
energies

Article

Ghost-MTD: Moving Target Defense via Protocol
Mutation for Mission-Critical Cloud Systems

Jun-Gyu Park 1, Yangjae Lee 1, Ki-Wan Kang 1, Sang-Hoon Lee 2 and Ki-Woong Park 3,*
1 SysCore Laboratory, Sejong University, Seoul 05006, Korea; wnsrb3001@gmail.com (J.-G.P.);

leelambjae@gmail.com (Y.L.); kkwan0226@gmail.com (K.-W.K.)
2 Agency for Defense Development, Daejeon 34060, Korea; shlee@add.re.kr
3 Department of Computer and Information Security, Sejong University, Seoul 05006, Korea
* Correspondence: woongbak@sejong.ac.kr; Tel.: +82-2-6935-2453

Received: 11 March 2020; Accepted: 10 April 2020; Published: 13 April 2020
����������
�������

Abstract: Research on various security technologies has been actively underway to protect systems from
attackers. However, attackers can secure enough time to reconnoiter and attack the target system owing
to its static nature. This develops asymmetric warfare in which attackers outwit defenders. Moving
target defense (MTD) technologies, which obfuscate the attack surface by modifying the main properties
of the potential target system, have been gaining attention as an active cyber security technology.
Particularly, network-based MTD (NMTD) technologies, which dynamically mutate the network
configuration information, such as IP and ports of the potential target system, can dramatically increase
the time required for an attacker to analyze the system. Therefore, this system defense technology
has been actively researched. However, increasing the analysis complexity of the target system is
limited in conventional NMTD because the variation of system properties (e.g., IP, port) that can be
mutated is restricted by the system configuration environment. Therefore, there is a need for an MTD
technique that effectively delays an attacker during the system analysis by increasing the variation
of system properties. Additionally, in terms of practicality, minimizing the computational overhead
arising by the MTD technology and solving the compatibility problem with existing communication
protocols are critical issues that cannot be overlooked. In this study, we propose a technology called
Ghost-MTD (gMTD). gMTD allows only the user who is aware of protocol mutation patterns to
correctly communicate with the service modules of the server system through protocol mutation using
the pre-shared one-time bit sequence. Otherwise, gMTD deceives the attackers who attempt to infiltrate
the system by redirecting their messages to a decoy-hole module. The experimental results show
that the proposed technology enables protocol mutation and validation with a very low performance
overhead of only 3.28% to 4.97% using an m-bit (m ≥ 4) length one-time bit sequence and can be
applied to real systems regardless of the specific communication protocols.

Keywords: moving target defense; deception; protocol mutation; mission-critical cloud systems

1. Introduction

Sophisticated cyber-attacks, such as advanced persistent threats, called APT [1–3], have been on
the rise. Research on security technologies has been actively conducted to protect systems from such
highly sophisticated cyber-attacks [4,5]. However, attackers can secure enough time to reconnoiter and
attack the target system owing to the static nature of the target system [6,7], developing an asymmetric
warfare relationship between attackers and defenders.

Much research on system defense mechanisms has been carried out to devise methods of
rebalancing this asymmetric warfare relationship. The moving target defense (MTD) technology has
been proposed to respond to these threats [8]. MTD is an active security technology that blocks various

Energies 2020, 13, 1883; doi:10.3390/en13081883 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-6857-2716
https://orcid.org/0000-0002-3377-223X
http://dx.doi.org/10.3390/en13081883
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/8/1883?type=check_update&version=3


Energies 2020, 13, 1883 2 of 12

cyber-attacks in advance by proactively modifying the major system properties [9,10]. Network-based
MTD (NMTD), which is a type of MTD technology, can dramatically increase the complexity of the
system analysis by continuously modifying the network property information [11]. For example,
the network address mutation technology dynamically mutates the network configuration information,
such as IP and ports. This is one of the system defense technologies most actively studied because it
can dramatically increase the time required for attackers to analyze the system [12]. Jafarian proposed
an openflow-random host mutation (OF-RHM) that periodically modifies the virtual IP address
assigned to the system to be protected [13], thus dramatically increasing the time required for attackers
to analyze the system. However, OF-RHM can only be applied to systems with a virtual network
technology since it is implemented based on the software-defined network technology. Luo proposed
random port and address hopping (RPAH) that predefines the change cycle of IP addresses and port
information applied to the system and randomly mutates them according to the change cycle [14].
In RPAH, the gateway creates the virtual IPs and dynamically applies them to the system. Clients
transmit packets using the virtual IP address rather than the real IP address of the system. The real IP
address and port information of the system are retained, while packets are routed by converting the
virtual IP address and port numbers assigned to the system at the relevant time into the real IP address
and port numbers. Accordingly, messages from attackers using invalid IP addresses are detected and
rejected. Dunlop proposed the moving target IPv6 defense (MT6D) framework, which mutates 64-bit
interface identifiers in an IPv6 environment [15]. MT6D generates an IPv6 address to be mutated
through a hash function based on a pre-shared time period between senders and receivers and mutates
the current IPv6 address into a newly generated IPv6 address.

However, NMTD has a limitation in increasing the complexity against attacks since the variation
of system properties (e.g., IP address and port information) that it can mutate is restricted depending
on the system configuration environment. To overcome this limitation, there is a need for an MTD
technique that more effectively delays the system analysis by increasing the variation of system
properties. Additionally, in terms of practicality, minimizing the computational overhead arising
by the MTD technology and solving the compatibility problem with the existing communication
protocols are critical issues that cannot be overlooked [16,17]. In this study, we propose a technology
called Ghost-MTD (gMTD) that allows only the user who is aware of protocol mutation patterns to
correctly communicate with the service modules of the server system through protocol mutation using
the pre-shared one-time bit sequence (OTBS). Otherwise, gMTD deceives the attackers who attempt
to infiltrate the system by redirecting their messages to the decoy-hole module [18,19]. In gMTD,
the OTBS was designed inspired by the OTP mechanism [20,21] and refers to a bit sequence used to
mutate the communication protocols between the user and the server system. The OTBS is generated
separately for each user during user registration and is shared between the user and the server system.
For example, OTBSn

ID is the OTBS used in the n-th communication between the user with a specified ID
and the server system. As shown in Figure 1, in the n-th communication, an m-bit OTBSn

ID is extracted
from the OTBS shared between the user and the server system, and the extracted data is used to
modify the protocol for the user-server communication. In this way, gMTD enables a one-time protocol
mechanism by continuously modifying the protocols for the communication between the user and the
server system. Through this, gMTD only allows the user who is aware of protocol mutation patterns to
communicate with the service modules of the server system correctly, and deceives the attackers who
attempt to infiltrate the system by redirecting all messages from attackers to the decoy-hole module.



Energies 2020, 13, 1883 3 of 12

Figure 1. Overall architecture of Ghost moving target defense (gMTD) and an example of a mission-critical
cloud system enhanced with gMTD.

The contribution of this paper can be summarized as follows.

• We devised a continuous protocol mutation scheme called gMTD to effectively delay the analysis
of the system targeted by attackers. gMTD increases the variation of system properties through
the continuous change of the protocols.

• We devised a protocol mutation scheme that allows only the user who is aware of protocol
modification patterns to communicate with the service modules of the server system and the
decoy-hole module-based attacker-deception scheme. We can validate protocol compliance with
the pre-shared OTBS, and gMTD deceives the attackers who attempt to infiltrate the system by
redirecting invalid protocol compliance messages to the decoy-hole module.

• We devised a cost-effective protocol-mutation scheme taking into account practicality and
applicability. The experimental results show that gMTD enables a mutation protocol with very
low performance overhead of at least 3.28% and 0.0086% per additional bit using an m-bit
(m ≥ 4) OTBS.

This paper is structured as follows: Section 2 describes in detail the architecture and protocol
mutation of gMTD for mission-critical cloud systems. Section 3 evaluates the implemented prototype,
and Section 4 concludes this paper with future research direction.

2. System Internal of gMTD

In this section, we describe the overall architecture of gMTD and its core technologies; i.e.,
the mechanism for protocol mutation and validation scheme (see Sections 2.1 and 2.2, respectively).
The OTBS used for protocol mutation in the proposed technology is assumed to be generated differently
for each user during the user registration process and to have a mechanism securely shared between
the user and the server system. For example, the user’s OTBS with ID is OTBSID and the user’s
n-th OTBS is OTBSn

ID. As shown in Figure 1, in the n-th communication between the user with ID
and the server system, the server system and the user generate protocols using an m-bit OTBSn

ID
extracted from OTBSID. Furthermore, the message used for protocols is mutated using a different



Energies 2020, 13, 1883 4 of 12

OTBSn
ID at each time during user-server communication. The user sends a message appending his

ID to the server system. Then, the server system validates the received messages using the OTBSn
ID

extracted from the same OTBSID that is shared with the user. The server system redirects incoming
messages to different modules according to the validation result. If the validation result is positive,
the message is redirected to the service modules; otherwise, it is redirected to the decoy-hole module.
When communicating with the user, the response to valid messages generated by the service modules
are mutated using the same OTBSn

ID. Contrarily, the response to invalid messages generated by the
decoy-hole module are mutated using a randomly generated OTBSn

decoy. The user recovers the message
received from the server system using the OTBSn

ID. The protocol mutation scheme in gMTD consists of
split-and-swap and insertion operations, as shown in Figure 2. The split-and-swap operation splits the
original message using the first 4 bits of OTBSn

ID for protocol mutation and swaps the split messages.
This operation can be performed by one swap instruction provided by the native CPU, thus enabling
light-weight protocol mutation.

After the split-and-swap operation, the insert operation is performed to scatter the message to
be sent using the m-bit OTBSn

ID. This allows the server system to validate protocol compliance for
the received messages with only partial validation operation, thus enabling protocol mutation that
provides computational efficiency and ease of validation.

2.1. Protocol Mutation Scheme

This subsection describes the proposed protocol mutation scheme on the basis of gMTD. As shown
in Figure 2, by implementing split-and-swap and insertion operations, we have designed a cost-effective
protocol mutation technology that enables light-weight protocol mutation. The split-and-swap operation
splits the user’s original message, MID, into j (=MSB 4 bits of OTBSn

ID) pieces of split messages. Then,
the split messages are further split in half and swapped repeatedly until their final sizes become 1 bit.
Finally, MID is converted into Ms

ID. The insert operation splits the OTBSn
ID bit-by-bit and inserts each

split bit into the Ms
ID at regular intervals (=LSB 4 bits of OTBSn

ID). Consequently, the original message
Ms

ID is mutated to Mn
ID. Before Mn

ID is sent, the last index of the message where OTBSn
ID was inserted

and the user’s ID are added to the end of Mn
ID. In protocol mutation, the swap operation is performed

by only one instruction using the swap command provided by the native CPU, and does not require any
additional memory space. This approach is computationally efficient because it can reduce the CPU and
memory overhead consumption required by the user and the server system. Additionally, the insertion
operation enables the server system to validate protocol compliance with only partial validation of the
received message, resulting in quick message validation. A detailed description of the split-and-swap
and insertion operations is as follows.

• Split-and-swap: It splits the message (=MID) to be transmitted using the MSB[4] (=MSB 4 bits of
OTBSn

ID) and swaps the split messages. The MSB[4] are used as the number of subsections in
which the message is initially split. The split-and-swap operation consists of r rounds. Before
the start of each round, the original message MID is split into MSB[4] pieces. For example, if the
first 4 bits of OTBSn

ID are 16, the 128-bit message is initially split into 16 subsections of 8 bits.
In each round, the split message is further split in half and swapped mutually. After the final
iteration, the size of the split messages is 1 bit. The number of initially split subsections must be an
even number for ease of the split-and-swap operation. Therefore, if the last 4 bits of the OTBSn

ID
are an odd number, 1 is added to make it even. Through this operation, MID is converted to Ms

ID.
The server system can invert the message through the same split-and-swap operation.

• Insertion: It splits the OTBSn
ID bit-by-bit and sequentially inserts each split bit into the Ms

ID at
regular intervals set to LSB[4] (=LSB 4 bits of OTBSn

ID). The insert operation consists of m rounds
of operations. Since the index value indicating the position where the OTBSn

ID is to be inserted is
calculated through a mod operation with message length k, the index value does not exceed the
maximum value of the message length. After round m, the index value indicating the position
where the OTBSn

ID was lastly inserted and the user’s ID are appended to the message to undergo



Energies 2020, 13, 1883 5 of 12

validation by the server system. Therefore, Ms
ID is converted into Mn

ID, which corresponds to
the message to be sent to the server system. This insertion operation enables the server system
to quickly validate the message because invalid messages are detected if any of the OTBSn

ID
scattered in the message is incorrect.

Figure 2. Internal operations overview of protocol mutation.

2.2. Message Validation and Deception

This section describes how the server system verifies the protocol compliance for the incoming
messages and how it deceives attackers. As shown in Figure 3, we have designed a computationally
efficient message validation and attacker deception mechanism. Because the server system must only
allow a user who is aware of the protocol mutation patterns to correctly communicate with the service
modules of the server system, the server system has to validate the messages that users have mutated
through the protocol mutation process using the correct OTBSn

ID. The proposed scheme can detect
invalid messages if any of the OTBSn

ID scattered in the message is incorrect. In the n-th communication
between the server system and the user, the former extracts the user’s ID at the end of the Mn

ID and
validates the Mn

ID using the pre-shared OTBSn
ID. Moreover, the server system extracts the index l of the

message where the OTBSn
ID was last inserted from the Mn

ID and uses l to validate the Mn
ID. The server

system inverts the Mn
ID into the Ms

ID by extracting the OTBSn
ID inserted in the Mn

ID in reverse order,
as a message validation operation. If the OTBSn

ID inserted in the message is invalid, the server system
immediately stops validation and redirects the received messages to the decoy-hole module. Then,
the response messages generated by the decoy-hole module are mutated using a randomly generated
OTBSn

decoy. If the OTBSn
ID inserted in the Mn

ID is valid, the server system inverts the Ms
ID into the



Energies 2020, 13, 1883 6 of 12

MID through the split-and-swap operation and sends the correct response message to the user by
redirecting it to the service modules.

Unlike the native message validation scheme, the proposed scheme enables the detection of invalid
messages without performing the entire reverse operations of protocol mutation. Therefore, gMTD
promptly and computationally efficiently validates the protocol compliance of incoming messages.

Figure 3. Operation process for message validation and deception: (a) native validation scheme;
(b) validation scheme on the basis of gMTD.

2.3. Decoy-Hole Module

gMTD deceives attackers who attempt to infiltrate the system by redirecting their messages to
a decoy-hole module. Consequently, the decoy-hole module is equipped with a fake system logic,
which generates a fake response to an attacker. As shown in Figure 3a,b, all system logic and data
of the decoy-hole module are completely separate from the service module to protect the service
module. In addition, the fake system logic inside the decoy-hole module is periodically changed to
another service to prevent attackers from understanding the internal logic used by the decoy-hole
module. In this way, gMTD generates and sends response messages to attackers’ requests through the
decoy-hole module, thereby deceiving attackers who attempt to infiltrate the system and increasing
the time required by attackers to analyze the system.

In this way, gMTD generates and sends the response messages as the response of the attackers’
requests through the decoy-hole module, thereby deceives the attackers who attempt to infiltrate the
system and increase the time required for attackers to analyze the system.



Energies 2020, 13, 1883 7 of 12

3. Experiment

3.1. Operation Overhead

We measured the overhead arising from operation and memory consumption to perform message
validation in gMTD. We conducted an experiment on a server equipped with Intel(R) CoreTM i7-8700
and 32 GB RAM. For this experiment, we created user and server system virtual machines (VMs)
equipped with 1 vcpu, 1 GB memory, and Ubuntu 18.04 OS. To measure the overhead required for
protocol mutation in gMTD, we measured the CPU and memory utilization required for protocol
mutation and message validation by changing the length of the OTBSn

ID from 4 to 200. The result of
the performance measurement showed that the average CPU usage increase rate added for protocol
mutation and message validation using the 4-bit and 200-bit long OTBSn

ID was 0.009% and 0.03%,
respectively. Additionally, the average memory usage was 168 kB regardless of the length of the
OTBSn

ID. The results verify that the proposed scheme can realize protocol mutation-based MTD with
very low computation and memory overhead.

3.2. Validation Efficiency

We conducted two experiments to evaluate the effectiveness of message validation in gMTD. In the
first experiment, we compared the validation process time of the native message validation scheme,
which performs the entire reverse protocol mutation operation, with that of gMTD, which verifies
invalid messages through sequential reading. We generated an Mn

ID by scattering the 100-bit OTBSn
ID

in the message. Then, we calculated the computation time spent on the invalid message by changing
the number of bits of the valid OTBSn

ID from 10 to 100. Because the OTBSn
ID is validated in reverse

order from the last OTBSn
ID inserted in the message, it is inserted into the message to be validated.

For example, if the number of valid sequential OTBSn
ID bits is 10, an invalid 90-bit OTBSn

ID is
inserted into the message first, and the valid 10-bit OTBSn

ID is inserted afterward. Figure 4 shows the
comparison of the message validation process times. The gMTD immediately stops the reverse protocol
mutation operation required for message validation when the OTBSn

ID inserted in the incoming
messages were invalid. The native message validation scheme always requires more time for validation
compared with the validation scheme in gMTD that promptly and efficiently validates the protocol
compliance of the message.

Figure 4. Measuring the validation process time with varying number of valid sequential OTBSn
ID bits.

Second, we compared the operation time of message validation between the native message
validation scheme and the validation scheme in gMTD in terms of message length. In this experiment,



Energies 2020, 13, 1883 8 of 12

the number of bits to be scattered in the message was fixed at 100 bits, and the validation process
time for valid message validation was measured by changing the message length from 4 to 1024 bits.
Figure 5 shows the dependence of the validation process time on the message length in the compared
validation schemes. The results show that the validation process times of both validation schemes
slightly increased with increasing message length. This indicates that gMTD can validate the protocol
compliance of messages without being significantly influenced by the message length.

Figure 5. Measuring the validation process time with varying message length.

3.3. Performance Overhead

To evaluate the performance overhead of the proposed technology, we compared non-gMTD and
gMTD in an HTTP service environment. The transaction per second (TPS) was measured with various
OTBSn

ID lengths. Figure 6 shows the performance comparison. The measured TPS of non-gMTD in
which OTBSn

ID was not used is the same for all OTBSn
ID lengths. The TPS of non-gMTD for every bit

was 368.12. The TPS for gMTD was 356.01 for 4 bits and 349.81 for 200 bits. The result shows that gMTD
generates only 3.28%–4.97% of overhead compared to non-gMTD, and demonstrates an overhead
increase of 0.0086% for every 1-bit increase in the OTBSn

ID. This indicates that user messages are very
efficiently validated and redirected to the service modules. Additionally, gMTD has the advantage of
being easily applied to real systems regardless of the specific communication protocols.

Figure 6. Measuring transaction per second (TPS) with varying length of OTBSn
ID.



Energies 2020, 13, 1883 9 of 12

3.4. MTD Efficacy of gMTD

In this section, we evaluated the MTD efficacy for delaying an attacker’s system analysis by
comparing the number of system variation cases between NMTD and gMTD. In gMTD, the value of the
OTBS, which is periodically changed, is utilized as a seed value to mutate the communication protocols
between users and the server system. An attacker needs to perform brute-force trials to identify the
current protocol pattern. Therefore, the MTD efficacy of gMTD depends on the length of OTBSn

ID
because the protocol mutation pattern is derived from OTBSn

ID. The maximum number of system
variation cases in gMTD can be defined as 2k(k = bits length of OTBSn

ID). gMTD allows the system
variation width to change flexibly by configuring k. Therefore, the appropriate length of OTBSn

ID(=k)
can be determined by considering the security requirements and the acceptable computational overhead
(the overhead increases as the value of k increases). Further, the number of system variations in NMTD
is determined by network properties, such as the size of the subnet mask and the number of ports
owned by the operating institution and is expressed as 2n × p (n: size of subnet mask, p: number of
ports). Therefore, the system variations for NMTD and gMTD can be compared using the values of n, p,
and k. Note also that a more powerful moving target defense mechanism can be realized by coupling
gMTD with conventional NMTD because gMTD requires no modifications to either the network or the
application layer.

3.5. Implementation Correctness of gMTD

To verify the correctness of the gMTD implementation, we built a gMTD testbed, as shown in
Figure 7. The testbed is designed to allow a virtual user to generate request–response transactions to and
from a virtual service on the basis of gMTD, allowing us to determine whether the protocol mutation
and the decoy-hole module are working correctly. In this experiment, we verified the implementation
correctness of gMTD by sending a virtual request using the following three request–response routines
and then analyzing the contents of the corresponding response messages. The first request–response
routine is a routine in which a user directly accesses the service module without using gMTD, termed
routine-A, as shown in Figure 7a. The second request–response routine is a gMTD routine in which
an authorized user accesses the service module with a valid OTBSn

ID, termed routine-B, as shown in
Figure 7b. The third request–response routine is a routine where a malicious user accesses the service
module using an incorrect OTBSn

ID, termed routine-C, as shown in Figure 7c. If gMTD is implemented
correctly, the response messages for routine-A and for routine-B must be the same, and both response
messages must be sent from the service module. Conversely, the response message for routine-C must
be transmitted from the decoy-hole module. In this experiment, the transactions following routine-A,
routine-B, and routine-C were randomly generated to evaluate the algorithm, and it was confirmed that
the algorithm performed correctly in all cases.



Energies 2020, 13, 1883 10 of 12

Figure 7. gMTD testbed for verification of the implementation correctness: (a) routine-A is a non-gMTD
routine where a user directly accesses the service module without using gMTD; (b) routine-B is a gMTD
routine in which an authorized user accesses to the service module on the basis of gMTD; (c) routine-C
is a routine where a malicious user accesses to the service module.

4. Conclusions

In this study, we proposed gMTD, a novel technology that allows only the user who is aware
of the protocol mutation pattern to communicate with the service modules of the server system and
efficiently deceives attackers. Incoming messages are mutated by the protocol, which is generated
using the pre-shared OTBS. Then, the server system validates the protocol compliance of the message
using the same OTBS with the user. If the mutation patterns of the incoming messages are invalid,
the server system deceives attackers by redirecting incoming messages to the decoy-hole module.
The experimental results showed that the proposed MTD technology enables efficient protocol
mutation and validation and redirection of incoming messages to the service modules. Moreover,
gMTD can be easily applied to real systems regardless of the specific communication protocols.
Nevertheless, in this study, we have designed and evaluated the technology in terms of cost-effective
blocking of attack reconnaissance and attacker deception without considering the latency overhead.
As a next step, we intend to account for latency overhead and are working towards a highly efficient
protocol mutation MTD technology that defends against attacks effectively and proactively.

Author Contributions: Conceptualization, K.-W.P. and J.-G.P.; Formal analysis, J.-G.P. and K.-W.P.; Funding
acquisition, K.-W.P.; Investigation, S.-H.L. and K.-W.P.; Methodology, K.-W.P.; Project administration, K.-W.P.;
Resources, K.-W.P.; Software, J.-G.P., K.-W.K. and K.-W.P.; Supervision, K.-W.P.; Writing–review and editing, J.-G.P.,
Y.L. and K.-W.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Agency for Defense Development (ADD) project number UD180012ED.

Acknowledgments: This work was supported by Project No. UD180012ED.



Energies 2020, 13, 1883 11 of 12

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, P.; Desmet, L.; Huygens, C. A Study on Advanced Persistent Threats. In Proceedings of
the IFIP International Conference on Communications and Multimedia Security, Aveiro, Portugal,
25–26 September 2014; pp. 142–149.

2. Yang, L.X.; Li, P.; Yang, X.; Tang, Y.Y. Security evaluation of the cyber networks under advanced persistent
threats. IEEE Access 2017, 5, 20111–20123. [CrossRef]

3. Alshamrani, A.; Myneni, S.; Chowdhary, A.; Huang, D. A survey on advanced persistent threats: Techniques,
solutions, challenges, and research opportunities. IEEE Commun. Surv. Tutor. 2019, 21, 1851–1877. [CrossRef]

4. Yang, L.X.; Li, P.; Zhang, Y.; Yang, X.; Xiang, Y.; Zhou, W. Effective repair strategy against advanced persistent
threat: A differential game approach. IEEE Trans. Inf. Forensics Secur. 2018, 14, 1713–1728. [CrossRef]

5. Li, P.; Yang, X.; Xiong, Q.; Wen, J.; Tang, Y.Y. Defending against the advanced persistent threat: An optimal
control approach. In Security and Communication Networks; Hindawi: London, UK, 2018.

6. Cai, G.; Wang, B.; Hu, W.; Wang, T. Moving target defense: state of the art and characteristics. Front. Inf.
Technol. Electron. Eng. 2016, 17, 1122–1153. [CrossRef]

7. Carvalho, M.; Ford, R. Moving-target defenses for computer networks. IEEE Secur. Privacy 2014, 12, 73–76.
[CrossRef]

8. Okhravi, H.; Hobson, T.; Bigelow, D.; Streilein, W. Finding focus in the blur of moving-target techniques.
IEEE Secur. Privacy 2013, 12, 16–26. [CrossRef]

9. Jajodia, S.; Gohsh, A.K.; Swarup, V.; Wang, C.; Wang, X.S. Moving Target Defense: Creating Asymmetric
Uncertainty for Cyber Threats; Springer Science & Business Media: New York, NY, USA, 2011.

10. Zhou, Y.; Cheng, G.; Jiang, S.; Hu, Y.; Zhao, Y.; Chen, Z. A cost-effective shuffling method against DDoS
attacks using Moving Target Defense. In Proceedings of the 6th ACM Workshop on Moving Target Defense,
London, UK, 11 November 2019.

11. Wing, J.M.; Manadhata, P.K. Measuring a System’S Attack Surface: Technical Report CMU-CS-04-102; Carnegie
Mellon University: Pittsburgh, PA, USA, 2004.

12. Woo, S.; Park, K.; Moon, D.; Kim, I. Moving Target Defense Research Trend Based on Network Address
Mutation. Rev. Kiisc 2018, 28, 5–11.

13. Jafat Haadi, J.; Al-Shaer, E.; Duan, Q. Openflow random host mutation: transparent moving target defense
using software defined networking. In Proceedings of the ACM Workshop on Hot Topics in Software
Defined Networks, Helsinki, Finland, 13 August 2012.

14. Yue-Bin, L.; Wang, B.S.; Wang, X.F.; Hu, X.F.; Cai, G.L.; Sun, H. RPAH: Random port and address hopping
for thwarting internal and external adversaries. IEEE Trustcom/BigDataSE/ISPA 2015, 1, 263–270.

15. Dunlop, M.; Groat, S.; Urbanski, W.; Marchany, R.; Tront, J. Mt6d: A moving target ipv6 defense. In Proceedings
of the IEEE Military Communications Conference, Baltimore, MD, USA, 7–10 November 2011.

16. Zangeneh, V.; Shajari, M. A cost-sensitive move selection strategy for moving target defense. Comput. Secur.
2018, 75, 72–91. [CrossRef]

17. Lei, C.; Zhang, H.Q.; Tan, J.L.; Zhang, Y.C.; Liu, X.H. Moving target defense techniques: A survey. In Security
and Communication Networks; Hindawi: London, UK, 2018.

18. Sun, J.; Sun, K. DESIR: Decoy-enhanced seamless IP randomization. In Proceedings of the IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on Computer Communications, San Francisco, LA,
USA, 10–15 April 2016.

19. Yuill, J.; Denning, D.; Feer, F. Using deception to hide things from hackers: Processes, principles,
and techniques. J. Inf. Warf. 2006, 5, 26–40.

http://dx.doi.org/10.1109/ACCESS.2017.2757944
http://dx.doi.org/10.1109/COMST.2019.2891891
http://dx.doi.org/10.1109/TIFS.2018.2885251
http://dx.doi.org/10.1631/FITEE.1601321
http://dx.doi.org/10.1109/MSP.2014.30
http://dx.doi.org/10.1109/MSP.2013.137
http://dx.doi.org/10.1016/j.cose.2017.12.013


Energies 2020, 13, 1883 12 of 12

20. Haller, N.; Metz, C.; Nesser, P.; Straw, M. A One-Time Password System. Available online: https://tools.ietf.
org/html/rfc2289 (accessed on 13 April 2020).

21. Erdem, E.; Sandıkkaya, M.T. OTPaaS—One time password as a service. IEEE Trans. Inf. Forensics Secur. 2019,
14, 743–756. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://tools.ietf.org/html/rfc2289
https://tools.ietf.org/html/rfc2289
http://dx.doi.org/10.1109/TIFS.2018.2866025
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	System Internal of gMTD
	Protocol Mutation Scheme
	Message Validation and Deception
	Decoy-Hole Module

	Experiment
	Operation Overhead
	Validation Efficiency
	Performance Overhead
	MTD Efficacy of gMTD
	Implementation Correctness of gMTD

	Conclusions
	References

