 
PRAM. In addition, PRAM wears out more quickly because of its 

(a) Financial1 (b) Financial2
 

Figure 7. Hit ratio of proposed algorithm and conventional algorithms on financial workloads 

(a) Financial1 (b) Financial2
 

Figure 8. Hit ratio of proposed algorithm with different PRAM-to-DRAM ratio on financial workloads 
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low endurance. Therefore, in order to use a page cache on the 
hybrid main memory of DRAM and PRAM, a page caching 
algorithm must be able to reduce the write access count on 
PRAM. 

To show that the proposed scheme reduces the write access count 
on PRAM, and conversely increases the read access count on 
PRAM, an experiment was designed by profiling the value of the 
read/write access distribution when the start address was varied 
from 0 to 500. In this experiment, it was assumed that the first 100 
blocks would be mapped to DRAM, and the other would be 
mapped to PRAM. As can be seen in Figure 9(a), the minimized 
write access distribution is suitable for PRAM characteristics. 
Conversely, as shown in Figure 9(b) the maximized read access 
distribution implies that the read-bound data is migrated to the 
PRAM region, and so, in comparison with the LRU scheme, the 
proposed page-caching algorithm is more suitable for a hybrid 
main memory system. 

In this experiment, we evaluated the write access count on PRAM 
and compared it with the results of the conventional algorithms. 
During the simulation, we counted read and write accesses of 
DRAM and PRAM. Figure 10 shows the total number of write 
accesses on PRAM with workloads, denoted as financial1 and 
financial2. We measured the count number with several memory 
sizes. The memory size is the total size of DRAM and PRAM. In 
Figure 10, the number of accesses for the four algorithms 
decreases as the memory size grows. Because the number of faults 

is decreased with the increase of the size of memory, the total 
number of write accesses on PRAM decreases when the memory 
size increases. 

When using our algorithm, we can know that the total number of 

write accesses is reduced compared to that for the conventional 
page caching algorithm. We can reduce the total write access 
count on PRAM by 34.8% for financial1 and 6.97% for financial2 
when we use the hybrid main memory with 2000-page sizes. We 
can reduce the total write access count by a maximum of 52.9% 
for financial1 and 27.8% for financial2. The reason why the gain 
of financial2 is smaller than that of financial1 is that the workload 
of financial2 has a small number of write accesses and we can 
obtain performance improvement by reducing the write access 
request on PRAM by using migration. 

The next experiment shows the total write access count on PRAM 
when the ratio of the size of PRAM to the size of DRAM varies. 
Figure 11 shows the results when the total size of hybrid memory 
is 2000 pages. Because the size of PRAM is increased with the 
increasing the ratio of PRAM to DRAM, total write counts are 
increased with both two workloads. However, in case of 
financial1, the proposed algorithm can maintain the total number 
of write access in all cases while the results of other algorithms 
are increased, shown in Figure 11(a). Therefore, the proposed 
algorithm can efficiently decrease the total write access number 
with write-intensive workload like financial1. In case of 
financial2, although the total number of write access on PRAM is 
increase when using our algorithm, it can reduce the write counts 

(a) Write access distribution

(b) Read access distribution  

Figure 9. Write and read access distribution in the hybrid 
main memory 

(a) Financial1

(b) Financial2  

Figure 11. The total write access count with different 
PRAM-to-DRAM ratio when the memory size is 2000 on 

financial workloads 
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compared to other algorithms. We also evaluated the total number 

of write access with all cases of memory sizes and we find that the 
patterns of the total number of write access are the same through 
all cases of the PRAM-to-DRAM ratio.  

4.2.4  Total Energy 
We measured the total energy, which consists of operation energy 
and idle energy. Operation energy is the energy when memory 
accesses occur. During the evaluation, we can obtain the total 
access count for the various memory sizes. By using measured 

count values, we can calculate the operation energy with the read 

and write energy of both DRAM and PRAM, as can be seen in 
table 1. The idle energy is the energy continuously consumed by 
memory devices even if they do not operate. Idle energy can be 
calculated according to the operation time and the idle power of 
each memory. We also measured the operation time, which is the 
time for running the workload. Figure 12 shows the consumed 
energy of a memory when using the proposed algorithm and the 
LRU algorithm. In the case of the LRU algorithm, we use hybrid 
memory and DRAM-only memory for comparison. DRAM shows 

(a) Financial1 (b) Financial2  

Figure 10. The total write access count of PRAM on financial workloads 

(a) Financial1

(b) Financial2  

Figure 12. Consumed energy on memory of proposed 
algorithm and conventional algorithms on finalcial 

workloads 

(a) 2000-page size of hybrid memory

(b) 40000-page size of hybrid memory  

Figure 13. Consumed energy on the hybrid memory of 
proposed algorithm and LRU algorithm with different 

PRAM-to-DRAM ratios on finalcial1 workload 
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low read and write energy but has large idle power compared to 
PRAM. Therefore, by increasing the size of the memory, the 
power consumed by DRAM can be increased, as shown in Figure 
12. From this result, we can use a page cache on the hybrid main 
memory in order to reduce the consumed energy if we use the 
memory with over 20000-page size. If we consider the results 
with the hybrid main memory, the proposed page caching 
algorithm uses lower energy than LRU does. Normally, PRAM 
write energy is large, but we can reduce the write counts on 
PRAM so that we can reduce the total energy. We can maximally 
reduce the total consumed energy by 19.9% for financial1. 

Figure 13 shows the total energy which a memory consumes with 
various ratios of PRAM to DRAM, in which we selected two 
memory sizes. In case of 2000-page size which is lower than 
20000-page size, the consumed energy by only DRAM with LRU 
is the lowest, as can be seen in Figure 13(a). As increasing the 
ratio of PRAM to DRAM, total energy consumed by memory 
with both LRU and proposed algorithms tend to increase. It is 
because the total number of write access on PRAM is increasing 
as increasing the ratio of PRAM to DRAM, as shown in Figure 
11(a). However, the idle power of DRAM cannot affect the total 
energy because a size of DRAM is still small. In case of 40000-
page size, DRAM size is large so that its consumed power 
occupies most of the total energy. Therefore, as increasing the 
ratio of PRAM to DRAM, total energy consumed by memory is 
decreasing even if the write-access counts on PRAM are increased, 
as shown in Figure 13(b). When comparing the consumed 
energies by the proposed and LRU algorithms, the proposed 
algorithm uses the lower power compared to the power by LRU 
through the all cases of PRAM-to-DRAM ratios because the 
proposed algorithm can reduce the total access counts on PRAM. 

5. FUTURE WORK 
As to future work, we need to evaluate our algorithm with more 
workloads. In our evaluation, we used only two workloads, which 
show the write-bound and read-bound features. Therefore, we 
have to explore our algorithm with various characteristics such as 
sequential read/write patterns or mixed write and read patterns. 

We also used a trace-driven simulator to evaluate our algorithm 
with traces. For future work, we will apply our algorithm to the 
page cache algorithm of the Linux kernel code and evaluate it 
with benchmark programs like SPEC. In order to implement our 
algorithm, we will have to emulate PRAM because PRAM is not 
currently available. By analyzing the read/write time for PRAM, 
we can emulate PRAM with DRAM, albeit with software delay. 

6. CONCLUSIONS 
We propose a new page caching algorithm for a hybrid main 
memory. The hybrid main memory is organized by heterogeneous 
types of memories, which have different properties of the access 
latency, density, and endurance. In modern computer systems, a 
large amount of main memory is used as a page cache to hide disk 
access latency. Because the conventional page caching algorithms 
only deal with uniform access latency and endurance, a new page 
caching algorithm is needed. When using PRAM to make a hybrid 
main memory, the important things to consider are the long write 
latency and the low endurance of PRAM. Therefore, we proposed 
a page caching algorithm with page monitoring and migration 
schemes to keep read-bound access pages in PRAM and write-
bound access pages in DRAM. 

The experimental results show that out algorithm can reduce the 
total number of write accesses by a maximum of 52.9%. Our 
algorithm shows that a hit ratio is similar to the hit ratio of the 
conventional page caching algorithms, such as LRU, LIRS, and 
CLOCK-Pro. Our algorithm minimizes the write access of PRAM 
while maintaining the cache hit ratio. Therefore, we can enhance 
the average page cache performance and reduce the endurance 
problem in hybrid main memory. In addition, we can reduce the 
consumed energy by a maximum of 19.9%. 
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