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a b s t r a c t

Memory devices can be used as storage systems to provide a lower latency that can be achieved
by disk and flash storage. However, traditional buffered input/output (I/O) and direct I/O are not
optimized for memory-based storages. Traditional buffered I/O includes a redundant memory copy
with a disk cache. Traditional direct I/O does not support byte addressing. Memory-mapped direct I/O,
which optimizes file operations for byte-addressable persistent memory and appears to the CPU as a
main memory. However, it has an interface that is not always compatible with existing applications.
In addition, it cannot be used for peripheral memory devices (e.g., networked memory devices and
hardware RAM drives) that are not interfaced with the memory bus. This paper presents a new
Linux I/O layer, byte direct I/O (BDIO), that can process byte-addressable direct I/O using the standard
application programming interface. It requires no modification of existing application programs and
can be used not only for the memory but also for the peripheral memory devices that are not
addressable by a memory management unit. The proposed BDIO layer allows file systems and device
drivers to easily support BDIO. The new I/O achieved 18% to 102% performance improvements in
the evaluation experiments conducted with online transaction processing, file server, and desktop
virtualization storage.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

DRAM takes on the important function of the main memory
in computers, and it is also used to cache and buffer data to
improve disk performance. Recently, DRAM has been used as
a storage system to provide a fast response time that cannot
be provided by disk and flash systems. In-memory computing
is used for intensive random accesses in various fields such as
large-scale caching systems [1,2], in-memory databases [3], cloud
computing [4–6], virtual desktop infrastructure [7,8], and web
search engines [9].

A disk cache improves the read performance when the hit rate
is high. Even a 1% miss ratio for a DRAM cache can lead to a
tenfold reduction in performance. A caching approach could lead
to the faulty assumption that ‘‘a few cache misses are okay’’ [10].
An alternative choice to disk caching is a ramdisk.

A ramdisk is a software program that takes up a portion of the
main memory, i.e., DRAM chips on DIMM modules. The computer
uses this block of memory as a block device that can be formatted
to a file system format, then mounts the file system on it. It is
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sometimes referred to as a software RAM drive to distinguish
it from a hardware RAM drive, which is provided by a type of
solid-state drive (SSD).

The performance of a ramdisk, in general, is orders of magni-
tude faster than other forms of storage media, such as an SSD (up
to 100 times faster) or a hard drive (up to 200 times faster) [11]. It
is the fastest type of storage media available, but it cannot retain
data without power. To address this problem, many studies have
focused on various types of ramdisk systems, a single system to
cluster systems [4,12,13].

Thanks to practical developments that have overcome the
volatility of RAM, RAM has become a storage medium in more
systems. The ramdisk has the same interface as the conventional
hard disk, but the traditional block interface is not optimized for
RAM as a storage medium. Prefetching, disk scheduling, and the
disk cache are designed for hard disk drives, and these degrade
the performance of the ramdisk. Prefetching and disk scheduling
can be easily and transparently turned off for applications, but
the disk cache cannot.

Block devices, such as hard disk drives, transfer data in block
units. The disk cache allows for applications to process
input/output (I/O) in byte units and it improves the I/O perfor-
mance. The disk cache, referred to as the page cache in Linux,
is configured as some part of the main memory. However, the
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page cache is useless for memory devices such as ramdisk and
persistent memory (PMEM).

1.1. Related work

The advent of PMEM and the evolution of large-scale memory
have led to many challenges in the field of data storage. Direct
Access (DAX), a new optimized I/O interface for PMEM is now
available for Linux. RAM-based file systems were designed to
optimize themselves for temporary files.

1.1.1. Persistent memory
PMEM such as phase-change RAM, magnetoresistive RAM, and

ferroelectric RAM, leads to challenges for file system designers.
PMEM is byte-addressable and directly accessible from CPU

via the memory bus. It offers performance within an order of
magnitude of that of DRAM [14].

The byte-addressability of non-volatile memory can make file
systems more reliable and simpler. Strongly reliability file sys-
tems using PMEM have been proposed in several studies [15,16].
For instance, Dulloor et al. implemented the Persistent Memory
File System (PMFS), a light weight POSIX file system, that ex-
ploits PMEM’s byte addressability and offers direct access with
memory-mapped I/O [14,16].

1.1.2. DAX
Direct access (DAX) is a mechanism defined by the Stor-

age Networking Industry Association (SNIA) as part of the non-
volatile memory (NVM) programming model that provides byte-
addressable loads and stores when working with a PMEM-aware
file system through a memory-mapped file interface [17].

Both the ext4 and XFS file systems are capable of DAX. DAX-
enabled file systems support the legacy interface, but the direct
access is only achieved by the new memory mapping program-
ming model of DAX. Many existing applications that use the
traditional I/O application programming interface (API) cannot
utilize the features of DAX.

Moreover, DAX requires that PMEM can be accessed as the
main memory by the memory management unit (MMU). DAX is
not suitable for peripheral memory devices that are not accessible
by the MMU. A peripheral memory device can be a clustered stor-
age using RAM [4], an SSD-backed RAM disk [18], or a hardware
RAM drive.

1.1.3. RAM-based file system
A RAM-based file system appears as a mounted file system

without a block device such as the ramdisk. The temporary file
system tmpfs is a typical RAM-based file system that appears in
various UNIX-like operating systems. It creates a file system using
the shared memory of the kernel, provides a byte interface with-
out the page cache, and directly transfers data between shared
memory and user memory. On reboot, everything in tmpfs is lost,
so it is used for temporary file storage. It has no recovery scheme
after a reboot even if a nonvolatile memory is used.

Tmpfs provides the best performance as a file system to store
temporary files. It uses only the main memory, that means it
cannot be used with the other durable storage device such as
RAMCloud [4], Apache Hadoop [19–21], SSD-backed RAM disk,
and persistent memory.

1.2. Motivation

A new interface must support peripheral memory devices,
byte accessibility, and compatibility with the existing applica-
tions. The traditional direct I/O and latest memory-mapped direct
I/O interfaces do not support all of these needs at once.

Fig. 1. Kernel structure and data path for buffered I/O and direct I/O. In buffered
I/O, there exists an additional memory copy with the page cache. Direct I/O
requires one memory copy between the application buffer and the ramdisk.

1.2.1. Constraints of direct I/O
Buffered I/O utilizes the page cache, so it aggregates small

amounts of data into an integer multiple of the block size. Con-
sider, for example, a process that requests one character from
the kernel. Then, the kernel loads the corresponding block into
the page cache. If the process reads the next single character, the
request immediately responds with the already loaded block. For
a write example, a process sequentially writes one byte of data
for each write call. The kernel buffers them in a page and flushes
it at a later time.

Fig. 1 shows the kernel structures and data paths for buffered
I/O and direct I/O. In buffered I/O, there exist two memory copies;
from the ramdisk to the page cache and from the page cache to
the application buffer. When direct I/O is used for a file, data
is transferred directly from the disk to the application buffer,
bypassing the page cache.

Direct I/O bypasses the page cache, but it has several con-
straints, so applications that use buffered I/O for byte-range op-
erations cannot be easily changed to use direct I/O. With direct
I/O, application programs must obey the constraints of the block
interface. The user memory and the file position used in read()
and write() calls must be aligned in the logical block size. That is,
the user memory address, the request size, and request location
must be an integer multiple of the logical block size, which is
typically 4096 bytes. User applications can obtain the logical
block size of the file system with the BLKSZGET ioctl() call. Direct
I/O is enabled by calling the open() call with the O_DIRECT flag.

1.2.2. Compatibility
Memory-mapped direct I/O [14,22,23] enables byte-

addressable direct access without a system call after establishing
a memory mapping, thus providing a significantly low latency
after the mapping. DAX uses a new programming interface using
persistent memory development kit (PMDK). Also other studies
use their own user library [22,23].

DAX-enabled file systems support the legacy interface, but
which does not provide the direct feature of DAX. Many tradi-
tional existing applications use the standard file API and do not
use the direct feature that is provided by the memory-mapping.
For such applications, we need a new I/O layer that makes the
standard file API support byte-addressability and direct accessi-
bility without needing any changes in the existing applications.

1.2.3. Support for peripheral memory device
A peripheral memory device is a memory-based storage that is

interfaced with the peripheral I/O bus and not accessed by mem-
ory mapping. Such devices cannot use memory-mapped direct I/O
such as DAX. Thus, we need another new approach for them.
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Fig. 2. Comparison of the 4 KiB random read performance for one process and
512 processes in an SSD and a ramdisk. The y-axis is in logarithmic scale.
The ramdisk exhibits a smaller performance gap for the different numbers of
processes.

Networked ramdisks (RAMCloud and Apache Hadoop with
ramdisk), SSD-backed ramdisks, and hardware ramdisks inter-
faced with the I/O bus are types of the peripheral memory device.

RAMCloud utilizes remote ramdisks of clustered nodes to pro-
vide durability to DRAM [4,13]. It aggregates the main memories
in thousands of servers, which keep the information entirely in
DRAM. RAMCloud maintains redundant data copies across mul-
tiple nodes; thus, it can recover from crashes providing durable
and available storage.

Apache Hadoop with ramdisk is a popular open-source soft-
ware for reliable and scalable distributed computing. Apache
Hadoop uses its own Hadoop File System (HDFS), which is a
distributed file system that can scale form a single cluster to
hundreds of nodes. HDFS [19] stores multiple replicas of a block
on different data nodes, thereby providing availability and robust-
ness. It also supports ramdisks on data nodes [20,21]. The data
nodes will flush in-memory data to the disk asynchronously. The
Hadoop cluster system has its own filesystem on the ramdisk or
a persistent storage.

SSD-backed ramdisk provides strict durability in a local node
that uses a ramdisk. This is similar to a mirrored disk array
that is composed of a ramdisk and a flash-based SSD. Write
requests are delivered to both the ramdisk and the SSD, but read
requests are served by the ramdisk only [18]. This storage device
is implemented as a typical block device, so it cannot use tmpfs
and DAX.

1.2.4. Flash memory cannot replace RAM storages
Flash-based SSDs can potentially utilize up to the full band-

width of the I/O bus by maximizing the parallelism of multiple
flash chips, which have a lower latency than a disk. Flash cannot
replace RAM storages for the following reasons:

• Tenfold slower latency: To transfer a 4 KiB block, flash needs
50 us and DRAM needs 5 us. Flash has additional latency in
its device driver, the host bus adaptor, and the controller in
the SSD.

• Limited lifetime: An SSD becomes unreliable beyond a lim-
ited number of program/erase (P/E) cycles. A write causes a
programming cycle and may cause an erasure cycle; these
cycles wear out the tunnel oxide layer of the transistors. A
2-bit multi-level cell (MLC) flash memory fabricated using
the 2x nm process has a maximum lifetime of 3,000 pro-
gram/erase cycles. A 3-bit MLC flash memory has a lifetime
of only a few hundred cycles. Write-intensive workloads
may make the lifetime much shorter than the warranted
lifetime. Thus, SSD reduces (throttles) write performance by
adding throttling delays to write requests, so as to guarantee
the required SSD lifetime [24].

• Poor performance for small I/O with low concurrency. An
SSD can perform using the full bus bandwidth using tens or
hundreds of independent flash memory chips, but a large
number of concurrent requests are required to utilize all
independent chips. A small request consisting of a single
process just utilizes only a single chip, thereby leading to
low performance. Fig. 2 compares the 4 KiB random read
performances for one process and 512 processes in an SSD
and a ramdisk. The y-axis is in logarithm scale. Here, the
SSD exhibits a 10 times performance gap for the different
numbers of processes, but the ramdisk shows a three times
performance gap.

1.3. Our contributions

The traditional block device suffers from an additional mem-
ory copy with the page cache. However, direct I/O cannot process
byte-range requests. The conventional RAM-based file system
cannot be used with peripheral memory devices such as RAM-
Cloud, HDFS, or SSD-backed ramdisks, and etc. Flash cannot be a
complete replacement of RAM. DAX requires a new programming
interface that is given by persistent memory development kit
(PMDK) [25]. This paper presents a new compatible I/O layer
that is called byte-addressable direct I/O (BDIO) in Linux for
RAM-based storages. BDIO has the following characteristics.

• Compatibility: BDIO is transparent to applications. No
changes to applications are required for them to support it.
The proposed scheme utilizes the standard file API.

• Page cache bypass: The application bypasses the page cache
even if the buffered I/O interface is used.

• Byte-range I/O: Unlike direct I/O, which has a block inter-
face, the proposed I/O has a byte interface. Therefore, an
application program using byte-range buffered I/O can use
BDIO without modification.

• Peripheral memory devices: BDIO can support peripheral
memory devices that cannot be accessed by the MMU.

• Consistency with buffered write: The proposed scheme pro-
vides data consistency even if buffered I/O is mixed with
BDIO. This is useful for the SSD-backed ramdisk, which must
use buffered writes to SSD but can allow byte direct read
(BDR) from RAM to improve read performance.

BDIO was implemented in a Linux kernel. The block device and
the file system that supports BDIO need an additional interface.
We implemented a BDIO-capable ramdisk and a BDIO-capable
SSD-backed ramdisk, and revised XFS and ext4 to support BDIO.

2. Design and implementation of byte direct I/O

BDIO transfers data directly between a ramdisk and a user
application buffer, where the application performs byte-range
I/O with the same interface for the buffered I/O without any
modification of applications.

2.1. Structure for cache-bypass

The ramdisk that supports BDIO has both the block interface
and the BDIO interface as shown in Fig. 3. Thus, the BDIO ramdisk
can be appeared as a conventional block device but has additional
BDIO capability. The new kernel supports the BDIO layer, which
directly transfers data between the application buffer and the
BDIO ramdisk.

Applications use the traditional system-call interface for BDIO.
Whenever an I/O request is delivered, the kernel checks whether
the storage device related to the request is capable of BDIO. If
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Fig. 3. Ramdisk supporting BDIO with both the block interface and the BDIO
interface. It can appear as a traditional block device and has the additional BDIO
capability. The proposed kernel supports the BDIO layer, which directly transfers
data between the application buffer and the BDIO ramdisk with the standard
system call interface.

Fig. 4. Data paths of the BDR with buffered write: the SSD-backed ramdisk uses
both BDR and the buffered write. The BDIO layer maintains data consistency
even though BDRs are mixed with buffered writes.

BDIO is enabled, the request is forwarded to the BDIO layer;
otherwise, the request is processed in the traditional path.

The BDIO ramdisk has the traditional block interface and an
additional new interface with the BDIO layer. I/O requests pro-
cessed by BDIO do not pass through the page cache and the block
layer. The BDIO ramdisk can turn off or on its BDIO capability at
run time using an ioctl call. When the BDIO capability is turned
off, the traditional I/O layer is used.

2.2. Byte direct read with buffered write

The SSD-backed ramdisk shown in Fig. 4 uses the BDR from
RAM and the buffered write to SSD and RAM. All data written
using the buffered write are synchronously updated to both SSD
and RAM as in a mirrored disk array. An SSD-backed ramdisk is
used in systems that require low read latency and data durability.

An SSD-backed ramdisk cannot process a byte direct write to
SSD because SSD has no byte interface. The buffered write is used
so that SSD can gathers data in the page cache and transfers them
to multiple flash chips in parallel.

The proposed scheme allows data consistency even though the
BDRs are mixed with buffered writes. The BDR can also coexist
with the page cache that is used by buffered I/O.

The byte direct read places the page cache at the highest
priority in the read process. If the requested block is found in the
page cache, the found data is sent from the page cache to the
application buffer. Otherwise, the read request is delivered to the
BDIO layer.

In terms of memory copy, BDR is similar to a traditional
memory-mapped file. However, there are many applications that
use the legacy interface that is available in BDR. In addition,
the memory-mapped file causes more I/Os for a request that is
unaligned to the page size. For example, A 1 KB read request
requires a 4 KB page read and a 5 KB read leads to two 4 KB page
reads.

2.3. Call path for byte-range I/O

The main idea is that the byte-range arguments and memory
address of a user request are just passed to a BDIO-enabled device
driver, where the BDIO layer just translates the logical location of
the user request to the physical location in aid of a file system
and splits a physically discontiguous user request into multiple
contiguous device requests. The BDIO layer allows file systems
and device drivers to easily support BDIO.

Fig. 5 shows the system call path for a read request inside the
kernel. Read system calls such as aio_read(), read(), and readv()
go through the generic_file_buffered_read() in the Linux kernel.
The generic_file_buffered_read() function searches for the cached
page in the requested range (using find_get_page). To support
data consistency with the buffered IO, the BDR should search the
page cache. Because the page cache is searched first, buffered
writes and BDRs can be mixed.

If the page is found, the data in the page are copied to the
application buffer. If no page is found, the requested position and
length of the file and the user buffer address is just delivered to
the fs_bd_read() function of the target file system.

A contiguous region in a file may be discontiguous in the
physical storage. Thus, the fs_bd_read() splits the user request
into multiple lower requests (fops->bd_read()) for each physi-
cally contiguous sectors in aid of the get_block() function of the
target file system. Each of the contiguous lower requests are
finally delivered to the bd_read () of the ramdisk, which has a
new byte read interface that allows byte-range direct copy from
the ramdisk to the user memory.

The file system passes the function address of its get_block() to
the BDIO layer (blockdev_bd_read). Here, the get_block() function
translates the file position into the physical position and finds
physically discontiguous sectors.

Fig. 6 shows the write system call path inside the kernel. Write
calls such as write(), aio_write(), and writev() go through the
kernel function generic_file_write_iter(). If the file system and its
storage device support BDIO, a write request is processed using
BDIO.

First, cache pages that are in the requested range are flushed
and invalidated, and then the write request is sent to the byte
direct write interface of the file system (fs_bd_write()), which
passes the function address of get_block() of the file system
to the BDIO layer (blockdev_bd_write()), which in turn trans-
lates the requested file positions into physical positions. Function
blockdev_bd_write() splits the write request into multiple BDIO
requests and passes them to the BDIO device. The BDIO devices
have a new byte write interface along with the conventional block
interface, so byte-range data is transferred from the user memory
to the RAM of the BDIO ramdisk.
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Fig. 5. UML sequence diagram of the BDR: If a cached page is not found, the target file system and the byte direct I/O layer translate the requested position of the
file into physical parameters and pass them to the byte direct I/O ramdisk. For data consistency when buffered I/O is mixed with BDIO, each read request should
search the page cache first.

Fig. 6. UML sequence diagram of the byte direct write: The write request bypasses the file system and the byte direct I/O layer and is finally transferred to the
byte direct I/O ramdisk. The target file system and BDIO layer translate the requested position of the file into physical positions and pass them to the byte direct
I/O ramdisk.

2.4. Transparent interface for applications

BDIO is transparent to applications because it uses the stan-
dard file I/O interface that can be used for the peripheral memory
devices that are not addressable by a memory management unit.
The standard interface requires for applications not to be changed
to use BDIO, but BDIO requires for file systems and block devices
to have additional interfaces.

2.4.1. File system interface for BDIO
For a file system to support BDIO, it must support one more

function than the conventional file system. This function is similar
to that of traditional direct I/O, except that BDIO can process
byte-range arguments.

The file system uses the structure address_space_operation
to register with the virtual file system (VFS). For BDIO, function
pointer fs_bd_read() and fs_bd_write() are added to the structure.
These function pointers are created as the follows.

struct address_space_operations {
...
ssize_t (*fs_bd_read)(struct kiocb *iocb,

struct address_space *mapping,
struct iov_iter *iter, ssize_t len);

ssize_t (*fs_bd_write)(struct kiocb *iocb,
struct address_space *mapping,
struct iov_iter *iter, ssize_t len);

};
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The simplest implementation of these functions is to just call
blockdev_bd_read() or blockdev_bd_write(), which are provided
by the BDIO layer. An example of this function is shown below.

static ssize_t ext4_bd_read(struct kiocb *iocb,
struct address_space *mapping,
struct iov_iter *iter, ssize_t len)

{
struct inode *inode = mapping->host;
struct block_device *bdev

= ext4_find_bdev_for_inode(inode);
return blockdev_bd_read(mapping, inode,

inode->i_sb->s_bdev, iter, iocb->ki_pos, len,
ext4_dio_get_block, 0);

}
struct address_space_operations
ext4_aops = {
...
.fs_bd_read = ext4_bd_read,
.fd_bd_write = ext4_bd_write,

};

The file system function, ext4_bd_read(), passes the function
ext4_dio_get_block() of this file system to the blockdev_bd_read()
of the BDIO layer. The function ext4_dio_get_block() plays the
crucial role of finding the logical block number in the disk for
the given block number in the file.

The file system functions, fs_bd_read() and fs_bd_write(), can
be implemented similarly to the traditional direct I/O functions
of the file system, except that the traditional direct I/O function
calls the kernel function __blockdev_direct_IO(). fs_bd_read() and
fs_bd_write() are implemented by just calling blockdev_bd_read()
and blockdev_bd_write() of the BDIO layer, respectively.

2.4.2. Block device interface for BDIO
A block device that supports BDIO has an additional function,

which is declared in structure block_device_operations that are
used to register the block device in the kernel as shown below.

struct block_device_operations {
...
int (*bd_read)(struct block_device *bdev,
struct iov_iter *iter, loff_t pos, size_t len);

int (*bd_write)(struct block_device *bdev,
struct iov_iter *iter, loff_t pos, size_t len);

};

These functions have arguments that indicate a byte-range
request and an application memory. The argument bdev points
to the block device, iter is the address of user memory, pos is the
physical offset in bytes, and len is the requested data length in
bytes.

This block device interface for BDIO can support not only for
the memory but also for the peripheral memory devices that are
not addressable by a memory management unit.

These functions actually transfer data between the RAM and
the application memory. A simple implementation of these func-
tions in a simple BDIO ramdisk are shown ins the following
code:

static int ramdisk_bd_read(
struct block_device *bdev,
struct iov_iter *user_memory,
loff_t pos, size_t len)

{
...
ret = copy_to_iter(ram_addr, len, user_memory);

...
}
static int ramdisk_bd_write(

struct block_device *bdev,
struct iov_iter *user_memory,
loff_t pos, size_t len)

{
...
ret = copy_from_iter(ram_addr, len, user_memory);

...
}
static struct block_device_operations

dramdisk_blkdev_ops = {
...
bd_read = ramdisk_bd_read,
bd_write = ramdisk_bd_write,

};

Supporting BDIO in a block device is simple. We developed a
ramdisk supporting BDIO and the SSD-backed ramdisk supporting
BDR. The BDIO ramdisk needs only 30 lines to support BDIO from
the traditional ramdisk. Only 10 lines are required to support BDR
from the SSD-backed ramdisk. The byte direct IO layer makes
device drivers simple to support BDIO.

3. Performance evaluation

Linux kernel 3.10 and 4.15 were modified for BDIO. In addition,
the ramdisk supporting BDIO, the SSD-backed ramdisk supporting
BDR, and XFS and ext4 file systems modified to support BDIO
were implemented. The evaluations used the 3.10 kernel and XFS.

Experiments were performed with two 8-core 3.4 GHz Xeon
E5-268 W CPUs that were interconnected by eight memory inter-
connection channels with 128 GiB of main memory. The ramdisk
capacity was set to 122 GiB.

BDIO and BDR were evaluated using various benchmarks and
real applications from the block level to the file level. All exper-
iments were performed with a small free memory that is below
1 GB to mitigate the effect of the page cache.

3.1. Microbenchmark at the block level

This section evaluates the throughput of 4KiB random reads
and 4KiB random writes at the block level. At the block level, no
file system was used. Each evaluation ran for 10 min.

In this experiment, the ramdisk that supports BDIO was em-
ployed; this BDIO ramdisk can selectively turn off its BDIO ca-
pability to evaluate buffered I/O and direct I/O with the same
ramdisk module. In this experiment, buffered I/O, direct I/O, and
BDIO were compared using the same ramdisk module.

Fig. 7 shows block-level random read performance. BDIO per-
formed 2.9 times better than that of the buffered I/O and 1.18
times better than that of the direct I/O on average. Both BDIO
and direct I/O had no redundant memory copies, but BDIO per-
formed better than direct I/O because BDIO has lighter computing
complexity than direct I/O in the kernel. Buffered I/O performed
noticeably worse. In the ramdisk, I/O did not cause bottlenecks.
Instead, computing overhead and memory copies mainly affected
the performance.

Fig. 8 shows the random write performance results. The per-
formance differences among the three IO methods are similar to
those for random read. The reason why the write performance of
BDIO was better than that of direct I/O is again because of the
lower computational complexity in the kernel.
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Fig. 7. Random read performance without file system.

Fig. 8. Random write performance without file system.

Fig. 9. SPC benchmark with ramdisk.

Fig. 10. SPC benchmark with SSD-backed ramdisk.

Fig. 11. Performance of BDIO and BDR for the six-day desktop computer
workload of a director (user1).

3.2. Macrobenchmarks at the block level

3.2.1. OLTP and web search engine benchmarks
Figs. 9 and 10 show the results for five I/O traces obtained from

the UMass Trace Repository of the Storage Performance Council
(SPC) [26]. These I/O traces consist of two I/O traces from OLTP
applications running at two large financial institutions (Financial1
and Financial2) and three I/O traces from a popular search engine
(WebSearch1-WebSearch2). The traces were replayed at block
level.

Fig. 9 compares of buffered I/O, direct I/O, and BDIO with the
ramdisk. In the random read results reported in Section 3.1, BDIO
performed 4.8 times better than that of buffered I/O. For the
WebSearch1 trace, the performance of BDIO was 1.59 times better
than that of buffered I/O. That is, the actual traces, such as SPC,
demonstrate the cache effect of buffered I/O.

Fig. 10 compares the performance of buffered I/O, direct I/O,
and BDR of the SSD-backed ramdisk using SPC traces. BDR is a
way to process byte-addressable direct reads and to write them
in a buffered fashion.

As shown in this figure, the performance of direct I/O for the
two OLTP financial traces was very poor. Because the buffered
write simultaneously processes large amounts of data that have
accumulated in the page cache, it can effectively process dozens
of flash memories in the SSD at once. However, direct write se-
rially processes data and suffers from severe performance degra-
dation. The three WebSearch traces consist of a single sequential
write and many concurrent reads, which is not bad for direct I/O.

Direct I/O is a well-known method to prevent redundant
memory copy, but it was not effective for the SSD-backed
ramdisk. BDR and BDIO showed the best performance for the
OLTP and web search engine.

3.2.2. PC workload
BDIO and BDR were evaluated using the workload traces of the

desktop computers of a director (user1) and an engineer (user2)
for six days. The daily workload of user1 consists of an average
of 28 GiB and 1.8 millions of reads and an average 8.9 GiB and
269 thousands of writes. The daily workload of user2 consists of
average 30 GiB and 1.7 millions of reads per day and average 17
GiB and 842 thousands of writes per day.

Fig. 11 and Fig. 12 show that the performance of the BDIO
ramdisk was 2.5 times better than that of the traditional ramdisk,
and the performance of the BDR SSD-backed ramdisk was 1.5
times better than the traditional SSD-backed ramdisk on average.
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Fig. 12. Performance of BDIO and BDR for the six-day desktop computer
workload of an engineer (user2).

Fig. 13. Throughput of Filebench with the file server workload.

The PC workload results show that BDIO is especially effective
for a desktop virtualization server. The desktop virtualization
server runs a number of guest operating systems to provide a
desktop computer environment to clients through the network.
Some desktop virtualization servers use the ramdisk to store the
disk image of the guest operating systems [27]. BDIO hence has
the potential to solve the performance problems of virtual servers
that are experiencing a storage bottleneck.

3.3. File-level benchmark

This section presents the performance of BDIO and BDR when
considering the file system. For these experiments, the XFS file
system was upgraded to support BDIO.

3.3.1. Filebench
This section presents the results of an evaluation using the file

server workload of Filebench, which creates, appends, reads, and
deletes files with multiple threads [28]. Figs. 13 and 14 show the
throughput and latency of Filebench with respect to the file server
workload as the number of files increases. The total size of files
ranges from 327 MB to 10.5 GB. The average size of each file is
128 KiB.

The ramdisk with BDIO showed 58% higher throughput and
33% lower latency in comparison to the ramdisk without BDIO on
average. The SSD-backed ramdisk with BDR showed 94% higher

Fig. 14. Latency of Filebench with the file server workload.

Fig. 15. Performance results with TPC-C benchmark trace on the XFS file system.

throughput and 30% lower latency than that without BDR on
average. BDIO and BDR are also quite effective for file servers that
share disk access.

3.3.2. TPC-C
Fig. 15 shows the results obtained using a TPC-C bench-

marks trace of the Transaction Processing Performance Council
(TPC) [29] collected at Microsoft using the event tracing for
the Windows framework. TPC-C is a complex online transaction
processing benchmark. Because this trace consists of file-level I/O
information, this experiment replayed the TPC-C trace on a file
system.

The ramdisk with BDIO showed 102% better throughput than
the ramdisk without BDIO. The SSD-backed ramdisk with BDR
showed 32% higher throughput than that without BDR.

These results demonstrate that BDIO and BDR achieve high
performance improvement with various workloads with the file
system.

3.3.3. Virtual machine
A Windows 7 guest operating system was installed on the

disk using a kernel-based virtual machine (KVM) and the boot
time of the operating system was measured using BootRacer. The
Linux host operating system ran the BDIO ramdisk and the BDR
SSD-backed ramdisk. The file system XFS was mounted on these
ramdisks and the disk image file of the guest OS was installed on
top of the file system.

With respect to the boot time of a Windows 7 guest operating
system on a KVM virtual machine, the BDIO ramdisk outper-
formed the traditional ramdisk by 18%, and the performance of
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Fig. 16. Boot time of a Windows 7 guest operating system on a KVM virtual
machine. The guest operating system was installed on the ramdisks.

Fig. 17. Sequential read/write performance using benchmark CrystalDisk on the
guest operating system, which is installed in the ramdisks.

the BDR SSD-backed ramdisk was 30% better than that of the
SSD-backed ramdisk without BDR as shown in Fig. 16.

Fig. 17 shows the performance of the ramdisks running the
CrystalDisk benchmark on the guest operating system. The BDIO
ramdisk outperformed the ramdisk without BDIO by 65% and 46%,
for sequential read and sequential write, respectively.

Through this experiment, we confirmed that the boot time
and read/write performance of virtual machines can be greatly
improved. The proposed technology will effectively improve the
performance of in-memory virtual desktop infrastructures (VDI).

3.4. Applications

Fig. 18 show the running time of several applications. In this
experiment, an archived Linux kernel source was extracted using
the tar tool (untar), a kernel source database for browsing the
source code was built using the cscope tool (cscope), and the
kernel source code was compiled (compile). The y-axis is the
running time, which was normalized by the performance of the
SSD-backed ramdisk.

For the untar step, the BDR SSD-backed ramdisk was 9% faster
than that without BDR, and the BDIO ramdisk was 8% faster
than that without BDIO. For the compile step, the performance
difference was very small, about 1%. This is because compilation
requires a lot of computing power, which becomes the dominant
bottleneck instead of the I/O.

4. Conclusion

This paper presented a new Linux I/O layer, BDIO and BDR,
that uses the standard file API for RAM-based peripheral storage.

Fig. 18. Running time for extracting (untar), building the source code database
(cscope), and compiling the source code of a Linux kernel. The y-axis is the
running time, which was normalized by the performance of the SSD-backed
ramdisk.

BDIO and BDR bypass the page cache without modifying buffered
I/O applications to use direct I/O and can perform byte-range I/O
without redundant memory copy. In addition, BDR can provide
data consistency while using buffered write for the SSD-backed
ramdisk.

The BDIO ramdisk, SSD-backed ramdisk supporting BDIO, the
BDIO-enabled XFS, and the BDIO layer of the Linux kernel were
implemented in Linux so that block devices and file systems can
be easily upgraded to support BDIO.

This paper also presented a systematic evaluation of the per-
formance of random I/O, OLTP traces, PC workload, file server,
and a desktop operating system on a virtual machine. The re-
sults show that the use of BDIO in the file system improved
performance by up to 102%.
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