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ACCENT: Cognitive Cryptography Plugged Compression
for SSL/TLS-Based Cloud Computing Services

KI-WOONG PARK and KYU HO PARK, Korea Advanced Institute of Science and Technology

Emerging cloud services, including mobile offices, Web-based storage services, and content delivery services,
run diverse workloads under various device platforms, networks, and cloud service providers. They have
been realized on top of SSL/TLS, which is the de facto protocol for end-to-end secure communication over the
Internet. In an attempt to achieve a cognitive SSL/TLS with heterogeneous environments (device, network,
and cloud) and workload awareness, we thoroughly analyze SSL/TLS-based data communication and iden-
tify three critical mismatches in a conventional SSL/TLS-based data transmission. The first mismatch is
the performance of loosely coupled encryption-compression and communication routines that lead to under-
utilized computation and communication resources. The second mismatch is that the conventional SSL/TLS
only provides a static compression mode, irrespective of the dynamically changing status of each SSL/TLS
connection and the computing power gap between the cloud service provider and diverse device platforms.
The third is the memory allocation overhead due to frequent compression switching in the SSL/TLS. As a
remedy to these rudimentary operations, we present a system called an Adaptive Cryptography Plugged
Compression Network (ACCENT) for SSL/TLS-based cloud services. It is comprised of the following three
novel mechanisms, each of which aims to provide an optimal SSL/TLS communication and maximize the
network transfer performance of an SSL/TLS protocol stack: tightly-coupled threaded SSL/TLS coding, float-
ing scale-based adaptive compression negotiation, and unified memory allocation for seamless compression
switching. We implemented and tested the mechanisms in OpenSSL-1.0.0. ACCENT is integrated into the
Web-interface layer and SSL/TLS-based secure storage service within a real cloud computing service, called
iCubeCloud, as the key primitive for SSL/TLS-based data delivery over the Internet.
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1. INTRODUCTION

Cloud computing is an important transition and a paradigm shift in Internet tech-
nology. In recent years, emerging cloud services, including mobile offices, Web-based
storage services, and content delivery services have become popular. Examples include
GoogleDocs [GoogleDocs 2011], Dropbox [Dropbox 2011], Amazon EC2 [Amazon-EC2
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2011], S3 [Amazon-S3 2011] and Microsoft Azure [Microsoft-Azure 2010]. They are gen-
erally equipped with SSL/TLS for data confidentiality and integrity. Although these
security systems furnish various types of Internet services, they have a fundamen-
tal common purpose: to transfer data with end-to-end confidentiality and integrity
via SSL/TLS and network subsystems where a wide spectrum of computing devices
(smartphones, tablets, netbooks, and desktop PCs) and networks are connected to each
other [NetCraft 2010]. Given that the cloud-based services often require users to be
connected to access their information, the end-user experience of the service can be
affected by the dynamics of the network and the computation workload [John Dunlop
and Abani 2010].

From the perspective of communication efficiency, data compression is an effective
way of enabling high-performance data delivery over SSL/TLS. However, only about
4.6% of all SSL/TLS Web sites are compression-enabled [W3Techs 2011], mainly be-
cause the selection of a certain compression method may degrade performance and user
experience where the network and computation workload are diverse and dynamic. In
addition, to fully understand and optimize the impact of compression, we need to
consider the associated trade-off between computation and communication since com-
pression techniques vary in terms of performance, particularly with regard to the
compression ratio, compression time, and decompression time [Gilchrist 2009]. Other-
wise an SSL/TLS-based system may encounter a computation or network bottleneck.
That is, there is no single SSL/TLS encoding scheme that fits all due to environmental
heterogeneity (device, network, and cloud) and workload. This type of problem makes
it more challenging to cognitively apply compression to SSL/TLS connections. As a
result, we need novel mechanisms that can automatically and transparently identify
the most profitable SSL/TLS encoding technique.

In order to improve the performance of SSL/TLS-based systems, most studies have
focused on optimizing an individual network and computation utilization [Wu et al.
2001; Alaidaros et al. 2007; Morales-Sandoval and Feregrino-Uribe 2005; Kounavis
et al. 2010; Okamoto et al. 2003; Shacham et al. 2004] or improving system performance
from the perspective of the server rather than the end-to-end perspective from the
client to the server [Coarfa et al. 2006; Chou 2002; Castelluccia et al. 2006; Jang et al.
2011]. Comparatively few studies have applied a global view to the investigation of
performance improvement, network and computation utilization, and deliberation of
end-to-end network and system status.

The following issues, for instance, have been ignored in the literature: how SSL/TLS
computation and communication routines affect network performance; the most effec-
tive reaction of SSL/TLS if a network or computation workload is changed or if there is
a wide gap in computing power between the sender and receiver; and how the best com-
pression method is identified transparently in an SSL/TLS connection. In an attempt
to address these issues, we thoroughly analyzed a current SSL/TLS in the context of an
SSL/TLS-based data transfer. More specifically, we closely investigated the dynamics
of running an SSL/TLS-based Web interface and secure storage service within a real
cloud computing platform [NexR-iCubeCloud 2011] by observing the following details:

(1) SSL/TLS buffer profiles in relation to the bandwidth of SSL/TLS connections and
computation workload,

(2) SSL/TLS-based encoding/decoding and network processing routines,
(3) the memory allocation sequence with varying compression algorithms,
(4) the preceding three behaviors under severe network congestion and a bursty com-

putation with varying levels of the computation power of the sender and receiver.

For this investigation, we narrowed down the security subsystems to an SSL/TLS
protocol stack; this widely implemented stack is now the de facto standard for secure
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Fig. 1. Overall architecture of SSL/TLS with an expanded view of SSL/TLS protocol stack.

transactions over the Internet. Emerging cloud services are generally equipped with
SSL/TLS for data confidentiality and integrity. SSL/TLS is designed to make use of TCP
to provide a reliable end-to-end secure service. It offers an abstraction of secure sockets
on top of existing TCP/IP sockets. As illustrated in Figure 1, SSL/TLS consists of two
layers of protocols. The following higher-layer protocols are part of SSL/TLS: the SSL
handshake, the SSL change cipher, and the SSL alert protocols. These protocols allow
a server and client to authenticate each other, negotiate various algorithm parameters,
dynamically update cipher suites, and send an alert message to a peer. The lower-
layer protocol, namely the SSL/TLS record protocol, provides basic security services to
various higher-layer protocols. For example, the cloud Web interface and secure storage
services can operate on top of SSL/TLS. Data are sent via SSL/TLS connections in the
following manner. First, an application writes data to an SSL/TLS send buffer. The
record protocol then fragments the data into manageable blocks, optionally compresses
the data, applies a message authentication code (MAC), encrypts the data, adds a
header, and transmits the resulting unit to a receiver over the Internet. The received
data are decrypted, verified, decompressed, reassembled, and then delivered to higher-
level users. In this type of SSL/TLS-based transaction, the sender and receiver may
have a huge computation power gap because the diverse computing devices can be
connected with the server side. Furthermore, various connection speeds in terms of
bandwidth and delay have values that differ in a given network environment. Our
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analysis discloses three rudimentary operations of the SSL/TLS-based system. They
are summarized as follows.

—Underutilized computation and network resources of an SSL/TLS record protocol. As
the SSL/TLS segments were being processed, we observed underutilized computation
and network resources on both the server and client side as a result of the sporadic
computation and communication bottlenecks that occurred when the network and
computation workloads were varied. In the event of underutilization of the given
network and computation resources, the SSL/TLS throughput can be improved by
maximizing the utilization of the given resources.

—Static compression mode of SSL/TLS. Applying a certain compression method to an
SSL/TLS connection may not be optimal if the connection and computation workload
are different and dynamic. If too much data are loaded for a low-bandwidth SSL/TLS
connection, a compression mechanism should be cognitively applied with a reflection
on environment heterogeneity (device, network, and cloud). However, because con-
ventional SSL/TLS mechanisms provide a static compression mode, a renegotiation
request by an application must change the compression algorithm to be applied.
We therefore need to provide a mechanism that enables SSL/TLS to identify the best
compression technique for SSL/TLS connections in a timely and transparent manner
and in consideration of the characteristics just mentioned.

—Obstructive compression switching overhead. When the compression algorithm is
changed frequently by the adaptive module, the compression switching overhead
can cause a severe problem with transmission latency and thereby minimize the
improvement. To deal with the compression switching overhead in SSL/TLS, we
found that the memory allocation can be unified among several compression modules.
However, current compression modules have a heterogeneous memory layout and are
maintained by a separate compression library, which tends to duplicate the memory
operations. Thus, we need a new mechanism that unifies the memory layout and
shares the buffered data among the compression modules.

As a remedy to the three rudimentary operations of the SSL/TLS-based system, we
designed and implemented ACCENT in OpenSSL 1.0.0 [OpenSSL.org 2011]. ACCENT
is integrated into a Web interface layer and an SSL/TLS-based secure storage service
within a real cloud computing service, called iCubeCloud, as the key primitive for
SSL/TLS-based data delivery over the Internet. Specifically, we devised the following
three mechanisms that improve the data transfer performance over SSL/TLS.

—Tightly coupled threaded SSL/TLS coding (TTSC). The purpose of TTSC is to maxi-
mize the computation and communication utilization when SSL/TLS data segments
are sent and received. In conventional SSL/TLS, the computation routines, such as
the compression and encryption operations and the SSL/TLS network routines are
executed in a loosely coupled manner. This type of execution triggers frequent block-
ing and wake-up operations in the SSL/TLS process. As a remedy to this problem,
our new mechanism provides the highest possible throughput by cleanly separating
the computation routines from the network routines and by blending compressed
and uncompressed packets in an SSL/TLS transmission.

—Floating-scale based compression negotiation (FSCN). The FSCN is a novel adaptive
compression mechanism. It dynamically adjusts the compression algorithm by using
floating scales of the sender and receiver, which move up and down in relation to
the dynamic states of the encryption and compression data rate and the compression
ratio. A floating scale consists of multiple scales. Each scale is defined in terms of the
computation index (CI) of each encoding scheme, which reflects the computational
characteristics. By finding the shortest distance between each scale and the current
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network bandwidth, our new mechanism derives the optimal and most profitable
SSL/TLS encoding method in a heuristic and transparent manner.

—Unified memory allocation for compression (UMAC). The purpose of UMAC is to
minimize the compression switching overhead by unifying the memory footprints of
the compression algorithms. Whenever a compression algorithm is changed, UMAC
transforms the allocated memory layout to another layout. It either transforms the
memory layout into a new memory layout of homogeneous compression algorithms
or merely allocates the additional memory required by the upcoming compression
algorithms. As a result, it significantly shortens the compression switching latency.

Our design is fully backwards compatible with SSL/TLS: extended clients can in-
teract with servers that are unaware of our extensions, and vice versa. A client or
server that fails to understand or prefers not to use these extensions can revert to
standard SSL/TLS transactions. ACCENT is a part of our development project for
a peta-scale cloud computing platform development project [NexR-iCubeCloud 2011;
Park et al. 2010]. In our platform, ACCENT is integrated into the Web interface layer
and SSL/TLS-based secure storage service within a real cloud computing service, called
iCubeCloud, as the key primitive for SSL/TLS-based data delivery over the Internet.
ACCENT can also be extended to cloud-based services such as a Web-based storage
service and a content delivery service over SSL/TLS. It is also feasible for use with
emerging applications such as a cloud-based mobile office and a cloud storage system.
This type of facilitation is possible as long as the relevant applications utilize SSL/TLS
as an underlying security layer. ACCENT is not targeted at small file transfers that
seem unaffected by the dynamics of a network and computation workload; instead, it
is targeted at large files and streaming data transfers.

The remainder of this article is organized as follows. In Section 2, we discuss previous
studies on secure and efficient data delivery over the Internet. In Section 3, we elaborate
ACCENT and its three novel mechanisms. In Section 4, we present our experimental
results. Finally, in Section 5, we discuss our conclusions and future works.

2. RELATED WORKS

2.1. Previous Research on SSL/TLS-Based Systems

Many studies have analyzed and evaluated SSL/TLS-based systems for various kinds
of computing devices and network environments [Coarfa et al. 2006; Zhao et al. 2005;
Berbecaru 2005; Kant et al. 2000]. By profiling SSL/TLS processing, they tried to iden-
tify the performance bottlenecks and techniques for architectural improvement. They
assert that the performance of SSL/TLS depends significantly on the network band-
width, the computation power, and the hardware architecture. Those works became
the motivation of this work.

For performance improvement of SSL/TLS-based systems, most studies have focused
on accelerating individual network and computation routines or improving system
performance from the perspective of the server alone rather than the perspective of
both the client and server. Few studies have examined performance improvement as
well as network and CPU utilization from a global consideration of the end-to-end
network and computation status.

How to accelerate SSL/TLS computation by architectural optimizations or new hard-
ware techniques has been the subject of several studies [Wu et al. 2001; Kounavis
et al. 2010; Jang et al. 2011; Alaidaros et al. 2007; Morales-Sandoval and Feregrino-
Uribe 2005; Chou 2002]. CryptoManiac [Wu et al. 2001; Kounavis et al. 2010] presents
a coprocessor that combines arithmetic and logical operations for SSL/TLS perfor-
mance improvement on traditional CPU architectures. Its added instruction set for
fast cryptographic operations significantly improves SSL/TLS performance by means
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of an additional functional unit. The crypto-acceleration units were added to the lat-
est general-purpose Intel processors. In a recent study, SSLShader [Jang et al. 2011]
presented a high-performance SSL acceleration technique using graphics cards as high-
performance SSL accelerators. Other studies have focused on cryptographic algorithms
and proposed optimizations for accelerating these crypto operations [Alaidaros et al.
2007; Morales-Sandoval and Feregrino-Uribe 2005; Chou 2002].

In an attempt to optimize the SSL/TLS transactions from the network perspective,
seven research groups [Okamoto et al. 2003; Shacham et al. 2004; Castelluccia et al.
2006] proposed many techniques that improve the performance of SSL/TLS through
compression or handshake optimization. SSLComp [Okamoto et al. 2003] is a general-
purpose compression algorithm for SSL/TLS connections. It ignores abrupt changes
included in SSL/TLS connections by the network bandwidth or computation workload.
Other studies have analyzed the performance of SSL/TLS handshakes and suggested
that improvements could be made by balancing the computation workload of the sever
side or by caching the session data [Castelluccia et al. 2006; Shacham et al. 2004].
The SSLBalence alleviates the server load in the SSL/TLS handshakes and focuses
on altering the computational balance between SSL clients and servers [Castelluc-
cia et al. 2006]. CSSC is a caching mechanism for SSL/TLS handshake information
on SSL/TLS clients; it reduces the network bandwidth consumption and boosts the
SSL/TLS handshake speed [Shacham et al. 2004]. When ACCENT used in conjunction
with SSLBalence and CSSC, the performance can be improved further.

ACCENT seamlessly adapts to heterogeneous environments (device, network, and
cloud) and workloads so that it improves the computation and communication utiliza-
tion to provide the highest possible throughput. It is capable of seamlessly applying
the most profitable compression module for the characteristics of a given SSL/TLS
connection and the current computation power of the sender and receiver. As a result,
we believe that the complementary relationship between ACCENT and the previous
works significantly improves the performance.

2.2. Previous Research on Efficient Network Systems

Several studies have proposed many mechanisms that improve the network throughput
for multimedia systems, particularly with regard to novel encoding techniques [Haleem
et al. 2007; Wu and Kuo 2005] and for general-purpose network systems [Krintz and
Sucu 2006; Jeannot and Knutsson 2002; Wiseman et al. 2005]. In the research on video
and multimedia systems, joint encryption and compression schemes for multimedia
system are proposed [Haleem et al. 2007; Wu and Kuo 2005]. Although it can improve
the computation efficiency by means of entropy coding and lossy compression for mul-
timedia system, the mechanism is not suitable for protecting confidential data in a
general-purpose system such as a SSL/TLS-based system. Lee et al. [2007] asserted
that the quick adoption of AES and the use of a strong RSA key size of 1024 bits or
higher are required in modern SSL/TLS-based systems.

For performance improvement of general-purpose network systems, researchers have
studied adaptive network systems enhanced with compression algorithms [Krintz and
Sucu 2006; Jeannot and Knutsson 2002; Wiseman et al. 2005]. Adoc [Jeannot and
Knutsson 2002] and Wisen [Wiseman et al. 2005] presented an analysis of compres-
sion algorithms and their trade-offs and provided a well-defined compression interface
as a middleware approach. Krintz and Sucu [2006] improved the Internet transfer
performance by dynamically applying compression with the aid of prediction-based
models supported by a mechanism that monitors the infrastructure and resource. This
approach, however, is only applicable if the online prediction system is available.

Although our work is conceptually similar to the other works mentioned in this
section, there is a key difference in the way we handle SSL/TLS computation and
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network operations for the current network and computation resources of the two end-
points, which can seamlessly adapt to heterogeneous environments (device, network,
and cloud) and workloads. We devised SSL/TLS coding mechanisms that cope with
the abrupt changes caused in SSL/TLS connections by either the network bandwidth
or the computation workload. Because a single SSL/TLS server services multiple and
diverse SSL/TLS clients, careful attention should be paid to the current status of each
SSL/TLS connection during server and client SSL/TLS transactions. We therefore fo-
cus on SSL/TLS encoding mechanisms for the end-to-end network and computation
workload of the server and clients. In this way, we can ensure high-performance data
delivery over an SSL/TLS system.

3. DESIGN OF ACCENT

As described in Section 1, in an attempt to achieve a cognitive SSL/TLS with hetero-
geneous environments and workloads awareness, we designed ACCENT to solve the
limitations of conventional SSL/TLS-based systems. It has three novel mechanisms:
TTSC, FSCN, and UMAC. Each mechanism is described in the following.

3.1. Tightly-Coupled Threaded SSL/TLS Coding (TTSC)

The objective of TTSC is to maximize the utilization of computation and communi-
cation resources to provide the highest possible throughput. The high throughput is
achieved by cleanly separating the computation routine from the network routine and
by blending the compression-enabled packets and compression-disabled packets in an
SSL/TLS transmission. To integrate the routines without breaking any semantic of an
SSL/TLS protocol stack, we need an in-depth understanding of the SSL/TLS protocol
stack and the send and receive routines of the SSL/TLS network layer. These two issues
as well as the TTSC are elaborated in the following.

The SSL/TLS protocol stack is the key component of a security subsystem. It consists
of the following three components:

(1) SSL/TLS-packet processing routines, called a SSL/TLS record protocol; they include
data segmentation, compression, encryption of packet, and the calculation of a
MAC;

(2) SSL/TLS buffer management, which includes a send and receive SSL/TLS buffer;
(3) protocols for an SSL handshake, an SSL change cipher, and an SSL alert.

Due to the nature of SSL/TLS, all SSL/TLS packets sent to clients are processed by
the SSL/TLS-packet processing routines just mentioned. The packet transfer rate and
latency of each SSL/TLS session vary in relation to the computation power of the client
and the server and the dynamic status of the network path established between the
server and the client. From the perspective of a TCP/IP protocol stack, an SSL/TLS
subsystem is a data provider whose role is to encode an adequate amount of data
from an application’s buffer into TCP send buffers. This type of encoding is based on
consideration of the transmission rate of a corresponding SSL/TLS connection.

In the following, we explain how conventional SSL/TLS is implemented in a widely-
deployed SSL/TLS protocol such as OpenSSL. The execution routine for sending
SSL/TLS data occurs in the order shown in Figure 2.

(1) Fragmentation. An SSL/TLS record protocol works by fragmenting the data to be
transmitted into a series of fragments, each of which is independently protected
and transmitted. Depending on the SSL/TLS implementation, the protocol may
copy the data into buffers in a user space.

(2) Compression. Each fragment is compressed provided compression options are en-
abled and stored in a temporary buffer.
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Fig. 2. Execution routines for sending SSL/TLS data of conventional SSL/TLS.

(3) MAC and encryption. The next step involves the computation of a MAC, which
facilitates message integrity. The compressed message and MAC are encrypted,
and a header is then attached to the payload to complete the assembly of the SSL
record.

(4) SSL/TLS network routine. The encoded data are stored in an SSL buffer and an
SSL/TLS network routine is called. The routine is then blocked in the blocking I/O
until the corresponding acknowledgement segments are transmitted. The blocking
may occur very frequently due to the mismatch between the data generation rate
of the SSL/TLS record protocol and the packet consumption rate of the TCP.

As explained, whenever SSL/TLS sends data to a client, the send routine should be
blocked until the corresponding acknowledgement segments are transmitted [Rescorla
2001]. As a result, the computation resource for processing the SSL/TLS segments
in both server and client side tend to be underutilized. Thus, the current SSL/TLS
obviously suffers from the frequent blocking operations.

To see how the bandwidth of an SSL/TLS connection affects the utilization of com-
putation and communication, we set up an experimental environment comprised of a
client, a server, and a WAN router [Carson and Santay 2003]. The server and client had
identical hardware specifications (CPU: Xeon E5550, RAM: 4GB) which is a front-end
Web interface server of our cloud computing platform. The router emulates a WAN
environment by providing for each connection a set of configurable parameters, such
as the latency and bandwidth. We established a hundred SSL/TLS connections be-
tween the server and the client via the router with various connection bandwidths.
When a connection became stable, the effective throughput was probed. We note that
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the effective throughput is the throughput considering the compression effect. In this
experiment, we applied lzo [Oberhumer 2010] as a compression module of the SSL/TLS.

From Figure 3, we can summarize the following observations.

—Trade-off analysis of compression-enabled and compression-disabled SSL/TLS
recording strategies. As the available bandwidth increases, the effective through-
put (regarding the compression effect) of the compression-enabled and compression-
disabled SSL/TLS connections also increase with different incline. Figure 3(a) shows
the saturated effective throughput of the compression-enabled and compression-
disabled SSL/TLS at available bandwidths of about 600Mbps and 800Mbps, respec-
tively. In the case of the compression-enabled SSL/TLS, even when the available net-
work bandwidth exceeds the SSL/TLS encoding throughput (340Mbps), some regions
are guaranteed to win the compression-disabled SSL/TLS effective throughput. This
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behavior occurs because the compression-induced gain exceeds the underutilized
network bandwidth. When the available network bandwidth sufficiently exceeds
the SSL/TLS encoding throughput, it cannot outperform the compression-disabled
SSL/TLS effective throughput since it starts to underutilize the network bandwidth
that exceeds the compression-induced gain.

—Computation and communication underutilization by different types of bottlenecks. As
shown in Figure 3(b), at the low end of the available bandwidth (1Mbps to 100Mbps),
the compression-enabled SSL/TLS connection is on the bottleneck zone of the net-
work, that is, where the network bandwidth is fully utilized but the computation
resource is underutilized. This situation remains the same as long as the available
network bandwidth cannot sufficiently transmit all of the compressed data. The
bottleneck zone of the network is delimitated by a given SSL/TLS encoding through-
put (340Mbps), the point at which the compression thoroughly utilizes the CPU
and the compressed data fully occupies the available network bandwidth. At the
high end of the available bandwidth (400Mbps to 1Gbps), the compression-enabled
SSL/TLS connection is on the bottleneck zone of the computation. It saturates the
CPU and underutilizes the network bandwidth. Conversely, as shown in Figure 3(c),
the compression-disabled SSL/TLS encoding saturates the network bandwidth but
leaves the CPU underutilized in the overall region. As a result, it is on the bottleneck-
zone of the network because the SSL/TLS encoding throughput sufficiently exceeds
the available network bandwidth.

Static SSL/TLS encoding obviously causes inefficient communication and computa-
tion utilization. In addition, the static SSL/TLS encoding strategy causes additional
inefficiency of the computation and communication resources in data-intensive servers
or devices with low computing power [Qi et al. 2009]. Therefore, to maximize the uti-
lization of the CPU and network bandwidth, we developed TTSC, which separates
the computation routine from the network routine and blends compressed and un-
compressed packets regarding the data transmission rate of a corresponding SSL/TLS
connection. Therefore, deciding the amount of data to be compressed for the perfor-
mance improvement of SSL/TLS is a key problem in TTSC. Prior to illustrating how
TTSC works, we need to explain how the states of SSL/TLS connections are maintained
in an SSL/TLS protocol stack. Dynamic SSL/TLS states can be obtained at a given mo-
ment by probing the variables of an SSL/TLS buffer that is maintained by an SSL/TLS
protocol stack [Rescorla 2001].

—ssl buffer.left is the size of data to be sent to the TCP.
—ssl buffer.offset is the address pointer of the next data byte to be sent.

The left edge of the SSL/TLS buffer in Figure 4 is ssl buffer.offset; the right edge is
ssl buffer.left. Whenever an SSL/TLS process receives an acknowledgement segment,
the pointer ssl buffer.offset moves to the right along the space of the SSL/TLS buffer
address. The relative interval of the two edges of the buffer either increases or de-
creases its available buffer space for outgoing data. The speed of the pointer movement
is mainly determined by the bandwidth of the SSL/TLS connection. With that infor-
mation, we can estimate the approximate transmission data rate of a given SSL/TLS
connection.

To devise our new SSL/TLS encoding mechanism from scratch, TTSC is based on
the transmission data rate (TD). A TTSC monitor is used to measure the new state
variables needed to observe the status of the SSL/TLS encoding. The variables are
defined in TTSC for an individual SSL/TLS connection as follows.
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Fig. 4. SSL/TLS buffer space and variables for TTSC-based SSL/TLS send/receive routines.

—Encryption data rate (ED). This variable is the average data rate of an encryption
in an interval of time; it is expressed as the generated amount by the encryption
divided by the duration of the interval.

—Compression data rate (CD). This variable is the average data rate of a compression
in an interval of time; it is expressed as the generated amount by the compression
divided by the duration of the interval.

—Compression ratio (CR). This variable is a value that represents the ratio of the com-
pressed data length to its original data size. The ratio is calculated by Compressed
Size / Original Size.

To measure the size of data to be compressed, SCE, we consider the monitored values
of TD, ED, CD, and CR.

Definition 1. The alpha value of an SSL/TLS connection is defined as the time ratio
Tcomp/Ttotal for the connection, where Ttotal is the total encoding time and Tcomp is the
time of the data to be compressed.

Alpha represents the potential network saving and computational overhead. A larger
α value indicates that the TTSC technique achieves a greater network traffic saving
and computation utilization. When the monitored values of TD, ED, CD, and CR are
obtained, we can calculate the optimal ratio, α, for a given SSL/TLS connection by
considering TD to be equal to the data rate for the compression plus the encryption
with the optimal ratio, α.
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In this equation,

CD · ED
CR · CD + ED

· α + ED · (1 − α) = TD,

α =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if ED < TD and CD < TD

TD · CR − ED
CD/(CR · CD + ED) − ED
1.0, if CS > TD,

(1)

CD · ED/(CR · CD + ED) is a derived compression-encryption data rate considering
the current C R. ED is an encryption data rate and TD represents the transmission
data rate. α is a coefficient that aligns the encoding data rate into the TD by partially
applying compression with the ratio, α. TTSC needs to ensure that α satisfies Equa-
tion (1) to sustain the outgoing bandwidth of the given SSL/TLS connection. Once α is
obtained, the amount of data to be compressed (SCE) and the amount of data to be left
uncompressed (SE) can be calculated as follows:

SCE =

⎧⎪⎨
⎪⎩

α · S · CD
TD

, if 0 < α < 1.0

S, if α > 1.0

SE = S − SCE,

(2)

where S is the total size of the data from the application layer. Whenever the
data from an application layer arrives at an SSL/TLS record layer, TTSC encodes
SE Kbytes to the compression-disabled SSL/TLS segment and SCE Kbytes to the
compression-enabled SSL/TLS segment to maximize the utilization of the CPU and the
network.

3.1.1. Implementation Details in OpenSSL. This section illustrates how to implement
TTSC in OpenSSL 1.0.0. Figure 5 shows the detail of the data delivery over SSL/TLS en-
hanced with TTSC at a function level. In TTSC, a set of routines executed in one thread
(SSL/TLS-based data sending routines of Figure 2) is integrated into two threads, a
record thread (RT) and an I/O and control thread (ICT) as shown in Figure 5. Once the
size of the data to be compressed (SCE) and the size of the data to be left uncompressed
(SE) are derived in this scheme by the ICT, the RT compresses and encrypts packets
according to the derived values and the ICT performs SSL/TLS network routines. The
two threads interact through an SSL/TLS buffer. The RT takes a certain amount of
data from the application layer and puts encoded packets into the SSL/TLS buffer
after the encoding. The ICT takes the encoded packets from the SSL/TLS buffer and
sends them over the TCP. By virtue of the threaded encoding, which cleanly separates
the computation routines from the network I/O routines, TTSC can continue to supply
a proper amount of encoded data to the SSL/TLS buffer with improved network and
computation utilization.

3.2. Floating-Scale-Based Compression Negotiation (FSCN)

To transfer data to a client over SSL/TLS, we first need to encode the data by means
of compression and encryption algorithms and load them into an SSL/TLS buffer.
The compression technique increases the amount of bandwidth available to a given
SSL/TLS connection. By reducing the amount of data transferred, we increase the
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Fig. 5. Execution routines for sending SSL/TLS data of TTSC-based SSL/TLS data transfer.

available bandwidth and reduce the transmission time. However, compression involves
the following challenging issues for efficient SSL/TLS communication.

—First, compression techniques vary from a performance perspective, particularly
with regard to the compression ratio (CR), compression time, and decompression
time. Techniques are either optimized for the CR or execution time. The process
consequently involves a trade-off between various factors, including the algorithmic
complexity and the CR. Thus, applying a certain compression method to an SSL/TLS
connection may not be optimal.

—Second, the compression performance relies on the availability and performance of
the underlying resources, such as the network bandwidth, the latency, and the com-
putation power. This performance varies significantly across environments; it also
varies over time for the same environment. The latter impacts mobile devices such
as smartphones, tablets, netbooks, and notebooks. For mobile devices, the available
underlying networking technology changes regularly [Brik et al. 2005], for example,
network switching occurs in a given network infrastructure, such as GPRS, Wi-Fi,
and 100Mb/1Gb Ethernet.

Motivated by these observations, we devised a novel compression negotiation mech-
anism, FSCN, to enable a form of negotiation that automatically and transparently
identifies and applies the best compression technique where the connection and com-
putation workload are different and dynamic.

In our implementation, we chose run-length encoding (RLE) [Geelnard 2006],
lzo [Oberhumer 2010], gzip [Gailly 2010], and bzip [Seward 2010] as the set of
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Fig. 6. Defined floating scale consists of a set of profiled computation index (CI).

compression modules of SSL/TLS. The reasons for this selection are summarized
as follows. First, the selected compression algorithms have different performance
characteristics in terms of the compression ratio and the compression/decompression
time. The bzip is optimized for the compression ratio at the cost of the compression and
decompression times. RLE and lzo have much faster compression and decompression
times but a low compression ratio, lower than bzip. In the case of gzip, the performance
characteristics in terms of the compression ratio and compression/decompression time
fall between those of LZO and bzip. The set of compression modules with different
performance characteristics provides an opportunity to apply the most profitable com-
pression module cognitively considering the given SSL/TLS connection and the current
computation power of the environmental heterogeneity of the sender and receiver.
Second, the compression algorithms are selected because of their wide availability and
practicality. The compression algorithms (RLE, lzo, gzip, and bzip) commonly provide
open-source libraries with well-defined interfaces. This makes it possible to integrate
them into the SSL/TLS protocol stack as a set of compression modules.

The core component of FSCN is the floating scales (FS) of the sender and receiver
because FSCN uses the FS to dynamically adjust the compression algorithm. As shown
in Figure 6, the FS consists of multiple scales. Each scale is mapped to the computation
index (CI) of each encoding scheme (compression algorithm plus encryption algorithm);
the CI reflects the computational characteristics, such as the data rate for the com-
pression plus the encryption and CR. During the installation phase of ACCENT, each
CI value is locally derived and updated into the FS by means of a micro-benchmark.
From the results of the micro-benchmark, the value of each CI can be measured and
initialized into the FS so that the initial FS is constructed (Phase 1: Initialization).
After that, each CI of the sender and receiver is periodically monitored and updated
into the FS through a real SSL/TLS transmission so that the FS moves up and down
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in accordance with the dynamic states of the underlying computation power, and CR
(Phase 2: FS Evaluation). Hence, the FS of the sender and receiver keeps track of the
CIi associated with each encoding scheme, i. In addition, the FS values of the sender
and receiver are exchanged with each other (Phase 3: Exchange). Finally, by finding
the shortest Euclidean distance between each CI and the current network bandwidth,
our new mechanism heuristically determines the most profitable compression method
(Phase 4: Negotiation). Because FSCN aims to provide an adaptive SSL/TLS encoding
mechanism, any kind of encoding methods included in the FS can be applied to a given
SSL/TLS connection, ensuring that the SSL/TLS connection performs the transmission
at the highest possible throughput.

In summary, the FSCN process has four phases. Phase 1 runs on the server and client
side to initialize the FS in the installation phase of ACCENT. Phase 2 periodically
updates the FS of the sender and receiver. Phase 3 exchanges the derived FS between
the sender and receiver. Phase 4 conducts a negotiation on the selection and application
of an encoding scheme. Whenever FSCN is enabled, the following four phases are
performed to determine the optimal encoding scheme for the sender and receiver.

Phase 1 (Initialization). This phase, which is part of the installation of ACCENT, is an
initial profiling phase. Each CI value of the FS is locally derived and updated by means
of a micro-benchmark. The micro-benchmark performs SSL/TLS recording routines for
each encoding scheme; for this purpose, it uses a training set consisting of a hundred
16KB blocks from a well-defined Web traffic dataset from SPECweb2009 [SPEC 2010].
The micro-benchmark results indicate the CR, CD, and ED. After that, each CI can be
derived as follows:

CIδ = CDδ · ED
C R · CDδ + ED

+ CDδ(1 − C R),

(1) Result from Micro-benchmark
CD: Compression Date Rate
CR: Compression Ratio
ED: Encryption Data Rate

(2) First term: Encryption-compression data rate

= Total Size(S)
Total Time

= S
S/CD + S · CR/ED

= CDδ · ED
CR · CDδ + ED

(3) Second term: Reduction-speed

= Reduced Size
Total Time

= S − CR · S
S/CD

= CD(1 − CR),

(3)

where δ is the currently applied encoding scheme, and the first term, CDδ · ED/
(CR · CDδ + ED), is the derived data rate for the compression plus the encryption,
and the second term, CDδ · (1 − CR), is the data reduction speed derived from the
corresponding compression module. Therefore, Equation (3) reflects the potential data
rate with consideration of the computation overhead and the data reduction speed of a
certain compression method. Each CI value can be obtained by applying Equation (3)
to each encoding scheme. The CI values are organized into a type of array (FS <>),
and stored locally as shown in Figure 6. Finally, FSCN locally accepts a set of profiled
CI values as input to construct the initial FS. In addition, Phase 1 can be performed
again whenever the hardware is changed or a new compression method is added.

Phase 2 (FS Evaluation). FSCN considers the underlying network status, the com-
putation power, and the CR of each encoding scheme as part of the FS estimations. In
this phase, the values of FS of the sender and receiver are periodically monitored and
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ALGORITHM 1: Updating the CIS and CIR of the current encoding scheme

Input: Input parameters of Equation (3) to derive CIδ

Output: Updated FSS
<> and FSR

<>

1 //CIS : CI value of sender;
2 //CIR : CI value of receiver;
3 //CIδ : CI of current encoding scheme;
4 //CIδ(−0) : the latest CI of current encoding scheme;
5 //CIδ(−ω) : CI in the ω-th previous time quantum;
6 invoke performance monitoring framework;
7 derive CI−0

δ using Equation (3);
8 CIavg

δ ← get average of (CI−w
δ to CI−0

δ );
9 difference ← CIavg

δ − CI−0
δ ;

10 foreach CI element from FSS
<>, FSR

<> do
11 sender: CIS ← FSS

<index> + difference;
12 receiver: CIR ← FSR

<index> + difference;
13 end
14 set an update timer to expire after q sec;

updated through a real SSL/TLS transmission so that the FS moves up and down in
accordance with the dynamic states of a given computation power, and CR value.

The overall procedure of Phase 2 is described as follows in Algorithm 1, where
FSS

<> and FSR
<> are the FS of the sender and receiver, respectively. Since the

initialized FS by Phase 1 can be changed by a current computation workload and CR,
this update is based on the process speed and CR of the current SSL/TLS transmission
during the w previous time quanta. Despite the algorithmic differences, we assume an
approximately linear relation among the different compression methods in terms of
the CR and process speed [Krintz and Sucu 2006]. The FS can therefore be updated on
the basis of the CI of the current encoding scheme.

Algorithm 1 updates FSS and FSR before every time quantum. This enables each
FSCN of the sender and receiver to keep track of the CI of the current encoding scheme,
CIδ(−0) (lines 6 and 7 of Algorithm 1). The notation CIδ(−ω) denotes the CI in the wth
previous time quantum. The runtime parameter, ω, defines the sliding window over
which the derived CI values are averaged (lines 8 of Algorithm 1). The average value
of ω previous CI values can be used to derive the difference (line 9 of Algorithm 1).
The FSS and FSR values are then updated so that the difference is reflected in each CI
value of the FS (lines 10 to 13 of Algorithm 1). The FSS and FSR values are updated
before every time quantum (line 14 of Algorithm 1). The choice of ω can affect the
responsiveness of FSCN: When the value of ω is increased, short spikes of change are
disregarded; When the value of ω is decreased, there is a quick adaptation to changes
in the underlying environment.

Phase 3 (Exchange). The evaluation of FSS and FSR in Phase 2 is designed to be
executed locally at the sender and receiver. Thus, the local values of the sender and
receiver should be shared periodically with each other to ensure the proper selection
of the compression modules. The FSS and FSR derived in Phase 2 are exchanged over
the SSL/TLS packet header in a compact 1-byte format.

Phase 4 (Negotiation). In the final phase of FSCN, a negotiation operation takes
place. For the FSCN-based negotiation, time is divided in quanta of q sec. At the end of
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ALGORITHM 2: Selecting the encoding scheme for the next time quanta

Input: measured TD, FSS
<>, and FSR

<>
Output: selected encoding scheme (CIbest)

1 // bestd: the shortest Euclidean distance so far;
2 // best: index number of bestd;
3 // d: measured Euclidean distance;
4 invoke FS of two end points into FSS

<> and FSR
<>;

5 TD ← measured TD;
6 bestd ← ∞; best ← −1;
7 foreach CI pairs from FSS

<>, FSR
<> do

8 CIS ← FSS
<index>, CIR ← FSR

<index>;
9 d ← distance(CIS

, CIR
, TD);

10 if d < bestd then
11 bestd ← d;
12 best ← index;
13 end
14 end
15 selected encoding scheme ← CIbest;

every time quantum, FSCN may change the compression module that is to be applied
during the next time slots. The procedure for negotiating the local set of compression
modules is described in Algorithm 2.

Algorithm 2 heuristically selects the encoding scheme. It estimates the fitness be-
tween the resource demands of each encoding scheme and the currently available
resource, such as the computation power and the network bandwidth. The fitness can
be measured by the sum of the distance between CIS and TD, and the distance between
CIR and TD (lines 8 to 9 of Algorithm 2). The shortest distance is the main criterion
for selecting the encoding scheme (lines 10 to 13 of Algorithm 2).

Figure 7(a) shows FSCN-based negotiation. This type of negotiation is based on
the assumption that mobile devices such as smartphones and netbooks are connected
to a server over SSL/TLS. In this case, the available underlying network interface
changes regularly, for example, where a user uses Wi-Fi while attending a conference
(State1); takes the device to work and connects via a 100Mb/1Gb Ethernet link (State2);
and, while outdoors, connects the device to a GPRS network (State3). In FSCN, the
encoding scheme for a given SSL/TLS connection is selected heuristically in an effort to
balance the load of the computation overhead and the current network status; it does
so by ensuring that the sender and receiver are neither saturated nor underutilized.
Algorithm 2 selects the most fitting encoding scheme considering which scheme has
the optimum resource consumption for the current TD (lines 7 to 13 of Algorithm 2).
As shown in Figure 7(b), if we visualize the 2-D distribution of the CI values of each
encoding scheme of the sender and receiver on the x axis and the y axis, respectively,
we can derive the Euclidean distance between each CI and TD. The selection can be
achieved by finding the CI with the shortest Euclidean distance among the invariant
candidate CIs by following equation.

Selected encoding scheme(n) = min
n∈CIS

,CIR

(√
(TS − CIS)2 + (TS − CIR)2

)
, (4)

where n is the selected encoding scheme, which is a good fitness heuristic.
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Fig. 7. FSCN-based negotiation under a scenario of various network and computation workloads (a) FSCN-
based negotiation for a changing transmission data rate; (b) 2-D distribution of CI of each encoding scheme
of the sender and receiver.

In the case of State1, the derived encoding scheme is CI4 (gzip2 + AES), because the
shortest Euclidean distance is between CI4 (x: FSR

<4>=7, y: FSS
<4>=28) and the

current TD (x: TD=24.3, y: TD=24.3). Depending on changes in the available network
interface, the derived encoding scheme by FSCN is CI1 (RLE + AES) for State2 and
CI5 (Bzip1 + AES) for State3. The use of this metric facilitates the algorithm selection
by finding the shortest distance between TD and CI. Once the compression algorithm
has been selected, the selected compression module is applied to the SSL/TLS data
stream.

3.3. Unified Memory Allocation for Compression (UMAC)

In this section, we describe the solution for the most effective reaction of a memory al-
locator when the compression algorithm is changed frequently by the adaptive module.
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Table I. Memory-Related Operation Profile and Compression Switching Overhead

Algorithms Initial Overhead Release Overhead Consumed Memory
gzip 0.46 ms 0.24 ms 141.7 KB
bzip 1.31 ms 0.68 ms 453.28 KB
lzo 0.19 ms 0.08 ms 64 KB
RLE 0.15 ms 0.07 ms 16 KB

Note: Allocated memory size of the server side for compression and the memory
initialization/reclamation time.

Table II. SSL/TLS Transmission Profile for One Packet Transmission Accompanying Compression Switch

https SSL/TLS TCP/IP
SSL-Recording Scheme get(), post() malloc() do comp() do enc() send(), recv()
gzip-AES 2.04% 7.75% 81.28% 3.13% 5.79%
bzip-AES 1.14% 14.19% 80.43% 1.48% 2.75%
lzo-AES 6.29% 8.81% 42.67% 14.81% 27.42%
RLE-AES 5.85% 7.03% 17.84% 24.29% 44.98%

Memory operations can be a burden because they generally proceed at memory speed
rather than CPU speed and thereby slow the performance of the system [de Bruijn
and Bos 2008]. Conventional SSL/TLS systems provide inadequate support for the
adaptive module. As a result, they cause severe transmission latency, which hinders
the improvement of the FSCN. This problem may be due to the memory footprint and
the lack of integration among the various compression modules. Each compression mod-
ule uses its own internal buffering and dictionary mechanism. Whenever the applica-
ble compression module is changed, it releases the memory allocated for the dictionary
and data buffering of the corresponding compression modules and it immediately ter-
minates the compression operation. This approach leads to frequent bouts of memory
allocation and release as well as other performance-degrading anomalies. This design
has an obvious drawback, that is, the repeated memory allocation causes a high CPU
overhead and limits the throughput of the SSL/TLS system.

In an attempt to fully understand the switching of the SSL/TLS compression module,
we profiled a running https server, focusing on the memory allocation and reclamation
of compression induced by Oprofile [Levon and Elie 2011]. Oprofile can collect execu-
tion profiles of all the execution entities of the (thread-level) processes and memory
allocations. We conducted the profiling on the https server because it covers all of the
SSL/TLS routines; an https transaction on the server is a superset of the SSL/TLS
routines. For profiling, we interconnected a server (CPU: Xeon E5500, RAM: 4GB) and
clients (CPU: Z530, RAM: 1 GB) with a dynamically changing network environment
and computation workload to force the switching of the compression module. The clients
established SSL/TLS connections with the server and then downloaded and uploaded
diverse chunk files from the server as fast as possible.

Table I shows the allocated memory size of the server side for the compression and
the memory initialization and reclamation time of each SSL/TLS connection. It also
shows the duration of the switching algorithms. Each compression algorithm requires
16KB to 453.3KB of memory for the compression buffer and dictionary. Table II shows
the profiling results of the server side for a packet transmission that accompanies the
compression switch. The symbols in boldface represent the following entities: https,
secure socket layer (SSL/TLS), and the TCP/IP. Around 7.03% to 14.19% of the CPU
cycles are consumed in the various types of compression switching, such as data copy-
ing and memory allocation. In addition, TCP/IP takes 2.75% to 44.98% for protocol
processing. On the other hand, https takes only 1.14% to 6.29% of the CPU cycles. The
http protocol processing makes up only a small fraction of our experiments because a
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Fig. 8. Memory operations and compression switching. (a) Conventional memory allocation (b) UMAC-based
memory allocation.

single SSL/TLS connection generates only one https request to download a chunk file.
The profiling results suggest that compression switching can be burdensome when the
compression algorithm is changed frequently.

Figure 8 shows the memory operations for compression switching in the SSL/TLS.
Let us assume that a compression algorithm is switched from gzip to lzo as pictured in
Figure 8(a). Whenever the compression module is changed, the current compression
module releases the assigned memory, decreasing the transmission rate of the
corresponding connection. At that moment, a new memory footprint is issued to a new
compression module, which tends to duplicate the memory operations.

We devised UMAC to deal with the frequent compression switching in SSL/TLS.
The UMAC is a technique to speed up the transition between compression algorithms
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during an ongoing data transfer. It unifies the compression data buffers inside
a shared memory instance. To achieve this, UMAC introduces a unified memory
allocation structure. Figure 8(b) illustrates UMAC with the unified memory allocation
structure. The structure consists of the base address table and the shared work
memory pool for the compression modules. It is allocated in a region of the heap space
called the UMAC buffer. The shared work memory pool can be commonly utilized
for each compression module. In the case of gzip or lzo, the shared work memory
pool is used to search buffers; in the case of bzip, it can be used to sort buffers. All
compression modules can utilize the region through the unified memory layout of
UMAC. The address of the shared memory region is passed among the compression
modules in terms of the values (the start address and length) of the base address
table. In contrast, the associated UMAC buffers are passed among the compression
modules in terms of reference. This approach enables a single memory allocation for
multiple compression modules to be shared throughout the corresponding SSL/TLS
connection. This occurs because the UMAC replaces memory operations such as
a memory allocation and release with the memory address passing for a new
compression.

We note that UMAC does not require any modification of system-level functions
such as malloc() or free(). The modification induced by UMAC involves the memory
operation routines inside the compression library of OpenSSL. Consequently, UMAC is
applicable not only to the specified compression modules but also to other compression
schemes. Once the data structure for a certain compression scheme is registered in
the unified memory layout of UMAC, a single instance of memory allocation for mul-
tiple compression modules can be shared among the other compression modules. This
therefore significantly shortens the compression switching latency.

In brief, UMAC enhances the efficiency of memory operations, such as the memory
allocation and release, by unifying the memory allocated to SSL/TLS connections when
the compression switching occurs.

4. PERFORMANCE

In this section, we present the performance results obtained with our prototype ver-
sion of ACCENT implemented in OpenSSL 1.0.0. It was developed as an internal code
patch for core SSL/TLS routines without any modification to the current syntax of na-
tive SSL/TLS routines. Hence, no application modification or recompilation is required
to utilize ACCENT as long as applications use SSL/TLS routines as a data transfer
primitive. We perform the experiment within a real cloud computing platform [NexR-
iCubeCloud 2011] running SSL/TLS-based Web interface and secure storage service
on account of its practicality. The SSL/TLS used in our experiments is the open source
OpenSSL 1.0.0. The https traffic load was generated with SPECweb2009, which is the
industry standard for evaluating an SSL/TLS-based Web system performance [SPEC
2010]. As shown in Figure 9, the SSL/TLS-based Web interface of the cloud side has
a Xeon E5500 processor and 4GB main memory. Four kinds of client machines with
diverse hardware specifications, from handheld devices to the server, were used to
drive the server with a variety of access patterns. To emulate a WAN environment, we
used a NIST-WAN router that provides each connection with a set of configurable pa-
rameters, such as latency and bandwidth [Carson and Santay 2003]. All the machines
were interconnected via a gigabit Ethernet. ACCENT can improve the performance of
servers that handle a number of concurrent SSL/TLS connections; it can also improve
the performance of clients. Therefore, the performance metrics of our experiments are
the overall transmission rate of the server and client and the resource utilization under
various workload patterns.
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•
•
•

Front-end Cloud Web-interface 
and secure storage service  
powered by SSL/TLS

Fig. 9. Experiment environment to measure the performance of ACCENT.

4.1. Various Available Network and Computation Resources of TTSC

The first experiment measures the performance of TTSC as the number of simultane-
ous client connections is varied. Increases in the simultaneous connections change the
utilization of the computation and communication resources in the server and clients.
That behavior enables us to observe how TTSC operates with respect to changes in
the computation and network load. When an experiment is initiated, all clients es-
tablish SSL/TLS connections and then download the target chunk of data (731MB)
as rapidly as possible. Figures 10(a) and 10(b) show the overall CPU and network
utilization of the server side, respectively, as the number of simultaneous client con-
nections increases. Both parameters increase until the concurrent connection is satu-
rated by the given network or computation resources. In the case of the SSL without
compression, the CPU utilization slows down from 50% to 44%, and the network uti-
lization slows down from 72% to 50% when the simultaneous connection is 120 and
280, respectively. In the case of the SSL connections with compression, the CPU uti-
lization slows down from 72% to 44%, and the network utilization slows down from
23% to 10% when the simultaneous connection is 40 and 280, respectively. Our ob-
servation of the saturation points confirms that the compression-disabled SSL/TLS
may saturate the network bandwidth while leaving the CPU underutilized and vice
versa. Specifically, 50% of the CPU time is idle when there are 120 connections, and
the CPU idle time increases as the number of simultaneous connections increases to
280.

The goal of TTSC is to take advantage of these underutilized resources. In the
case of TTSC-enhanced SSL/TLS, even when the network bandwidth is saturated,
the CPU utilization is higher than the two other schemes. The CPU and network
utilization are increased as the number of simultaneous connections is increased
by up to 80. Figure 10(a) confirms that as the number of simultaneous connections
increases, the TTSC improves the CPU utilization by 44.43% more than the SSL/TLS
with compression. Figure 10(b) confirms, from the network utilization perspective,
that TTSC improves the network utilization by up to 2.91 times the corresponding
improvement with the SSL/TLS with compression.
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Fig. 10. Resource utilization of the server side with varying the number of concurrent connections. (a) CPU
utilization and (b) Network utilization.

In all three cases of Figure 10, the SSL/TLS connections cannot completely satu-
rate the network and the CPU utilization. The cause of the underutilization of the
network and the CPU resources is the increasing I/O and context switching overhead
as the number of SSL/TLS connections increases. This reflects the operating system
involvement in the SSL/TLS-based data delivery process [Coarfa et al. 2006].

Figure 11 compares the effective throughput of the three variants as the number
of simultaneous client connections from the server side is increased. We note that the
effective throughput is the throughput considering the compression effect. When the
number of concurrent connections exceeds 80 simultaneous connections, the effective
throughput values of the three cases are decreased. When the number of concurrent
connections is 120, the peak effective throughput of TTSC is 948.2Mbps. The perfor-
mance improvement by TTSC ranges from 138.5Mbps to 245.9Mbps as compared to
the SSL without compression and from 0.24Mbps to 552.6Mbps as compared to the
SSL with compression.

4.2. Client-Aware Adaptiveness Evaluation of FSCN

In an attempt to evaluate the adaptiveness of FSCN, we used a variable network band-
width in connections between a server and clients; the variable computation workloads
were used as experimental parameters. This process enabled us to evaluate FSCN
under a dynamic network environment with variations in the available network band-
width or the available computation resources of the server and client side. The available
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Fig. 11. Effective throughput of server side with varying the number of concurrent connections.

network resources can change regularly: examples include a user who connects a mo-
bile device to the Internet over a gigabit network at the office, a user who takes a mobile
device to work and connects via a GPRS network, or a user who makes a Wi-Fi con-
nection while attending a conference. We assume average bandwidths of 250Kbps for
the GPRS network, 35Mbps for the Wi-Fi, and 823Mbps for the gigabit Ethernet [NO-
VARUM 2009]. At the same time, the available computation resources of the server
and client side are changed by several factors such as other processes or updates. The
changes are shown in Figures 12(a) and 12(b).

To evaluate matching, we compare their performances in terms of the matching ratio
between the ideal solution (which was predetermined on the basis of separate trials)
and the FSCN solution. Before starting the network and computation pattern, we
establish an SSL/TLS connection and set the negotiation duty cycle to 200ms. We then
run the server for around 100s to compare the ideal solution with the FSCN solution.
Figure 12(c) illustrates the matching ratio of the ideal solution and the FSCN solution.
FSCN performs in a similar manner to the best performing technique in all scenarios; it
achieves 91.32% probability for the current network bandwidth and computation power
even when the network and computation environment are changed dynamically. This
observation confirms that FSCN can tolerate network and computation load variations
as the most profitable compression module is applied to the corresponding SSL/TLS
connection.

4.3. Bandwidth Effect of FSCN

To highlight how FSCN improves the effective bandwidth when the compression mod-
ule is cognitively applied, we empirically compare the effective FSCN-enhanced trans-
mission rate with the following commonly used SSL/TLS recording schemes: no com-
pression, RLE, lzo, gzip, and bzip. We note that the effective transmission rate is the
transmission rate considering the compression effect. Given different levels of network
and computation load as the scenario of Figure 12, the FSCN-enhanced transmission
rate is evaluated in terms of the previous scenario. When it comes to changing the
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(a)

(b)

(c)

Match Ratio: 91.32%

Fig. 12. FSCN adaptivity evaluation. (a) Available bandwidth (b) Available CPU resource (c) Negotiated
compression module by FSCN.

negotiation parameter, our rule of thumb is to derive the most profitable compression
module that can achieve the highest possible transmission rate.

Figure 13 shows the effective transmission rates for the given scenario. The bars
from left-to-right represent the effective transmission rate of commonly used SSL/TLS
recording schemes (no compression, RLE, lzo, gzip, and bzip), as well as FSCN, FSCN
with TTSC, and the ideal recording scheme. The effective transmission rates in Fig-
ure 13 are for the client side; they were measured with four kinds of client machines
with diverse hardware specifications, from handheld devices to the server. In the na-
tive SSL/TLS recording schemes, the effective transmission rates are from 74.9Mbps
to 193.4Mbps. In contrast, FSCN improves the transmission rate from 192.2Mbps to
272.1Mbps. FSCN with TTSC outperforms the other two methods with a transmission
rate range of 234Mbps to 358.3Mbps. This range represents a transmission rate that
is 40.7% to 156.6% better than that of TTSC only and 85.3% to 212.4% better than the
native SSL/TLS recording schemes. Last, in comparison with the ideal scheme (which
was predetermined on the basis of a solution derived from the separate trials discussed
in the previous section), FSCN achieves a 96.37% transmission rate and FSCN with
TTSC achieves a 96.48%.

These observations confirm that we can achieve a higher transmission rate by apply-
ing the compression module with FSCN. Furthermore, FSCN can perform in a similar
manner to the best-performing technique in the given scenario. The key contribution
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(a) (b)
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Effective transmission rate (Mbps) Effective transmission rate (Mbps)

Effective transmission rate (Mbps)Effective transmission rate (Mbps)

Fig. 13. Transmission rate with FSCN. (a) Smartphone (CPU: PXA320, RAM: 256MB), (b) Netbook computer
(CPU: Z530, RAM: 1GB), (c) Desktop computer (CPU: i5, RAM: 4GB), and (d) Server computer (CPU: Xeon
5500, RAM: 4GB).

of FSCN is that it can adapt to wherever the connection and computation workload are
different and dynamic.

4.4. Switching Overhead Reduction by UMAC

UMAC enables an SSL/TLS subsystem to switch a compression module with a lower
switching overhead by means of a unified memory instance. Figure 14 shows how
the overhead is minimized by UMAC in the client side during the FSCN-induced
compression switching. At the beginning of this experiment, a client (CPU: Z530, RAM:
1GB) established a connection with a server (CPU: Xeon E5500, RAM: 4GB) and let
the connection run for 10s. After 10ms, the network and computation environment
is changed to force the switching compression module to change from bzip to lzo.
Without UMAC, it takes approximately 7.34ms to reach the maximum throughput
of the corresponding compression module. UMAC reduces the time delay by 1.22ms.
When a renegotiation message is received, a new compression module is immediately
implemented without the memory allocation and release operations.

We measured the compression switching overhead with the four kinds of client ma-
chines as shown in Figures 13(b) to 13(d). In the native compression switching, the av-
erage switching delay is from 1.48ms to 9.02ms on low computing devices (Figure 14(b)
and Figure 14(c)). The range of the switching overhead enhanced with UMAC (0.34ms
to 0.49ms) achieves a 4.35 to 18.41 times shorter switching delay than that of native
compression switching. Even in the case of high-end computing devices (Figure 14(d)
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Fig. 14. The performance impact of UMAC. (a) The throughput against switching overhead, (b) Smartphone
(CPU: PXA320, RAM: 256MB), (c) Netbook computer, (CPU: Z530, RAM: 1GB), (d) Desktop computer (CPU:
i5, RAM: 4GB), (e) Server computer (CPU: Xeon 5500, RAM: 4GB).
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(a) (b)

(c) (d)

Fig. 15. The normalized performance impact of ACCENT in comparison with the normal SSL/TLS as the
baseline. (a) Smartphone (CPU: PXA320, RAM: 256MB), (b) Netbook computer (CPU: Z530, RAM: 1GB),
(c) Desktop computer (CPU: i5, RAM: 4GB), (d) Server computer (CPU: Xeon 5500, RAM: 4GB).

and Figure 14(e)), the average switching delay is from 0.24ms to 2ms. The range of
the average switching delay enhanced with UMAC is 0.08ms to 0.19ms. As a result,
UMAC achieves a 3 to 10.53 times shorter switching delay than the native compression
switching scheme.

Our results confirm that UMAC can minimize the compression switching overhead.
In addition, our profiling shows that during compression switching the memory al-
location and release operations are removed from the native compression switching.
Clearly, this performance result confirms that UMAC enables FSCN to operate more
seamlessly in the face of abrupt changes in an SSL/TLS connection.

4.5. Performance Impact of ACCENT

The goal of our next experiment is to examine the performance impact when ACCENT
is applied to the SSL/TLS protocol stack. The main purpose is to calculate the perfor-
mance overhead that is imposed by ACCENT. In this experiment, we repeatedly run
the network and computation load variation as in the scenario of Figure 12. The perfor-
mance impact of ACCENT is measured using the UnixBench [Jon Tombs et al. 2011]
benchmark. We measure the total execution time of the benchmark when ACCENT is
applied to the SSL/TLS protocol stack and compare it to the total execution time of the
benchmark when the normal SSL/TLS protocol is applied. We note that the normal
SSL/TLS protocol is scheduled to perform compression switching as predetermined on
the basis of the FSCN solution. It is to measure the performance overhead imposed
by ACCENT apart from the compression overhead. The results of our experiment are
shown in Figure 15. The black bars represent the normalized execution time when
ACCENT is applied to the SSL/TLS protocol stack in comparison with the normal
SSL/TLS scheme as the baseline (100%). The measured execution times in Figure 15
were measured with four kinds of client machines with diverse hardware specifica-
tions, from handheld devices to the server. The performance result implies from 0.8%
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to 3.1% performance overhead if ACCENT is applied to the SSL/TLS protocol stack.
This can be attributed to the very low overhead imposed by ACCENT because as it can
achieve an improvement in the transmission rate of 85.3% to 212.4% (as described in
Section 4.3) with less than 3.1% system overhead.

5. CONCLUSION

Our aim was to provide a full-fledged cognitive SSL/TLS with heterogeneous environ-
ments (device, network, and cloud) and workloads awareness for a cloud computing
environment. To accomplish this task, we have thoroughly analyzed the SSL/TLS-
based data communication in an SSL/TLS protocol stack, which is a standard protocol
for secure Internet communication. The SSL/TLS-based system has three rudimentary
operations. Our ACCENT system is an improvement on these rudimentary operations.
It has three advanced mechanisms: an efficient SSL/TLS transmission routine, an
SSL/TLS dynamics-aware data compression mechanism, and a unified memory alloca-
tion for frequent compression switching. In order to ensure backward compatibility, we
patched the internal codes of the SSL/TLS core routines so that existing SSL/TLS-based
applications require no modification.

Thus, our implementation in OpenSSL is feasible and practical. In addition, the ex-
perimental results show the improved performance in terms of throughput, resource
utilization, and adaptiveness to dynamic changes in SSL/TLS connections. Three mech-
anisms can be selectively adopted in accordance with the characteristics of target
applications to improve a secure network system. For instance, for a static network
environment, TTSC mainly helps to improve the performance of secure data transfer
because the other two mechanisms, FSCN and UMAC, are designed for a dynamic
network environment. In contrast, a Web-based storage service and content delivery
service, which concurrently support where heterogeneous computing devices and net-
works are connected to each other, can improve their overall performance by utilizing
FSCN and UMAC. We believe that ACCENT can facilitate the cloud-based services
with an adaptivity, such as a Web-based storage service and a content delivery service
over SSL/TLS as well as emerging applications, such as cloud-based mobile office and
cloud storage. This type of facilitation is possible as long as the relevant applications
utilize SSL/TLS as an underlying security layer.
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