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ABSTRACT Deep neural networks (DNNs) are widely used for image recognition, speech recognition,
pattern analysis, and intrusion detection. Recently, the adversarial example attack, in which the input data
are only slightly modified, although not an issue for human interpretation, is a serious threat to a DNN
as an attack as it causes the machine to misinterpret the data. The adversarial example attack has been
receiving considerable attention owing to its potential threat to machine learning. It is divided into two
categories: targeted adversarial example and untargeted adversarial example. The untargeted adversarial
example happens when machines misclassify an object into an incorrect class. In contrast, the targeted
adversarial example attack causes machines to misinterpret the image as the attacker’s desired class. Thus,
the latter is a more elaborate and powerful attack than the former. The existing targeted adversarial example
is a single targeted attack that allows only one class to be recognized. However, in some cases, a multi-
targeted adversarial example can be useful for an attacker tomakemultiple models recognize a single original
image as different classes. For example, an attacker can use a single road sign generated by a multi-targeted
adversarial example scheme to make model A recognize it as a stop sign and model B recognize it as a left
turn, whereas a humanmight recognize it as a right turn. Therefore, in this paper, we propose a multi-targeted
adversarial example that attacks multiple models within each target class with a single modified image.
To produce such examples, we carried out a transformation to maximize the probability of different target
classes by multiple models. We used the MNIST datasets and TensorFlow library for our experiment. The
experimental results showed that the proposed scheme for generating a multi-targeted adversarial example
achieved a 100% attack success rate.

INDEX TERMS Deep neural network (DNN), evasion attack, adversarial example, machine learning.

I. INTRODUCTION
As the primary basis of emerging computing technology,
machine learning technologies have played a key role as
a classification scheme. In particular, deep neural networks
(DNNs) [35] are used to achieve better performance in areas
such as image recognition [37], speech recognition [14],
pattern analysis [4], and intrusion detection [33]. Recently,
Szegedy et al. [40] introduced an adversarial example method
that makes a DNNmisidentify an image with minimal distor-
tion, which even humans could not tell the difference. Hence,
the adversarial example poses a serious threat to the DNN.
For example, if a traffic sign is generated with the adversarial

example method to misidentify a left turn as a right turn,
a human could recognize it as a left turn, but an autonomous
vehicle using a DNN would recognize it as a right turn. For
these reasons, adversarial examples, which have been actively
researched recently, are classified into targeted adversarial
examples and untargeted adversarial examples according to
the attack target. A targeted adversarial example is the gen-
eration of an adversarial example that causes the DNN to
misidentify the original class as the attacker’s intended class.
In contrast, an untargeted adversarial example is an attack
that causes a DNN to misidentify the original class as an
arbitrary class. The untargeted adversarial example has the

46084
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-1169-9892
https://orcid.org/0000-0002-3377-223X
https://orcid.org/0000-0002-1438-0265


H. Kwon et al.: Multi-Targeted Adversarial Example in Evasion Attack on DNN

advantage in that the amount of distortion is small and the
learning process for generation is fast, whereas the targeted
adversarial example is a more sophisticated attack. In most
cases of targeted adversarial examples that have been studied
in the literature, research has been performed on a single
targeted attack that allows only one class to be recognized.
In situations such as in the military, an attacker may need
to attack multiple models to make each model recognize the
same class as different classes. For example, when an attacker
installed anti-tank mines on the left path after a turn and
placed RPG-7 weapons on the right path, it would be very
useful if the attacker could lead an enemy tank unit in the
left direction and troop transport vehicles in the right direc-
tion by using a multi-targeted adversarial example. In other
words, it is necessary to create a multi-targeted adversar-
ial example so that models A and B misclassify the multi-
targeted adversarial example as each class intended by the
attacker. Therefore, in this paper, we propose a multi-targeted
adversarial example method that can attack multiple models
simultaneously with each target class by using one modulated
image. The contributions of this study are as follows:
• To the best of our knowledge, this is the first study on
generating a multi-targeted adversarial example that is
misclassified as different target classes bymultiple mod-
els. We describe the principles of the proposed method
and systematically organize the proposed scheme to gen-
erate the multi-targeted adversarial example.

• The proposed method was considered in terms of scal-
ability for multiple models. We analyzed the amount
of distortion and learning process load as the number
of attack models increased. The results of this analy-
sis showed a trade-off between distortion and model
scalability.

• The proposed method was evaluated by multiple analy-
ses, performance evaluations, and practical experiments
based on the datasets. To demonstrate the effective-
ness of the proposed method, we experimented with
the MNIST dataset. We also analyzed the variation of
distortion for the combination of multiple target classes.
This analysis can be useful information for attackers
planning multi-targeted attacks in the future.

The remainder of this paper is organized as follows.
Section 2 provides some background information and related
research works on the adversarial example. The problem
definition of the proposed method is presented in Section 3,
and the proposed method is introduced in Section 4.
Section 5 presents the experiment and evaluation method of
the proposed scheme, and the experiment results are pre-
sented in Section 6. A discussion of the proposed system is
presented in Section 7. Section 8 concludes the paper.

II. BACKGROUND AND RELATED WORKS
Barreno et al. [2] discussed several security issues in machine
learning. They classified attacks on machine learning as
causative attacks [3], [26] that affect learning, with control
on the training data, and as exploratory attacks [40], [43]

that cause misclassification but do not affect the training pro-
cess. As machine learning technology evolves, an adversarial
example [40] of a well-known exploratory attack has attracted
attention to the security of DNNs. A study on adversarial
examples was first introduced by Szegedy et al. [40] in 2014.
The main goal of using an adversarial example is to cause the
DNN to make a mistake by adding a small amount of noise
to an original image; however, humans cannot distinguish the
difference between the original and the distorted image.

The basic method of generating adversarial examples is
described in Section 2.1. Section 2.2 briefly introduces the
defense of the adversarial example. In Section 2.3, adver-
sarial example attacks are divided into four categories and
described.

A. ADVERSARIAL EXAMPLE GENERATION
The basic architecture that generates an adversarial example
consists of two elements: the target model and the trans-
former. The transformer takes the original samples x and the
target class y as input data. The transformer then creates an
output, a transformed example x∗ = x+wwith noise value w
added to the original sample x. The transformed example
x∗ is supplied as input data to the target model. The target
model then provides the transformerwith the class probability
results of the transformed example. The transformer updates
the noise values w in the transformed example x∗ = x+w so
that the other class probabilities are higher than the original
class probabilities while minimizing the distortion distances
between x∗ and x.

B. DEFENSE OF THE ADVERSARIAL EXAMPLE
Defense of the adversarial examples has been studied with
adversarial training [13], [40], filtering method [10], [36],
defensive distillation [32], and the magnet method [23]. First,
Szegedy et al. [40] and Goodfellow et al. [13] introduced
adversarial training methods that resist adversarial example
attacks. The DNN model has resistance to the adversarial
example attack by learning through adversarial examples. To
improve the defense against adversarial examples, a recent
study by Tramèr et al. [41] proposed an ensemble adversarial
training method by using a number of local models. This
method is simple and increases the defense against adversar-
ial examples. However, the adversarial training method has
a high probability of reducing the classification accuracy of
the original sample. Second, Shen et al. [36] proposed a fil-
tering method that eliminates adversarial perturbation using
generative adversarial nets [12]. This method preserves the
classification accuracy for the original sample, but requires
a filtering module and module process learning to elimi-
nate adversarial perturbation. Instead of using a generative
adversarial net, Fawzi et al. [10] proposed a robust classifier
that resists adversarial examples by removing adversarial
perturbation using theoretical methods. Fawzi et al. [11] also
proposed an advanced method that is resistant to adversarial
examples through classifier decision analysis using geomet-
ric transformation. Third, Papernot et al. [32] proposed a
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defensive distillation that has resistance to the adversarial
example attack. To block the attack gradient, this defen-
sive distillation has two neural networks in which the
output class probability of the classifier is used as the
input for the second stage of classifier training. Similarly,
Mosca and Magoulas [25] proposed a smooth gradient
method to block the attack gradients. As a state-of-the-art
defense against the black box attack, the magnet method was
proposed by Meng and Chen [23]. It consists of a detector
and a reformer to resist the adversarial example attack. There
are two steps in this method: First, a detector filters the
adversarial examplewithmore distortion as a prelearning step
consisting of the difference between the original sample and
the adversarial example. Then, a reformer finds the original
sample that can be transformed into a small perturbation of
the adversarial example. However, according to a recent study
by Carlini and Wagner [7], [8], it was shown that the filtering
method, defensive distillation, and the magnet method could
be deceived 100% of the time [36].

C. DETAILS OF THE ADVERSARIAL EXAMPLE ATTACK
Related works on the adversarial example attack can be
divided into four categories: target model information, dis-
tance measure, recognition on adversarial example, and gen-
erating method, as described in the following subsections.

1) TYPE OF TARGET MODEL INFORMATION
Attacks that generate adversarial examples can also be
divided into two different types, depending on how much
information about the target is required for the attack: the
white box attack [8], [24], [40] and the black box attack.
The white box attack is used when the attacker has detailed
information about the target model, i.e., model architecture,
parameters, and class probabilities of the output. Hence,
the success rate of the white box attack reaches almost 100%.
Some articles that have been recently published [23], [32]
showed that defending a DNN from awhite box attack [6], [7]
is extremely difficult.

On the other hand, a black box attack is used when the
attacker can query the target model without the target model
information. The well-known black box attacks are of two
types: the substitute network attack [30] and the transferabil-
ity attack [13], [40]. The substitute model attack proposed
in [30] is an example of a well-known black box attack. In this
scheme, an attacker can create a substitute network similar
to the target model by repeating the query process. Once a
substitute network is created, the attacker can perform awhite
box attack. Papernot et al. [30] created a substitute network
against Amazon and Google services and showed that their
success rate on the MNIST dataset was 81.2%.

Second, the transferability attack is another example of a
well-known black box attack. The works in [13] and [40]
introduced the transferability that an adversarial example had
modified for a single local model, and it is effective for
the other models that classify the same type of data. Since
then, various studies [19], [27], [42] on transferability have

been done. To improve the transferability, Strauss et al. [39]
proposed an ensemble adversarial example method by using
multiple local models to attack the other models.

2) TYPE OF DISTANCE MEASURE
There are three ways to measure the distortion between the
original sample and the adversarial example [8], [23]. The
first distance measure L0 represents the sum of the number of
all changed pixels:

n∑
i=0

∣∣xi − xi∗∣∣ (1)

where xi is an original ith pixel and xi∗ is an adversarial
example ith pixel. The second distance measure L2 represents
a standard Euclidean norm as follows:

n∑
i=0

√
(xi − xi∗)2 (2)

The third distance measure L∞ is the maximum distance
value between xi and xi∗. Therefore, as the three distance
measures become small, the similarity of the sample image
to the original sample increases from a human’s perspective.

3) TYPE OF TARGET RECOGNITION ON THE
ADVERSARIAL EXAMPLE
Depending on which class the target model recognizes from
the adversarial examples, the category of adversarial exam-
ples [8], [28], [42] can be divided into two subcategories: a
targeted adversarial example and an untargeted adversarial
example. First, a targeted adversarial example is an adver-
sarial example that causes the target model to recognize the
adversarial image as a particular intended class and can be
expressed mathematically as follows.

Given a target model and original sample x ∈ X , the prob-
lem can be reduced to an optimization problem that generates
a targeted adversarial example x∗:

x∗ : argmin
x∗

(x, x∗) s. t. f (x∗) = y∗ (3)

where L(·) is a distance measure between original sample x
and transformed example x∗, with y∗ being a particular
intended class. argmin

x
F(x) is the x value at which the

function F(x) becomes minimal. s. t. is an abbreviation of
such that. f (·) is an operation function that provides the class
results for the input values of the target model.

On the other hand, an untargeted adversarial example is an
adversarial example that causes the target model to recognize
the adversarial image as a class other than the original class
and can be expressed mathematically as follows.

Given a target model and original sample x ∈ X , the prob-
lem can be reduced to an optimization problem that generates
an untargeted adversarial example x∗:

x∗ : argmin
x∗

(x, x∗) s. t. f (x∗) 6= y (4)

where y ∈ Y is the original class.
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The untargeted adversarial example has the advantage of
less distortion in the original images and a shorter learning
time compared to the targeted adversarial example. However,
the targeted adversarial example is a more elaborate and
powerful attack to control the perception of the attacker’s
chosen class.

Until recently, conventional research [8], [28] has only
studied the single-model misclassification of targeted adver-
sarial examples. However, there has been no published
scheme for building targeted adversarial examples that mul-
tiple models misclassify as each provided class. In this paper,
we propose a multi-targeted adversarial example that can
trick multiple models into misclassifying each target class.

4) METHODS OF THE ADVERSARIAL EXAMPLE ATTACK
There are four typical attacks that generate adversarial exam-
ples. The first method is the fast-gradient sign method
(FGSM) [13], which can find x∗ through L∞:

x∗ = x + ε · sign(
h

lossF,t (x)) (5)

where F is an object function, and t is a target class. In every
iteration of the FGSM, the gradient is updated by ε from
the original x, and the x∗ is found through optimization.
This method is simple and has good performance. The sec-
ond method is iterative FGSM (I-FGSM) [18], which is
an updated version of the FGSM. Instead of changing the
amount of ε in every step, the method updates a smaller
amount of α and eventually clips it by the same ε:

xi∗ = xi−1∗ − clipε(α · sign(
h

lossF,t (xi−1∗)) (6)

This I-FGSM method provides a better performance than the
FGSMmethod. The third is the DeepFool method [24], which
is an untargeted attack that uses an L2 distance measure. This
method generates an adversarial example that is more effi-
cient than that generated by FGSM and as close as possible
to the original image. To generate an adversarial example
with the DeepFool method, it constructs a neural network and
looks for x∗ using the linear approximationmethod. However,
since the neural network is not completely linear, the method
has to find the adversarial example through many iterations,
and as such, it is a more complicated process than FGSM.
The fourth method is the Carlini attack [8], which is the latest
attack method providing the best performance compared to
those of FGSM and I-FGSM. This method can achieve a
100% success rate even against distillation structures [32]
that have recently been introduced in the literature. The key
point of this method is to use a different objective function as
follows:

D(x, x∗)+ c · f (x∗), (7)

instead of using the conventional objective functionD(x, x∗),
and it proposes a way to find an appropriate binary c value.
In addition, it suggests a method to control the attack success
rate even if the distortion increases by reflecting the confi-
dence value as follows:

f (x∗) = max(Z (x∗)t − max
{
Z (x∗)t : i 6= t

}
,−k), (8)

where Z (·) represents the pre-softmax classification result
vector, with t being a target class. In this study, we constructed
the model by applying the Carlini attack, which is the most
powerful method among the four methods, and used L2 as the
distance measure.

III. PROBLEM DEFINITION
Table 1 shows the class scores of an adversarial example:
‘‘2’’ → ‘‘3’’ and original sample ‘‘2’’. If the DNN model
takes a sample as an input value, it provides the output value
of the classification result score of each class. Thus, the DNN
model classifies the sample as a class with the highest class
score.

TABLE 1. Class score of an adversarial example: ‘‘2’’→ ‘‘3’’.

For example, the class ‘‘2’’ (29) of the original sample is
higher than any other class score, as shown in Table 1. There-
fore, the DNN model correctly classifies the original sample
as class ‘‘2’’. However, the DNN model incorrectly classifies
the adversarial example as class ‘‘3’’. Class ‘‘3’’ (18.703) of
the adversarial example is slightly higher than the score of
the original class (18.701), as shown in Table 1. This result
shows that the process of generating the adversarial example
continues until the target class score is slightly higher than
the original class score owing to the minimization of the
distance between the adversarial example and the original
sample. This is because the distance between these two must
be minimized. If this is explained by the expression of the
decision boundary, it is as shown in Fig. 1(a):

Fig. 1(a) shows the decision boundary of the single
model A, which misclassifies adversarial example x∗ tar-
geting model A. The line is the decision boundary of the
model function fA(·). For example, in Fig. 1(a), model A
classifies the original sample x as original class ‘‘2’’ because
the original sample x is in the area of class ‘‘2’’:

fA(x) = y, (9)

where y is the original class ‘‘2’’. However, since the adver-
sarial example x∗ is in the area of class ‘‘3’’, model Amisclas-
sifies the targeted adversarial example x∗ as target class ‘‘3’’

fA(x∗) = tA, (10)

where tA is the target class ‘‘3’’ chosen by the attacker.
Fig. 1(a) shows that the targeted adversarial example x∗ is
generated around the line of model A and is misclassified as
target class ‘‘3’’ while minimizing the distance of the original
sample.
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FIGURE 1. Examples of targeted adversarial examples: a single targeted adversarial example of model A and
multi-targeted adversarial example of models A and B. (a) Single targeted. (b) Multi-targeted.

In some situations, such as in the military, adversarial
examples may need to be misclassified as different target
classes for different models. For example, an adversarial
example x∗ in Fig. 1(b) should be incorrectly classified as
target class ‘‘3’’ by model A and as target class ‘‘4’’ by
model B.

fA(x∗) = tA, fB(x∗) = tB, (11)

where tA is target class ‘‘3’’ and tB is target class ‘‘4’’.
Thus, to be misclassified into each target class intended by
models A and B, an adversarial example must be generated
in the combined target areas of A (‘‘t ′′A) and B (‘‘t ′′B).
Considering this concept, this paper proposes a new

scheme for generating a multi-target adversarial example.
This method generates multiple targeted adversarial exam-
ples that are misclassified as each target class intended
by multiple models while minimizing distortion from the
original sample.

IV. PROPOSED METHOD
To generate a multi-targeted adversarial example, we propose
an architecture that consists of a transformer and multiple
models Di (1 ≤ i ≤ n) (Fig. 2). The role of the transformer
is to generate a multi-targeted adversarial example. The mul-
tiple models Di (1 ≤ i ≤ n) are pretrained classifiers that
classify input values. This proposed architecture is a modified
architecture of [20].

The transformer takes the original sample x ∈ X and the
target class yi ∈ Y (1 ≤ i ≤ n) as input values and generates
the transformed example x∗ as the output value. yi is the target
class chosen by the attacker for each model Di (1 ≤ i ≤ n).
The multiple models Di (1 ≤ i ≤ n) take the transformed
example x∗ as an input value and provide the transformer with
a feedback, which is a classification result (i.e., loss).

The goal of the proposed scheme is to generate a multi-
targeted adversarial example x∗ that is misclassified by each
of the multiple models Di (1 ≤ i ≤ n) as each target class yi

FIGURE 2. The proposed architecture.

(1 ≤ i ≤ n), while minimizing the calculated pixel distance
of the original sample x. In the mathematical expression,
the operation functions of Di (1 ≤ i ≤ n) are denoted by
fi(x) (1 ≤ i ≤ n), respectively. Given the pretrained models
Di (1 ≤ i ≤ n) and the original sample x ∈ X and target
classes yi (1 ≤ i ≤ n), this is an optimization problem that
generates a multi-targeted adversarial example x∗:

x∗ : argmin
x∗

L(x, x∗) s. t. fi(x∗) = yi (1 ≤ i ≤ n), (12)

where L(·) is the distance between the original sample x and
the multi-targeted adversarial example x∗.
To achieve this goal, the procedure has two steps: cre-

ate pre-training models Di (1 ≤ i ≤ n) and generate
a multi-targeted adversarial example x∗. First, the models
Di (1 ≤ i ≤ n) go through a learning process to correctly
classify the original sample x into its original class yorg:

fi(x) = yorg ∈ Y , (13)

where yorg is the original class. In our experiment, models Di
(1 ≤ i ≤ n) were trained to classify the original sample with
higher than 99% accuracy.

Second, the transformer accepts the original sample x and
target classes yi (1 ≤ i ≤ n) as input values and generates
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transformed example x∗. In this study, we modified the trans-
former architecture in [8] and x∗ was defined as

x∗ =
tanh(x + w)

2
,

wherew is used as amodifier to optimallyminimize the gradi-
ent and tanh is used to soften the gradient. The classification
losses of x∗ by models Di (1 ≤ i ≤ n) are returned to the
transformer. The transformer then updates the transformed
example x∗ through the iterative process above to calculate
the total loss lossT and optimally minimize the total loss
lossT. lossT is defined as

lossT = lossdistortion +
n∑
i=1

ci × lossi, (14)

where lossdistortion is the distortion of the transformed exam-
ple, lossi is the classification loss of Di, and ci is the loss
weight of model Di. The initial value of the loss weight is 1.
lossdistortion is the distance between the original sample x and
the transformed example x∗.

lossdistortion =

√
(x∗ −

tanh(x)
2

)2 .

To satisfy fi(x∗) = yi (1 ≤ i ≤ n), we need to minimize∑n
i=1 lossi:

n∑
i=1

lossi =
n∑
i=1

gi(x∗),

where gi(k) = max
{
Zi(k)j : j 6= yi

}
−Zi(k)yi and Zi [8], [31]

is the probability of the classes being predicted by the model
Di. fi(x∗) has a higher probability of predicting the target class
yi than the other classes by optimally minimizing lossi.
The detailed procedure for generating a multi-targeted

adversarial example is described in Algorithm 1. In
Algorithm 1, the iteration r depends on the number of
target models, and, therefore, the experimental results in
Section 5.2 will show the correlation analysis between the
iteration r and the number of target models.

V. EXPERIMENT AND EVALUATION
Through experiments, we show a proposed scheme that
generates a multi-targeted adversarial example that is mis-
classified by each of the multiple models as each target
class, while minimizing the calculated pixel distance of the
original sample. We used TensorFlow [1], an open source
library widely used for machine learning. A server with a
Xeon E5-2609 1.7-GHz processor was used in the
experiment.

A. EXPERIMENTAL METHOD
The MNIST dataset [22] was used as the dataset in the
experiment. It is a standard dataset with handwritten images
from 0 to 9. The experimental method consisted of pretraining
Di (1 ≤ i ≤ n) and generating the multi-targeted adversarial
example.

Algorithm 1 Generation of a multi-targeted adversarial
example in a transformer.
Input: original sample x, targeted class yi (1 ≤ i ≤ n),

iterations r , loss weight ci
Multi-Targeted Adversarial Example Generation:

w← 0
t ← yi
x∗← x
for r step do

x∗← tanh(x∗+w)
2

loss1←
√
(x∗ − tanh(x)

2 )2

loss2← ci
∑n

i=1 max
{
Zi(x∗)j : j 6= t

}
− Zi(x∗)t

loss3← loss1+ loss2
Update w by minimizing the gradient of loss3

end for
return x∗

First, multiple models Di (1 ≤ i ≤ n) are common
convolution neural networks [21]. Their configuration and
training parameters are shown in Tables 8 and 9 of the
Appendix. To have sufficient means to train multiple models
Di (1 ≤ i ≤ n), we used 60,000 samples of training data. Five
models were used in this experiment. As shown in Table 10
in the Appendix, several Di (1 ≤ i ≤ 5) models were
created by learning different training data while maintaining
the accuracy of the original sample at over 99%. In the
experimental results using 10,000 test data, Di (1 ≤ i ≤ 5)
correctly classified the original sample into the original class
at over 99% accuracy.

Second, the Adam algorithm [16] was used as an optimizer
to generate a multi-targeted adversarial example, minimizing
the total loss with a learning rate of 1 × 10−2 and an initial
constant of 1 × 10−3. For a given number of iterations,
the transformer updated the transformed example and pro-
vided it to models Di (1 ≤ i ≤ n), and received feed-
back from these models. At the end of the set of iterations,
the transformed example x∗ was evaluated on the basis of
the targeted attack success, the required number of iterations,
human recognition, and the amount of distortion. Distortion
was measured as the pixel distance from the original sample,
using mean square error.

B. EXPERIMENTAL RESULTS
The experimental results showed images of multi-targeted
adversarial examples, the distortion of each target class,
the class score of a multi-targeted adversarial example,
the scalability analysis, and multiple target class information.

Table 2 shows an example of multi-targeted adversarial
examples that were misclassified as different target classes
by models D1 and D2. The table 2 consists of target classes
that were misclassified by D2 for each fixed target class
that was misclassified by D1. This example was required
for 1000 iterations, and the average distortion in the exam-
ple was 3.04. In Table 2, the multi-targeted adversarial
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TABLE 2. Example of multi-targeted adversarial examples that were misclassified as different target classes by models D1 and D2.

TABLE 3. The distortion of multi-targeted adversarial samples for the original sample ‘‘9’’ for each target class of model D2 when target class of model D1
is ‘‘0’’ in Table 2.

examples were similar to the original samples in human
perception.

For original sample ‘‘9’’ and target class ‘‘0’’ of model D1
in Table 2, the distortion of the multi-targeted adversarial
examples for each target class in model D2 is analyzed
in Table 3. This table 3 shows that the distortion of these
samples was different for each target class in model D2. For
example, in model D2, target class ‘‘5’’ resulted in maximum
distortion and target class ‘‘8’’ resulted in minimal distortion.
The total average distortion in Table 3 is approximately 2.91.
In addition, Fig. 4 of the Appendix shows the distortion of
the multi-targeted adversarial examples for each target class
in models D1 and D2 for Table 2.

Table 4 shows an example of multi-targeted adversarial
examples for each target class in models D1 and D2 for origi-
nal sample ‘‘9’’ in Table 2. Similar to Table 2, Table 4 shows
that in terms of human perception, multi-targeted adversarial
examples were similar to the original sample ‘‘9’’. Fig. 5
of the Appendix shows the average distortion of each target
class of models D1 and D2 for original sample ‘‘9’’. This
information can be used to select target classes in certain
scenarios.

FIGURE 3. Average distortion and iteration at 100% targeted attack
success rate of 900 random multi-targeted adversarial examples for each
set of models.

Table 5 shows the class score of a multi-targeted adversar-
ial example for target class "0" (D1) and target class ‘‘8’’ (D2)
for original sample ‘‘9’’ in Table 2. For D1, the score of
the target class ‘‘0’’ (5.09) is slightly higher than that of
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TABLE 4. Example of multi-targeted adversarial examples for each target class in models D1 and D2 for the original sample "9" of Table 2.

TABLE 5. Class score of original sample ‘‘9’’ and a multi-targeted adversarial example: model D1 (‘‘9’’→‘‘0’’) and model D2 (‘‘9’’→‘‘8’’) in Table 2.

the original class (5.03). For D2, the score of the target
class ‘‘8’’ (5.08) is slightly higher than that of the original
class (5.03). To optimally reduce the distortion of a multi-
targeted adversarial example, this result shows that the multi-
targeted adversarial example had been modified until the
score of each target class of models A and B was higher than
that of the original class.

To analyze the scalability of the multi-targeted adversarial
examples, we show in Fig. 3 the average distortion and iter-
ation of a 100% targeted attack success rate of 900 random
multi-targeted adversarial examples for each set of models.
In the figure, the iteration pattern shows that multi-targeted
adversarial examples required more learning processes to
attack multiple models as the number of models increased.
On the other hand, the pattern of average distortion shows that
as the number of models increased, the distortion increased,
but the rate of change decreased.

In addition, Table 6 shows an example of multi-targeted
adversarial examples for each number of models in Fig. 3.
In Table 6, since there were at least three models, there was
little difference in themulti-targeted adversarial examplewith
regard to human perception.

TABLE 6. Example of a multi-targeted adversarial example for each
number of models shown in Fig. 3.

For the multi-targeted adversarial example aimed at the
five models in Table 6, Table 7 shows the class score of the
multi-targeted adversarial example for each target class in
models D1, D2, D3, D4, and D5. It is possible to generate
a multi-targeted adversarial example that is misclassified by
each model as each of the several target classes selected by
the attacker, as shown in Table 7.

VI. DISCUSSION
a: Attack Considerations
From Figs. 4 and 5 of the Appendix, we can see that the
distortion of the multi-targeted adversarial example for each
target class was different. This information can be useful if

VOLUME 6, 2018 46091



H. Kwon et al.: Multi-Targeted Adversarial Example in Evasion Attack on DNN

FIGURE 4. Average distortion of the target class of model D2 for each target class of model D1 and an original sample
(1000 iterations).
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FIGURE 5. Average distortion of each target class in models D1 and D2 for the original sample ‘‘9’’ (1000 iterations).
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TABLE 7. Class score of a multi-targeted adversarial example for each
target class in models D1, D2, D3, D4, and D5 in Table 6.

an attacker needs a multi-targeted adversarial example with
minimal distortion.

For example, an attacker might try to attack the original
sample ‘‘9’’ in Fig. 5. The attacker wants to generate a multi-
targeted adversarial example that was misclassified as target
class ‘‘8’’ by model D1 and would incorrectly classify it as a
wrong class that is not the original class by model D2. Since
model D2 does not require targeting, the attacker chooses
class ‘‘8’’ of model B.

b: Application
If we apply a multi-targeted adversarial example to an appli-
cation, we can use it for road signs. For example, with amulti-
targeted adversarial example, an altered left-hand turn sign
can cause a Ford vehicle to turn to the right instead, deceive
a GM vehicle into proceeding straight ahead, and deceive a
Toyota vehicle into making a U-turn.

In addition, the multi-targeted adversarial example can be
used for covert channels [38]. The sender generates a multi-
targeted adversarial example that is misclassified by each
target class for multiple models, but the multi-targeted adver-
sarial example is classified correctly by censorship. Each
target class for multiple models has hidden information sent
over a covert channel.

c: Attack success rate
The goal of the proposed scheme is to attack known models.
A white-box attack can be used because the attacker has
detailed information about multiple models. By applying a
modified version of the method of Carlini and Wagner [8],
the proposed scheme is an optimized method to satisfy
both minimum distortion and multi-model attack success.
Therefore, the proposed scheme can generate multi-targeted
adversarial examples for a 100% success rate of targeted
attacks for each class against several models.

d: Method Considerations
Since the amount of loss for each multiple model is used in
the process of generating multi-targeted adversarial exam-
ples, the loss weights of multiple models must be consid-
ered. For example, if the loss weight of model A increases,
the probability of a successful attack on model A increases.

However, the probability of a successful attack on other
models decreases inversely with the distortion. Therefore,
appropriate loss weights should be considered to increase
the probability of attack success for multiple models while
minimizing the distortion of the multi-targeted adversarial
example.

e: Distortion
The experimental results in Fig. 3 show an increase in aver-
age distortion correlating to the number of models. This is
because, in the process of generating a multi-targeted adver-
sarial example, a multi-targeted adversarial example must be
misclassified by more models as each target class. Therefore,
there is a trade-off between distortion and model scalability.
When generating multi-targeted adversarial examples,
the attacker must consider the trade-off relationship.

VII. CONCLUSION
In this paper, we proposed a multi-targeted adversarial exam-
ple that is misclassified by each of the multiple models as
each target class, while minimizing the distance of the orig-
inal sample. From the experimental results on the MNIST
dataset, the multiple models misclassified the multi-targeted
adversarial example as each target class with a 100% attack
success rate. In addition, we discovered that distortion dif-
fered between each target class in multiple models. This
information is useful for selecting target classes. We also
found a trade-off between distortion and model scalability.

Future studies will extend the experiment to other standard
image datasets, such as CIFAR10 [17] and ImageNet [9].
A correlation analysis between distortion and human per-
ception in stealth is also included in a future work. In addi-
tion, the concept of a multi-targeted adversarial example can
be applied to voice [5], [44], music [15], face [34], and
CAPTCHA systems [29]. We will also work on generating
a multi-targeted adversarial example not through transfor-
mation, but by applying a generative scheme, such as a
generative adversarial example [12]. Finally, developing a
countermeasure to the proposed scheme will provide another
challenge.

APPENDIX
See Tables 8–10.

TABLE 8. Di (1 ≤ i ≤ n) model architecture.
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TABLE 9. Di (1 ≤ i ≤ n) model parameter.

TABLE 10. Di (1 ≤ i ≤ 5) pretrained model.
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