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a b s t r a c t 

Deep neural networks (DNNs) have been applied in several useful services, such as image 

recognition, intrusion detection, and pattern analysis of machine learning tasks. Recently 

proposed adversarial examples-slightly modified data that lead to incorrect classification- 

are a severe threat to the security of DNNs. In some situations, however, an adversarial 

example might be useful, such as when deceiving an enemy classifier on the battlefield. In 

such a scenario, it is necessary that a friendly classifier not be deceived. In this paper, we 

propose a friend-safe adversarial example, meaning that the friendly machine can classify 

the adversarial example correctly. To produce such examples, a transformation is carried 

out to minimize the probability of incorrect classification by the friend and that of correct 

classification by the adversary. We suggest two configurations for the scheme: targeted and 

untargeted class attacks. We performed experiments with this scheme using the MNIST and 

CIFAR10 datasets. Our proposed method shows a 100% attack success rate and 100% friend 

accuracy with only a small distortion: 2.18 and 1.54 for the two respective MNIST configu- 

rations, and 49.02 and 27.61 for the two respective CIFAR10 configurations. Additionally, we 

propose a new covert channel scheme and a mixed battlefield application for consideration 

in further applications. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

oday, deep neural networks (DNNs) ( Schmidhuber, 2015 ) are 
idely used for image recognition ( Simonyan and Zisserman,

015a ), speech recognition ( Hinton et al., 2012 ), intrusion toler- 
nce ( Potluri and Diedrich, 2016 ), natural language processing 
� A preliminary version of this paper was presented at the ICISC 2017
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 Collobert and Weston, 2008 ), and game-playing ( Silver et al.,
016 ). The security and safety of neural networks and machine 
earning receive considerable attention from the security re- 
earch community. Szegedy et al. (2014) presented adversarial 
xamples in image classification; in an evasion attack, images 
hat are transformed slightly can be incorrectly classified by 
 machine learning classifier, even when the changes are so 
 conference. 
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small that a human cannot easily recognize them. Such an at-
tack can cause a self-driving car to perform an unwanted ac-
tion, provided a slight change is made to a road sign (McDaniel
et al., 2016) . Countermeasures against these attacks have been
proposed ( Kurakin et al., 2017b; Papernot et al., 2016b; Tramèr
et al., 2018 ), and subsequently, more advanced attacks were
developed to defeat the countermeasures. 

Evasion attacks can be utilized in several domains, includ-
ing those of military strategy. An adversarial example can be
used to deceive an enemy’s machine classifier. For example,
a battlefield road sign can be modified to deceive an enemy’s
self-driving vehicle. If the battlefield is shared by enemy and
friendly forces, friendly self-driving vehicles should not be de-
ceived by the attack. Therefore, we require an evasion attack
scheme that can deceive the enemy while protecting friendly
forces. 

In this paper, we propose an evasion attack scheme that
creates an adversarial attack that is incorrectly classified by
an enemy classifier and correctly recognized by a friendly
classifier. The proposed scheme has two class configurations:
targeted and untargeted. In the targeted class, a transformer
changes the original sample to be recognized as a specific tar-
get class. In the untargeted class, the goal of the transforma-
tion is incorrect classification to any class other than the right
class. 

We evaluate our scheme on a standard MNIST dataset
(LeCun et al., 2010) , a digit recognition task (0–9), and a CIFAR10
dataset ( Krizhevsky et al., 2014 ), with 10 color image classes.
We use a defensive state-of-the-art anti-evasion distillation
classifier ( Papernot et al., 2016b ) as an enemy classifier. In the
experiment, we demonstrate an adversarial example that is
both 100% successful in deceiving the enemy classifier and
100% correctly recognized by a friendly classifier. The distor-
tion of the original sample is held similar to that of the state-
of-the-art evasion attack scheme ( Carlini and Wagner, 2017b )
to maintain human recognition. This study is an extension of
our previous work (Kwon et al., 2017) . A preliminary version
of this paper was presented at the ICISC (International Con-
ference on Information Security and Cryptology) 2017 confer-
ence. For ICISC 2017, in which we focused on ideas and con-
cepts for generating a friend-safe adversarial example. This
paper makes the following contributions: 

• We systematically organize the framework of the proposed
scheme. For example, we describe systematic principles in
more detail and verify the usefulness of the covert channel
scheme while extending the CIFAR10 and MNIST datasets
to allow the possibility of evaluating the security of mul-
tiple scenarios ( Carlini and Wagner, 2017a ). We also ana-
lyze various aspects of the proposed scheme and extend
its utility to other areas. Unlike the conventional method,
which uses only distortion, experimental human recogni-
tion is added for MNIST, CIFAR10, and covert channels. 

• We apply our scheme to the anti-evasion classifier
( Papernot et al., 2016b ) and are 100% successful in deceiv-
ing it. Simultaneously, our friendly classifier achieves 100%
accuracy without any modification or retraining. We learn
that it is possible to achieve both objectives simultaneously
while maintaining low distortion. 

• We analyze distortion differences between the targeted
and untargeted schemes, including the differences among
targeted digits. Because the distortion is related to the pos-
sibility of unveiling a human attack, this analysis will be
useful for attack planning. Additionally, the results of ex-
periments with human recognition tests show that the dis-
tortion by the proposed method does not substantially de-
grade human recognition of test data. 

• We propose a new covert channel scheme ( Smeets and
Koot, 2006 ) as another application, in which friend and en-
emy roles are reversed. The target class of an adversar-
ial example is the hidden information transferred via the
covert channel. Experimental results confirm the useful-
ness of the proposed covert channel. 

The remainder of this paper is structured as follows: In
Section 2 , background and related work on machine learning
attacks are presented. The problem definition is introduced in
Section 3 . In Section 4 , the proposed friend-safe adversarial
example generation scheme is introduced. Results and find-
ings of experiments with the proposed scheme are presented
in Section 5 . The new covert channel scheme using the pro-
posed method is presented in Section 6 . The proposed scheme
is discussed in Section 7 . Finally, Section 8 concludes this pa-
per. 

2. Background and related work 

Barreno et al. (2010) discussed several machine learning secu-
rity issues, categorizing attacks into causative and exploratory
attacks, which respectively influence learning with control
over training data and exploit misclassifications without af-
fecting training. 

As an example of a causative attack, a poisoning attack
with added malicious training data was proposed by Biggio
et al. (2012) , Mozaffari-Kermani et al. (2015) , and Yang et al.
(2017) . Although poisoning attacks are effective, they require
that the attacker access training data while they are being
used to train a victim model. This assumption is unrealistic,
so poisoning attacks are not considered a severe threat to ma-
chine learning applications. 

For an exploratory attack, Szegedy et al. (2014) first pre-
sented the adversarial example, in which an attacker slightly
transforms an image. The main goal of using an adversarial
example is to cause the DNN to make a mistake by adding a
small amount of noise into an original image; a human, how-
ever, cannot distinguish the difference between the original
and the distorted images. 

The basic method for generating adversarial examples is
described in Section 2.1 . The adversarial examples are classi-
fied in four different ways: target model information, distance
measure, recognition of adversarial example, and method of
generation, as described in Sections 2.2 –2.5 , which follow. 

2.1. Adversarial example generation 

The basic architecture for generating an adversarial exam-
ple consists of two elements: the target model and the trans-
former. The transformer takes the original sample x and target
class y as input data. The transformer then creates an output,
a transformed example x ∗ = x + w with noise value w added
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o the original sample x . The transformed example x ∗ is sup- 
lied as input to the target model. The target model then pro- 
ides the transformer with the class probability results for the 
ransformed example. The transformer updates the noise val- 
es w in the transformed example x ∗ = x + w so that the other
lass probabilities are higher than the original class probabili- 
ies while minimizing the distortion distances between x ∗ and 

 . 

.2. Categorization by target model information 

ttacks that generate adversarial examples can also be di- 
ided into two different types according to the amount of in- 
ormation about the target is required for the attack: the white 
ox attack ( Carlini and Wagner, 2017b; Moosavi-Dezfooli et al.,
016; Szegedy et al., 2014 ) and the black box attack ( Goodfellow 

t al., 2015; Papernot et al., 2017 ). The white box attack is used
hen the attacker has detailed information about the target 
odel, i.e., model architecture, parameters, and probabilities 

or the output classes. Hence, the success rate of the white box 
ttack reaches almost 100%. 

A black box attack, on the other hand, is used when the at- 
acker can query the target model without having the target 

odel information. There are two well-known types of black 
ox attack: the substitute network attack ( Papernot et al., 2017 ) 
nd the transferability attack ( Goodfellow et al., 2015; Szegedy 
t al., 2014 ). The substitute model attack proposed in Papernot 
t al. (2017) is a well-known example of a black box attack. In 

his scheme, an attacker can create a substitute network sim- 
lar to the target model by repeating the query process. Once 
 substitute network is created, the attacker can perform a 
hite box attack. 

The second, the transferability attack, is another example 
f a well-known black box attack. The work in Szegedy et al.

2014) and Goodfellow et al. (2015) introduces the concept of 
ransferability, by which an adversarial example modified for 
 single local model is effective for other models that classify 
he same kind of data. In order to improve the transferability,
he latest work (Strauss et al., 2017) has proposed an ensemble 
dversarial example method that uses multiple local models 
o attack the other models. 

.3. Categorization by distance measure 

here are three ways to measure the distortion between the 
riginal sample and the adversarial example ( Carlini and Wag- 
er, 2017b ; Meng and Chen, 2017 ). The first distance measure,
 0 , represents the sum of the number of all changed pixels: 

n 
 

i =0 

∣∣x i − x i 
∗∣∣, (1) 

here x i is the original i th pixel and x i 
∗ is the adversarial ex- 

mple’s i th pixel. The second distance measure, L 2 , represents 
he standard Euclidean norm, as follows: 

n 
 

i =0 

√ 

(x i − x i ∗ ) 2 . (2) 

he third distance measure, L ∞ 

, is the maximum distance 
alue between x and x ∗. 
i i 
Therefore, as the three distance measures become smaller,
he similarity of the example image to the original sample in- 
reases from a human perspective. However, there is no opti- 
al distance measure, no perfect measure of human percep- 

ual similarity. In this paper, L 2 is used as the distortion mea- 
ure for MNIST and CIFAR10 ( Section 5 ). 

.4. Categorization by target recognition on adversarial 
xample 

e can divide the adversarial examples ( Carlini and Wagner,
017b; Oliveira et al., 2016 ) into two subcategories according to 
he class recognized by the target model from the adversarial 
xamples: a targeted adversarial example and an untargeted 

dversarial example. The first, the targeted adversarial exam- 
le, is one that causes the target model to recognize the adver- 
arial image as a particular intended class; it can be expressed 

athematically as follows: 
Given a target model and original sample x ∈ X , the problem

an be reduced to an optimization problem that generates a 
argeted adversarial example x ∗: 

 

∗ : argmin 

x ∗
L (x, x ∗ ) s . t . f (x ∗ ) = y ∗, (3) 

here L ( · ) is a distance measure between original sample x 
nd transformed example x ∗, and y ∗ is the particular intended 

lass. argmin 

x 
F (x ) is the x value at which the function F ( x ) be-

omes minimal. “s . t . ” is an abbreviation for “such that.” f ( · ) is 
n operation function that provides class results for the input 
alues of the target model. 

An untargeted adversarial example, on the other hand, is 
n adversarial example that causes the target model to recog- 
ize the adversarial image as any class other than the original 
lass; it can be expressed mathematically as follows: 

Given a target model and original sample x ∈ X , the problem
an be reduced to an optimization problem that generates an 

ntargeted adversarial example x ∗: 

 

∗ : argmin 

x ∗
L (x, x ∗ ) s . t . f (x ∗ ) � = y, (4) 

here y ∈ Y is the original class. 
The untargeted adversarial example has the advantage of 

ess distortion in the original images and a shorter learning 
ime compared to the targeted adversarial example. However,
he targeted adversarial example is a more elaborate and pow- 
rful attack in that it can control the perception of the at- 
acker’s chosen class. 

.5. Categorization by adversarial example generation 

ethods 

here are four typical attacks that generate adversarial exam- 
les. The first method is the fast-gradient sign method (FGSM) 
 Goodfellow et al., 2015 ), which can find x ∗ through L ∞ 

: 

 

∗ = x + ε · sign ( 
� 

loss F,t (x )) , (5) 

here F is an object function, and t is a target class. In every it-
ration of FGSM, the gradient is updated by ε from the original 
 , and x ∗ is found through optimization. This method is sim- 
le and has good performance. The second method is Iterative 
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FGSM (I-FGSM) ( Kurakin et al., 2017a ), which is an updated ver-
sion of FGSM. Instead of changing the amount ε in every step,
a smaller amount, α, is updated and eventually clipped by the
same ε value: 

x i 
∗ = x i −1 

∗ − clip ε (α · sign ( 
� 

loss F,t ( x i −1 
∗ )) . (6)

I-FGSM provides better performance than FGSM. The third is
the Deepfool method ( Moosavi-Dezfooli et al., 2016 ), which is
an untargeted attack and uses the L 2 distance measure. This
method generates an adversarial example that is more effi-
cient than FGSM and is as close as possible to the original im-
age. To generate an adversarial example, the Deepfool method
constructs a neural network and looks for x ∗ using the lin-
earization approximation method. However, since the neu-
ral network is not completely linear, the adversarial exam-
ple must be found through many iterations; i.e., the process is
more complicated than FGSM. The fourth method is the Car-
lini attack ( Carlini and Wagner, 2017b ), which is the latest at-
tack method and provides better performance than FGSM and
I-FGSM. This method can achieve a 100% success rate even
against the distillation structure ( Papernot et al., 2016b ), which
was recently introduced in the literature. The key point of this
method is to use a different objective function, 

D (x, x ∗ ) + c · f (x ∗ ) , (7)

instead of the conventional objective function D ( x, x ∗), and it
proposes how to find an appropriate binary c value. In addi-
tion, it suggests a method for controlling the attack success
rate even if some distortion increases by reflecting the confi-
dence value as follows: 

f (x ∗ ) = max (Z (x ∗ ) t − max 
{
Z (x ∗ ) t : i � = t 

}
, −k ) , (8)

where Z ( · ) represents the pre-softmax classification result
vector and t is a target class. 

In this paper, we construct the model by applying the Car-
lini attack, which is the most powerful of the four methods,
and use L 2 with box constraint as the distortion loss func-
tion in the rescale range [0, 1], which changes the pixels of the
grayscale image from full-on to full-off in the same manner as
the Carlini method. This is because the Carlini method L 2 at-
tack is superior to the L-BFGS attack (Szegedy et al., 2014) with
a box constraint as it uses a better objective function. 

2.6. Related work on adversarial examples 

Some countermeasures have been proposed for the attack
methods listed in Section 2.5 . Biggio et al. (2014) proposed a
binary classifier for detecting the adversarial example. This
work covered conventional machine learning models (e.g.,
support vector machine) ( Cortes and Vapnik, 1995 ) and logis-
tic regression ( Kleinbaum and Klein, 2010 ), but not a DNN.
Goodfellow et al. (2015) proposed a new neural network acti-
vation function that is robust to adversarial examples. Apply-
ing this method necessitates changing the neural network’s
architecture. 

Recently, Papernot et al. (2016b) proposed a defensive dis-
tillation scheme, in which an initial network and a distilled
network are used. The class probability of the initial network’s
output is used as a label for training the distilled network. This
prevents overfitting the distilled network and makes the net-
work more robust to the adversarial example. In experiments,
their scheme reduced the evasion attack success rate from
95.89% to 0.45%. However, one year later, Carlini and Wag-
ner (2017b) showed that they could deceive a distilled network
with a 100% success rate. They also showed that their scheme
could be applied to both targeted and untargeted attacks. 

In this manner, advanced attacks ( Section 2.5 ) and (their
countermeasures (this section) have been being proposed
continuously. However, there has been no published scheme
for building adversarial examples that do not affect friendly
classifiers. In this paper, we use these state-of-the-art tech-
nologies in our friend-safe adversarial example scheme and
its evaluation. 

3. Problem definition 

Szegedy et al. (2014) introduced the concept of transferabil-
ity, by which adversarial examples targeting a single model
gain the potential to attack other target models classifying the
same kind of data. 

Fig. 1 (a) shows an example of transferability with a single
adversarial target, Model A. In Fig. 1 (a), Models A and B are
target models with a convolutional neural network (CNN). The
circle is the decision boundary of the target model. If the image
samples are within the circular boundary of the target model,
the image samples are correctly classified by the target model
into the original class. Alternatively, adversarial examples are
generated along the circular boundary of a target model. This
is because the adversarial example must be misclassified by
the target model while minimizing its distance from the orig-
inal sample. Each red dot in the figure is an adversarial exam-
ple for target model A. Some of the adversarial examples are
misclassified by target model B. 

Fig. 1 (b) shows an example of a friend-safe adversarial ex-
ample that is correctly classified by target Model B and mis-
classified by target Model A. In Fig. 1 (b), friend-safe adversarial
examples, x ∗, are within the decision boundary of target Model
B but deviate from the decision boundary of target Model A. In
terms of transferability, a friend-safe adversarial example is
an adversarial example for target Model A that is not transfer-
able to target Model B. Therefore, a new architecture is needed
that uses both an attack target model and a protected model
to generate friend-safe adversarial examples. 

4. Proposed scheme 

4.1. Threat model 

The threat model of the proposed method is a neural network
used in self-driving cars, drones, image classification, speech
classification, and many other applications. We assume that
the proposed method has white-box access to the friendly
classifier and the enemy classifier and that it knows the model
architecture, parameters, and probabilities of output classifi-
cations for the enemy classifier and for the friendly classifier.
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Fig. 1 – Examples of transferability: a single adversarial target, Model A, and a friendly target, Model B. The circle is the 
decision boundary of the target model. The red dot is an adversarial example. 

Fig. 2 – Proposed architecture. 
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his is a conservative and feasible assumption because it has 
een proven that a white box attack is possible for a black 
ox model of the enemy classifier by constructing a substitute 
odel. In this substitution scheme ( Papernot et al., 2017 ), an 

ttacker can create a substitute network that is similar to the 
nemy classifier by repeating the query process. Once a substi- 
ute network is created, the attacker can perform a white box 
ttack using the substitute network. The attacker must have 
he ability to repeatedly query the friendly classifier and the 
nemy classifier. On the side of the threat models, the friendly 
lassifier and the enemy classifier should provide feedback 
hat includes the probabilities of the output classifications for 
he query. Using this feedback, the attacker can calculate the 
oss functions and thereby generate a friend-safe adversarial 
xample. 

.2. Proposed method 

o generate a friend-safe adversarial example, we propose a 
etwork architecture that consists of a transformer, a friendly 
iscriminator D friend , and an enemy discriminator D enemy , as 
hown in Fig. 2 . The transformer takes the original sample,
 ∈ X , and the original class, y ∈ Y , as input and converts the
riginal sample to the transformed example, x ∗. D friend and 

 enemy are pre-trained classifiers and are not changed during 
ransformation. They take x ∗ as input and provide their clas- 
ification result (i.e., loss) to the transformer. 

The goal of this architecture is for the transformed exam- 
le, x ∗, to be incorrectly classified by D enemy and correctly clas- 
ified by D friend while minimizing the distortion from the orig- 
nal. There are two configurations in which the transformed 

xample x ∗ is incorrectly classified by D enemy : the targeted ad- 
ersarial example and the untargeted adversarial example. In 

athematical expressions, the operation functions of D enemy 

nd D friend are denoted as f enemy ( �) and f friend ( �), respectively.
iven the pre-trained D friend and D enemy and the original in- 
ut x ∈ X , we have an optimization problem that generates the
argeted adversarial example x ∗: 

 

∗ : argmin 

x ∗
L (x, x ∗ ) s . t . f friend (x 

∗ ) = y and f enemy (x ∗ ) = y ∗, (9)

here L ( · ) is the chosen measure of the distance between 

riginal sample x and transformed example x ∗, and y ∗ ∈ Y is
he target class chosen by the attacker. An untargeted adver- 
arial example x ∗ is generated similarly: 

 

∗ : argmin 

x ∗
L (x, x ∗ ) s . t . f friend (x 

∗ ) = y and f enemy (x ∗ ) � = y. (10)

To achieve this goal, the procedure consists of pre-training 
 friend and D enemy and creating a transformation that gener- 
tes a friend-safe adversarial example, x ∗. First, D friend and 

 enemy are trained with the original sample to classify the orig- 
nal sample, x . 

f enemy (x ) = y ∈ Y and f friend (x ) = y ∈ Y. (11)

n our experiments, D friend and D enemy were trained to clas- 
ify the original samples using MNIST and CIFAR10 with 

ore than 99% accuracy and 91% accuracy, respectively. Sec- 
nd, the transformer accepts the original sample and original 
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Algorithm 1 Friend-safe adversarial example generation in a 
transformer. 
Input: original sample x , original class y , targeted class y ∗, 

iterations r . 
Targeted adversarial example generation: 

w ← 0 
org ← y 
t ← y ∗

x ∗ ← 0 
for r step do 

x ∗ ← 

tanh (x + w ) 
2 

g f (x ∗ ) ← max 
{
Z f (x ∗ ) i : i � = org 

} − Z f (x ∗ ) org 

g e t (x ∗ ) ← max 
{
Z e (x ∗ ) i : i � = t 

} − Z e (x ∗ ) t 

temp1 ← 

√ 

(x ∗ − tanh (x ) 
2 ) 2 

temp2 ← temp1 + g f (x ∗ ) + g e t (x ∗ ) 
Update w by minimizing the gradient of temp2 

end for 
return x ∗

Untargeted adversarial example generation: 
w ← 0 
org ← y 
x ∗ ← 0 
for r step do 

x ∗ ← 

tanh (x + w ) 
2 

g f (x ∗ ) ← max 
{
Z f (x ∗ ) i : i � = org 

} − Z f (x ∗ ) org 

g e u (x ∗ ) ← Z e (x ∗ ) org − max 
{
Z e (x ∗ ) i : i � = org 

}
temp1 ← 

√ 

(x ∗ − tanh (x ) 
2 ) 2 

temp2 ← temp1 + g f (x ∗ ) + g e u (x ∗ ) 
Update w by minimizing the gradient of temp2 

end for 
return x ∗

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

class as input and produces the transformed example, x ∗. For
this study, we modified the transformer architecture given in
Carlini and Wagner (2017b) and defined x ∗ as 

x ∗ = 

tanh (x + w ) 
2 

, (12)

where w is a modifier used when optimizing with a gradi-
ent, and tanh is used to smooth the gradient as a box con-
straint ( Carlini and Wagner, 2017b ). The classification loss of
x ∗ by D friend and D enemy are returned to the transformer. The
transformer then calculates the total loss, loss T , and generates
a friend-safe adversarial example by minimizing loss T itera-
tively. loss T is defined as 

l oss T = l oss distortion + l oss friend + l oss enemy , (13)

where loss distortion is the distortion loss function, and loss friend

and loss enemy are the classification loss functions of D friend and
D enemy , respectively. loss distortion is the distortion loss function
between the original sample x and the transformed example
x ∗: 

loss distortion = 

√ (
x ∗ − tanh (x ) 

2 

)2 

. (14)

To satisfy f friend (x ∗ ) = y, loss friend should be minimized: 

loss friend = g f (x ∗ ) , (15)

where g f (k ) = max 
{
Z f (k ) i : i � = org 

} − Z f (k ) org , and org is the
original class. Z f ( · ) and Z e ( · ) ( Carlini and Wagner, 2017b; Pa-
pernot et al., 2016a ) are the probabilities of the classes be-
ing predicted by the two discriminators, D friend and D enemy ,
respectively. f friend ( x ∗) has a higher probability of predicting
the original class than other classes by optimally minimizing
loss friend . loss enemy has two cases, those used in targeted and
in untargeted adversarial examples. To satisfy f enemy (x ∗ ) = y ∗,
y ∗ ∈ Y , in targeted adversarial examples, loss enemy is defined as

loss enemy = g e t (x ∗ ) , (16)

where g e t (k ) = max 
{
Z e (k ) i : i � = t 

} − Z e ( k ) t , and t is the tar-
geted class. f enemy ( x ∗) has a higher probability of predicting the
targeted class, y ∗, than other classes by optimally minimizing
loss enemy . To satisfy f enemy ( x ∗) � = y in an untargeted adversarial
example, 

loss enemy = g e u (x ∗ ) , (17)

where g e u (k ) = Z e (k ) org − max 
{
Z e (k ) i : i � = org 

}
, and org is the

original class. f enemy ( x ∗) has a lower probability of predicting
the original class than other classes by optimally minimizing
loss enemy . The details of the procedure for generating a friend-
safe adversarial example are given in Algorithm 1 . 

5. Experiment and evaluation 

Through experiments, we show that the proposed scheme can
generate a friend-safe adversarial example that is incorrectly
classified by an enemy classifier and correctly classified by a
friendly classifier, while minimizing the distortion of the orig-
inal sample. We used the Tensorflow ( Abadi et al., 2016 ) library,
a widely used open source library for machine learning, on a
Xeon E5-2609 1.7-GHz server. 

5.1. Experimental method 

In the experiment, we used MNIST (LeCun et al., 2010) , a
collection of handwritten digit images (0–9), and CIFAR10
(Krizhevsky et al., 2014) , with 10 classes (plane, cars, birds, cats,
deer, dogs, frogs, horses, boats, and trucks), as datasets. The
MNIST dataset consists of 60,000 training data and 10,000 test
data; the CIFAR10 dataset consists of 50,000 training data and
10,000 test data. The experimental method consisted of 1) pre-
training D friend and D enemy and 2) transforming the friend-safe
adversarial example. 

First, during pre-training, D friend and D enemy are common
CNNs (LeCun et al., 1998) in MNIST and VGG19-networks
(Simonyan and Zisserman, 2015b) in CIFAR10. Their config-
uration and training parameters for MNIST and CIFAR10 are
shown in Tables 13 , 14 , and 15 of the appendix. For MNIST,
D enemy was a distilled model (Papernot et al., 2016b) , in which
the classifier’s output class probability is used as input to a
second phase of classifier training. For MNIST, 60,000 train-
ing data were used to train D friend and D enemy . In the MNIST
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Table 1 – A friend-safe adversarial example for each target class that was misclassified by D enemy for each original sample. 

Original Targeted classes misclassified by Denemy

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

Table 2 – A friend-safe adversarial example and distortion of an original “7” for each target class, from Table 1 

Original Targeted classes misclassified by Denemy

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

Rate 2.3 2.7 1.0 1.5 2.4 2.7 3.0 - 1.9 2.0
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est, D friend and D enemy correctly classified the original MNIST 

amples with 99.25% and 99.12% accuracy, respectively. For 
IFAR10, 50,000 training data were used to train D friend and 

 enemy . In the CIFAR10 test, D friend and D enemy correctly clas- 
ified the original CIFAR10 samples with 91.24% and 91.13% 

ccuracy, respectively. 
Second, to generate the friend-safe adversarial example,

dam (Kingma and Ba, 2015) was used as an optimizer to mini- 
ize the total loss with a learning rate of 1×10 −2 and an initial 

onstant equal to 1 × 10 −3 . For a given number of iterations,
he transformer updates the output, x ∗, and gives it to D friend 

nd D enemy , from which it then receives feedback. At the end 

f the iterations, the transformation result, x ∗, was evaluated 

n terms of the accuracy of D friend , the attack success rate, and 

he amount of distortion. The accuracy of D friend is the coinci- 
ence rate between the original class and the output class of 
 friend . The attack success rate is the rate at which D enemy in- 
orrectly classifies x ∗. The attack success rate has two config- 
rations: the targeted attack success rate and the untargeted 

ttack success rate. The targeted attack success rate is the co- 

T

ncidence rate between the targeted class and the class output 
y D enemy ; the untargeted attack success rate is the rate of in-
onsistency between the original class and the output class of 
 enemy . In our experiments, the definition of distortion used 

as L 2 , which is the sum of the square root of each pixel dif-
erence from the original sample, as in the Euclidean norm. 

.2. Experimental results on MNIST 

or MNIST, the evaluation of friend-safe adversarial examples,
 

∗, is divided into two sections, targeted and untargeted adver- 
arial examples. 

.2.1. Targeted adversarial example 
able 1 shows, for each original sample, friend-safe adversar- 
al examples x ∗ generated by a transformer that were incor- 
ectly classified as the targeted class by D enemy . The number 
f iterations was 1,000 and the average distortion was 2.03. By 
uman perception, the friend-safe adversarial examples x ∗ in 

able 1 are similar to the original samples. 
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Table 3 – Class score of friend-safe adversarial example “7” → “0,” from Table 2 

Description Original (“7”) Friend-safe adversarial example 

D enemy (“0 ′ ′ ) D friend (“7 ′ ′ ) 

Image 
[ 694 -225 692 [-1.4 1.2 7.1 

Class score [0 0 0 0 0 0 0 1 0 0] -262 -319 -533 -376 -0.4 0.4 -7.4 -6.5 
693 -142 -30] 10.5 -4.2 -3.8] 

Fig. 3 – Targeted attack success rate, D friend accuracy, and average distortion of 1000 friend-safe adversarial examples for 
each number of iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 – Images of the friend-safe adversarial example 
for the iteration counts shown in Fig. 3 . 

Iteration 100 200 300 400 500 

Image 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 . shows, for each targeted class, the average distor-
tion of the original sample “7” corresponding to the generated
adversarial examples exemplified in Table 1 . The average dis-
tortion of this sample differs for each targeted class. For ex-
ample, targeting class “6” results in the maximum distortion
of the “7,” whereas targeting class “2” produces the minimum
distortion. The total average distortion of the original “7” sam-
ple is approximately 2.18. Fig. 6 in the appendix shows the av-
erage distortion of each targeted class for each original sam-
ple, found by analyzing 1,000 random friend-safe adversarial
examples, which can be used in some situations for selecting
targeted classes. 

Table 3 shows the targeted transformation example “7” →
“0,” whose classification is determined by the class score. For
D enemy , the score of the target class “0,” 694, is slightly higher
than that of the original class, 693. For D friend , the score of
the original class, “7,” is much higher than the scores of the
other classes. From this result, we know that the transforma-
tion is minimized to the extent that the target class score is
only slightly higher than the score of the original class, while
maintaining low distortion rates. 

Fig. 3 shows the targeted attack success rate, D friend ac-
curacy, and average distortion of 1000 friend-safe adversarial
examples, with standard deviations indicated by the vertical
bars. As the number of iterations increases, the targeted attack
success rate and the D friend accuracy increase, and the average
distortion decreases. When the iteration count exceeds 500,
the D friend accuracy and the targeted attack success rate both
reach 100%. At this point, the average distortion is less than
2.183. The attack success rate increases more quickly than the
friendly classifier’s accuracy, meaning that it requires more
time to generate examples that will be correctly classified by
a friendly classifier. 

Table 4 shows the iterative process of generating an exam-
ple image. We think that because the image is generated from
a zero matrix (black background), it is easier to make an en-
emy result incorrect than to make a friendly result correct. 

5.2.2. Untargeted adversarial example 
Table 5 shows the confusion matrix of the untargeted adver-
sarial example classified by D enemy , testing 100 untargeted ad-
versarial examples per original sample. When a target class is
not given, transformation mainly affects a few specific classes.
Transformation is made to any class other than the original
class, so minimal modification is required. 

Fig. 4 shows the untargeted attack success rate, D friend

accuracy, and average distortion, with standard deviations
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Fig. 4 – Untargeted attack success rate, D friend accuracy, and average distortion of 1,000 friend-safe adversarial examples for 
each number of iterations. 

Table 5 – Confusion matrix of D enemy for untargeted class 
(400 iterations). 

Original Output class 

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

0 0 0 11 2 2 7 24 15 4 35 
1 0 0 1 1 46 1 0 11 40 0 
2 6 26 0 29 1 0 2 25 11 0 
3 0 4 14 0 1 57 0 19 5 1 
4 1 13 7 0 0 1 6 7 7 58 
5 0 0 0 38 0 0 6 0 18 38 
6 16 1 1 0 13 63 0 0 6 0 
7 0 18 9 21 4 0 0 0 1 47 
8 7 2 13 42 2 18 3 3 0 10 
9 0 0 0 7 37 2 0 30 24 0 
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ndicated by the vertical bars. As in Fig. 4 , as the number 
f iterations increases, the untargeted attack success rate 
nd the D friend accuracy increase, and the average distor- 
ion decreases. When the iteration count exceeds 400, the 
 friend accuracy and the untargeted attack success rate both 

each 100%. At this point, the average distortion is less than 

.536. The attack success rate saturates much faster than the 
riendly classifier’s accuracy; this difference is larger than in 
Table 6 – Comparison of targeted and untargeted attacks when t
“SD” is standard deviation. 

Description Attack success rate 

Targeted Unta

Iterations 500 300 
Maximum distortion 6.645 4.016 
Minimum distortion 0.232 0.249 
SD distortion 0.878 0.776 
Mean distortion 2.183 1.788 
he targeted attack case. Hence, the lack of target restrictions 
llows faster successful attacks. 

Table 6 shows the iteration count and distortion that are 
equired to achieve 100% accuracy in each case of 1,000 friend- 
afe adversarial examples. The untargeted examples reach 

00% faster than the targeted examples, and distortion in the 
ntargeted case is also smaller than in the targeted case. In 

oth cases, the attack success rate reaches 100% faster than 

he friend’s accuracy. We discuss the implications of this re- 
ult in Section 7 . 

.3. Experimental results on CIFAR10 

or CIFAR10, the evaluation of friend-safe adversarial exam- 
les, x ∗, is divided into two sections, targeted and untargeted 

dversarial examples. 

.3.1. Targeted adversarial example 
able 7 shows, for each original sample, friend-safe adversar- 
al examples x ∗ generated by a transformer that were misclas- 
ified as the targeted class by D enemy . The number of iterations 
as 10,000, and the average distortion was 48.7. By human per- 

eption, the friend-safe adversarial examples x ∗ for CIFAR10 
re more similar to their original samples than are those for 
NIST. 
he attack success rate is 100% and friend accuracy is 100%. 

D friend accuracy 

rgeted Targeted Untargeted 

500 400 
6.645 3.440 
0.232 0.234 
0.878 0.621 
2.183 1.536 
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Table 7 – A friend-safe adversarial example for each target class that was misclassified by D enemy for each original sample: 
plane “0,” cars “1,” birds “2,” cats “3,” deer “4,” dogs “5,” frogs “6,” horses “7,” boats “8,” and trucks “9.”

Original Targeted classes misclassified by Denemy

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

Table 8 – A friend-safe adversarial example and distortion of an original sample, “horses,” for each target class, from 

Table 7 . 

Original Targeted classes misclassified by Denemy

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

Rate 42 33 8.9 25 0.1 26 18 - 47 34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 shows, for each targeted class, the average distor-
tion of the original sample “horses” corresponding to the gen-
erated adversarial examples exemplified in Table 7 . The aver-
age distortion of this sample differs for each targeted class. For
example, targeting class “8”results in the maximum distortion
of the “horses” sample, whereas targeting class “4” produces
the minimum distortion. The total average distortion of the
original “horses” sample is approximately 26.31. The average
distortion for CIFAR10 is higher that that for MNIST. 

However, although the average distortion of CIFAR10 is
higher, the human recognition rate for CIFAR10 is not lower
than that for MNIST. Table 9 shows the human recognition rate
by forty humans of 100 friend-safe adversarial examples and
100 original samples in MNIST and CIFAR10. Forty students
and researchers from Kongju National University and Korea
Advanced Institute of Science and Technology were tested to
ascertain the human recognition rate. Their average age was
24 years, the maximum was 37 years, and the minimum was
21 years. Their average eyesight was 0.9, and the standard de-
viation was 0.23. The sex ratio was 29 males to 11 females.
For CIFAR10, the human recognition rate for the original sam-
ples is lower than that for MNIST because humans are con-
fused when distinguishing dogs and cats, cars and trucks, deer
and horses. However, when the differences in human recogni-
tion between friend-safe adversarial examples and the orig-
inal samples are compared, the performance of CIFAR10 is
higher than that of MNIST because a CIFAR10 sample is a 3D
color image, whereas an MNIST sample is a 1D monochrome
image. Therefore, the human recognition rate should be con-
sidered not only in terms of distortion but also by the dimen-
sionality of the data. 

5.3.2. Untargeted adversarial example 
Table 10 shows the confusion matrix of the untargeted ad-
versarial example classified by D enemy , testing 100 untargeted
adversarial examples per original sample. Similar to MNIST,
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Table 9 – Human recognition rates for 100 friend-safe ad- 
versarial examples and 100 original samples by forty hu- 
mans with the MNIST and CIFAR10 datasets. “Proposed”
is a friend-safe adversarial example; “original” is the 
original sample. “SD” is standard deviation. 

Description MNIST CIFAR10 

Original Proposed Original Proposed 

Mean 98.1 92.9 85.1 85.19 
SD 2.21 3.37 3.717 3.66 
Maximum 100 98 92 92 
Minimum 88 82 80 79 

Table 10 – Confusion matrix of D enemy for untargeted class 
(6000 iterations). 

Original Output class 

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

0 0 6 37 7 14 1 1 1 27 6 
1 4 0 0 0 1 0 2 0 19 74 
2 18 1 0 8 32 17 16 8 0 0 
3 4 0 13 0 15 44 13 8 2 1 
4 2 1 37 15 0 11 9 23 2 0 
5 0 0 9 61 7 0 4 19 0 0 
6 0 0 18 67 14 0 0 0 0 1 
7 4 0 3 9 72 9 0 0 2 1 
8 65 9 2 9 3 1 1 0 0 10 
9 3 63 0 4 1 1 1 2 25 0 
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hen no target class is provided, the transformation focused 

n some specific classes. This is because the transformation 

or these specific classes requires only minor modifications 
ompared to the other classes. 

Table 11 shows the iteration count and distortion that are 
equired to achieve 100% accuracy in each case of 1,000 friend- 
afe adversarial examples for CIFAR10. As with MNIST, the un- 
argeted adversarial examples reaches 100% faster than the 
argeted adversarial examples, and distortion in the untar- 
eted case is smaller than in the targeted case. However, to 
enerate a friend-safe adversarial example, CIFAR10 requires 
ore iterations and distortion than does MNIST because of 

he higher dimensionality of the CIFAR10 images. 

. New covert channel scheme 

s mentioned in the introduction, a friend-safe adversar- 
al example is used as an evasion attack against an enemy 
n a mixed battlefield. In addition to this application, we 
iscovered an interesting covert channel scheme, shown in 

ig. 5 . In this scheme, the roles of friend and enemy are re-
ersed. The sender generates an example that is correctly rec- 
gnized by a machine or human censor (i.e., enemy) and incor- 
ectly classified by the receiver (i.e., friend). The target class is 
he hidden information that is transferred via the covert chan- 
el. 

To evaluate the performance of the covert channel, we ran- 
omly generated 100 friend-safe adversarial examples from 

he MNIST and CIFAR10 datasets to test the hidden images on 

orty people. The results are shown in Table 12 . In the case of
NIST, we needed to know which number among the remain- 

ng nine was hidden in the displayed numerical image. Sim- 
larly, for the case of CIFAR10, it was a matter of ascertaining 

hich of the nine objects (those other than the visible object) 
as hidden. Although for the MNIST case the detection rate 
as 1.4 percentage points higher than that by random selec- 

ion (11.1%), in both cases the probability of choosing one of 
he nine classes was close to 11.1%. The experimental results 
how that a new covert channel, using a friend-safe adversar- 
al example, has the probability of fooling humans that is close 
o random chance. 

. Discussion 

sability of the proposed method We have shown that it 
s possible to generate an adversarial example that simulta- 
eously achieves a 100% attack success rate and a 100% accu- 
acy rate by a friendly classifier. This is possible because the 
nemy and friendly classifiers are different. It is impossible to 
enerate such examples if the two are identical. 

In the experiments with MNIST in Section 5 , the enemy 
ses a distilled classifier and the friend employs a general 
NN classifier. To study the possibility of generating adver- 
arial examples with two very similar models, we tested the 
ame classifier configuration for both the friend and enemy 
nd provided the same training data with a different sample 
rder. With this setup, we found the same results: a friend- 
afe adversarial example with a 100% attack success rate and 

00% accuracy by friendly classifiers (see Figs. 7 and 8 in the 
ppendix). 

ttack considerations From Table 6 , we found that untargeted 

ttacks require less distortion and are ideal when targeting is 
nnecessary or when minimizing distortion is important. Dur- 

ng untargeted attacks, the attacker should estimate the prob- 
bility of the to-be-recognized class from Table 5 . For example,
hen the original class is “9,” “4,” “7,”or “8,”we have high prob- 

bilities of enemy recognition. This is useful for cases in which 

 specific target is not necessary and minimizing distortion is 
mportant. However, when the attacker wants to know the vic- 
im’s (i.e., enemy’s) classification result, the attacker can refer 
o Fig. 6 of the appendix and select a target class having low
istortion. For example, if an attacker wants to cause the vic- 
im to recognize a road sign with the digit “9” as something 
ther than “9,” he could select “7” as the target class because 
9” → “7” requires the least distortion. In this case, he knows 
hat the victim will recognize the road sign as “7,” the target 
lass that the attacker has selected. 
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Table 11 – Comparison of targeted and untargeted attacks when the attack success rate is 100% and friend accuracy is 
100%. “SD” is standard deviation. 

Description Attack success rate D friend accuracy 

Targeted Untargeted Targeted Untargeted 

Iterations 10,000 6,000 10,000 6,000 
Maximum distortion 147.32 116.5 147.32 116.5 
Minimum distortion 0.002 0.002 0.002 0.002 
SD distortion 26.271 26.580 26.271 26.580 
Mean distortion 49.017 27.605 49.017 27.605 

Fig. 5 – New covert channel scheme using a friend-safe adversarial example. 

Table 12 – Detection rates of 100 friend-safe adversarial examples by forty humans in a covert channel. “SD” is standard 

deviation. 

Description MNIST CIFAR10

Mean 12.5 10.925

SD 3.53 3.12

Maximum 19 16

Minimum 3 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transferability to an unknown classifier In terms of transfer-
ability to an unknown classifier, the friend-safe adversarial ex-
ample has the same transferability as a conventional method
that generates the adversarial example targeting one model.
To verify the transferability of the friend-safe adversarial ex-
ample, we tested 1000 randomized friend-safe adversarial ex-
amples of MNIST and CIFAR10 images for an unknown classi-
fier. In the test, the friend-safe adversarial example showed
the same transferability as the conventional method: 5.5%
with MNIST and 27.3% with CIFAR10. 

Datasets We evaluated the performance of the proposed
method using the MNIST and CIFAR10 datasets. The exper-
iment results show that the number of iterations required,
the average distortion, and human recognition depend on the
dataset. In terms of the number of iterations required, MNIST
requires fewer iterations and generates less distortion for cre-
ating friend-safe adversarial examples than does CIFAR10. Be-
cause an MNIST sample is a 1D monochromatic image, trans-
formers need a shorter generation process to produce an ad-
versarial example. In terms of the average distortion, although
the distortion on CIFAR10 was higher than that on MNIST, hu-
man recognition with CIFAR10 was more similar to that of the
original sample than that with MNIST. This result shows that
with an adversarial example generated for a 3D image such as
those in CIFAR10, no problem can be detected by eye. There-
fore, the characteristics of the dataset affect the distortion and
the human recognition. Even though the distortion depends
on the dataset, human recognition is maintained owing to the
minimal amount of distortion on each dataset, as in the image
domain (Carlini and Wagner, 2017b) and audio domain (Carlini
and Wagner, 2018) . 
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Fig. 6 – Average distortion for the targeted class for each of the original classes 0–9 in 1,000 friend-safe adversarial examples 
(380 iterations). 
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istortion The distortion measure is L 2 , the sum of the 
quare root of each pixel difference, so there is a high prob- 
bility that the distortion will increase as the size (pixels) or 
he dimensionality of the image increases. For example, an 

NIST sample is a 1D image that has a total of 784 pixels as a
atrix (28 × 28 × 1). CIFAR10 is a 3D image that has a total of 

072 pixels as a matrix (32 × 32 × 3). The experimental results 
n Section 5 show that the average distortion with CIFAR10 is 
reater than the average distortion with MNIST. 
We also found that the image distortion rate is more re- 
ated to the similarity between the original image and the tar- 
et image than the original image itself. Table 17 in the ap- 
endix shows friend-safe adversarial examples for MNIST and 

IFAR10 with maximum and minimum distortion out of 1000 
riend-safe adversarial examples. In the untargeted attacks,
here were similarities between truck and car, bird and cat, 3 
nd 5, and 9 and 5, which served to minimize the distortion.
n the maximum distortions for the targeted attacks shown 
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Fig. 7 – Targeted attack success rate, D friend accuracy, and average distortion of friend-safe adversarial examples for each 

number of iterations in both models. 

Fig. 8 – Untargeted attack success rate, D friend accuracy, and average distortion of friend-safe adversarial examples for each 

number of iterations in both models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in this table, the similarities between car and deer and be-
tween 1 and 0 are relatively low. This result shows that the
image distortion is increased when the similarity between the
original image and the target image is low. Table 18 in the ap-
pendix shows that images with maximum and minimum dis-
tortion from Table 17 are incorrectly classified as different tar-
get classes. The results of Table 18 show that a high degree
of similarity between the original image and the target image
can reduce distortion. 

Type of models For MNIST, D friend used the general CNN clas-
sifier, and D enemy used the distilled classifier. A heterogeneous
architecture with a different model configuration was used.
In the case of CIFAR10, D friend and D enemy were the same gen-
eral CNN classifier but used a homogeneous architecture con-
structed by different datasets. This demonstrates that both
heterogeneous and homogeneous architectures can generate
friend-safe adversarial examples. 
Accuracy of models Fig. 9 in the appendix shows the aver-
age distortion (with standard deviations as indicated by the
vertical bars) for each level of accuracy of D friend and D enemy

when the proposed method generates a friend-safe adver-
sarial example that has 100% attack success with CIFAR10.
As shown in the figure, the proposed method achieves simi-
lar performance at each level of model accuracy. This is be-
cause there is a trade-off between the enemy classifier and the
friendly classifier. Low-accuracy models require less distortion
for the misclassification, but more distortion is needed for the
friendly classifier to classify correctly. On the other hand, high-
accuracy models require more distortion for the misclassifica-
tion, but less distortion is required for the friendly classifier to
classify correctly. 

Applications If we apply the friend-safe adversarial example
to other applications, we can use it for signs as well as for the
newly proposed covert channel scheme. For example, a sign
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Fig. 9 – Average distortion of the friend-safe adversarial 
examples with CIFAR10 for each level of accuracy of D friend 

and D enemy when the attack success rate is 100% and friend 

accuracy is 100%. 

Table 13 – D friend and D enemy model architecture for 
MNIST. 

Layer type MNIST shape 

Convolution + ReLU [3, 3, 32] 
Convolution + ReLU [3, 3, 32] 
Max pooling [2, 2] 
Convolution + ReLU [3, 3, 64] 
Convolution + ReLU [3, 3, 64] 
Max pooling [2, 2] 
Fully connected + ReLU [200] 
Fully connected + ReLU [200] 
Softmax [10] 

Table 14 – D friend and D enemy model parameters. 

Parameter MNIST model CIFAR10 model 

Learning rate 0.1 0.1 
Momentum 0.9 0.9 
Delay rate – 10 (decay 0.0001) 
Dropout 0.5 0.5 
Batch size 128 128 
Epochs 50 200 
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e
v
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Table 15 – D friend and D enemy model architecture 
Simonyan and Zisserman (2015b) for CIFAR10. 

Layer type CIFAR10 shape 

Convolution + ReLU [3, 3, 64] 
Convolution + ReLU [3, 3, 64] 
Max pooling [2, 2] 
Convolution + ReLU [3, 3, 128] 
Convolution + ReLU [3, 3, 128] 
Max pooling [2, 2] 
Convolution + ReLU [3, 3, 256] 
Convolution + ReLU [3, 3, 256] 
Convolution + ReLU [3, 3, 256] 
Convolution + ReLU [3, 3, 256] 
Max pooling [2, 2] 
Convolution + ReLU [3, 3, 512] 
Convolution + ReLU [3, 3, 512] 
Convolution + ReLU [3, 3, 512] 
Convolution + ReLU [3, 3, 512] 
Max pooling [2, 2] 
Convolution + ReLU [3, 3, 512] 
Convolution + ReLU [3, 3, 512] 
Convolution + ReLU [3, 3, 512] 
Convolution + ReLU [3, 3, 512] 
Max pooling [2, 2] 
Fully connected + ReLU [4096] 
Fully connected + ReLU [4096] 
Softmax [10] 

r
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o
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W
g
w

hat uses a friend-safe adversarial example could deceive an 

nemy vehicle and at the same time not deceive a friendly 
ehicle. 

. Conclusion 

n this paper, we have proposed a method for generating a 
riend-safe adversarial example that will be incorrectly clas- 
ified by D enemy and correctly classified by D friend , while mini- 
izing distortion of the original sample. In the experimental 

esults on MNIST data and CIFAR10 data, D friend correctly clas- 
ified transformed examples as the original class with 100% 

ccuracy, and the attack success rate was 100% in both tar- 
eted and untargeted attacks when the data distortion was 
.183 and 1.536 for MNIST, and 49.017 and 27.605 for CIFAR10,
r

espectively. With regard to human recognition, the rate of hu- 
an recognition of the friend-safe adversarial example was 

5.9% for MNIST and 100% for CIFAR10. We discovered that 
istortion differs between target digit classes. This informa- 
ion is useful for selecting a targeted class. We also presented 

wo applications of the proposed scheme: a mixed battlefield 

nd a covert channel. Through experiments with the new 

overt channel scheme, the friend-safe adversarial example 
as able to fool 100% of the machines and to fool humans 
ith a probability near that by random selection. 

Future research will extend our experiments to other stan- 
ard image datasets, such as ImageNet (Deng et al., 2009) . Ad- 
itionally, studies on evasion attacks in the voice field have 
een conducted by extending research in the voice and image 
elds ( Carlini et al., 2016 ; Zhang et al., 2017 ). Thus, friend-safe
dversarial examples are also applicable to evasion attacks in 

oice-related fields. Along with these, other applications us- 
ng the friend-safe adversarial example can be applied to re- 
earch. We will also work on generating a friend-safe adver- 
arial example not through transformation but by applying a 
enerative scheme, such as with a generative adversarial net- 
ork ( Goodfellow et al., 2014 ; Odena et al., 2017 ). Finally, an-
ther challenge will be to develop a countermeasure to the 
roposed scheme. 
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Table 16 – Untargeted class of friend-safe adversarial example in D enemy . 

Description Original (“1”) Friend-safe adversarial example 

D enemy (“8”) D friend (“1”) 

Image 
[ −441 1161 −388 [ −6.9 23 −2.6 

Class score [0 1 0 0 0 0 0 0 0 0] −37 −93 −186 −70 −5.2 −0.8 −3.3 −3.3 
−459 1164 −245] −4.3 1.1 −6.5] 

Table 17 – Friend-safe adversarial examples with maximum and minimum distortions for MNIST and CIFAR10, from 

among 1000 friend-safe adversarial examples. “Max” is maximum; “Min” is minimum. 

MNIST CIFAR10

Description Targeted Untargeted Targeted Untargeted

Max Min Max Min Max Min Max Min

Original

Friend-safe

Distortion 6.64 0.232 3.26 0.234 147.3 0.002 116.5 0.002

Wrong class “0” “5” “5” “5” “deer” “cat” “car” “cat”

Table 18 – Targeted friend-safe adversarial examples with maximum and minimum distortion from Table 17 are incorrectly 

classified as different target classes. 

MNIST

Maximum

Target class “0” “7” “9”

Friend-safe

Distortion 6.64 1.45 1.52

Minimum

Target class “5” “2” “3”

Friend-safe

Distortion 0.232 2.67 2.08

CIFAR10

Maximum

Target class “deer” “ship ” “truck”

Friend-safe

Distortion 147.3 57.07 98.2

Minimum

Target class “cat” “plane” “car”

Friend-safe

Distortion 0.002 35.1 38.7
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