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Deep neural networks (DNNs) display good performance in the domains of recognition and prediction,
such as on tasks of image recognition, speech recognition, video recognition, and pattern analysis.
However, adversarial examples, created by inserting a small amount of noise into the original samples,
can be a serious threat because they can cause misclassification by the DNN. Adversarial examples have
been studied primarily in the context of images, but their effect in the audio context is now drawing con-
siderable interest as well. For example, by adding a small distortion to an original audio sample, imper-
ceptible to humans, an audio adversarial example can be created that humans hear as error-free but that
causes misunderstanding by a machine. Therefore, it is necessary to create a method of defense for resist-
ing audio adversarial examples. In this paper, we propose an acoustic-decoy method for detecting audio
adversarial examples. Its key feature is that it adds well-formalized distortions using audio modification
that are sufficient to change the classification result of an adversarial example but do not affect the clas-
sification result of an original sample. Experimental results show that the proposed scheme can detect
adversarial examples by reducing the similarity rate for an adversarial example to 6.21%, 1.27%, and
0.66% using low-pass filtering (with 12 dB roll-off), 8-bit reduction, and audio silence removal techniques,
respectively. It can detect an audio adversarial example with a success rate of 97% by performing a com-
parison with the initial audio sample.
� 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Deep neural networks (DNNs) [1] provide excellent perfor-
mance on classification problems and prediction problems. How-
ever, DNNs have a vulnerability because adversarial examples,
created by inserting a little noise into the original sample, can
cause misclassification by DNNs. For example, if an attacker adds
optimized noise to a U-turn road sign, the modified road sign will
still be correctly recognized as a U-turn sign in human perception
but will be misrecognized as a left-turn sign by an autonomous
DNN vehicle. Because such adversarial examples can cause mis-
classification by DNNs, a considerable amount of research on this
issue is being conducted in the image domain.
Several studies on adversarial examples have presented audio
domain approaches. Vaidya et al. [2] presented the ‘‘cocaine
noodles” method, which can generate a mangled sound that cannot
be understood by a person in order to mislead a speech recognition
system. To improve the cocaine noodles method, Carlini et al. [3]
proposed a hidden voice command to add human feedback,
thereby improving the mangled sound that humans cannot under-
stand. Zhang et al. [4] presented the dolphin attack, which causes a
speech recognition system to be misled by generating a high-
frequency sound outside the range of human hearing. Carlini and
Wagner (CW) [5] proposed the CW attack method, which creates
an audio adversarial example by adding a small amount of bit noise
to the original sample. The CWmethod improves the connectionist
temporal classification (CTC) loss function [6] by adding a small
amount of bit noise to the original sample such that the result will
not be mistaken by a human but will be mistaken by the speech
recognition system. In response to the audio adversarial example
attack methods described in these studies, additional studies on
defense methods are needed as well.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.07.101&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neucom.2020.07.101
http://creativecommons.org/licenses/by/4.0/
mailto:hkwon.cs@gmail.com
mailto:hyoon@kaist.ac.kr
mailto:woongbak@sejong.ac.kr
https://doi.org/10.1016/j.neucom.2020.07.101
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


H. Kwon et al. Neurocomputing 417 (2020) 357–370
In this paper, we propose an acoustic-decoy detection method
that can decrease the effectiveness of a CW attack, which is a
state-of-the-art attack on the DeepSpeech model [7]. Our method
relies on the difference between the classification result of the
original image and that of the adversarial example after applying
audio modification. The key feature of the proposed method is that
it adds well-formalized distortions using audio modification suffi-
cient to induce a change in the classification result of the adversar-
ial example (because of its sensitivity) but not so much that the
classification result of the original sample will be affected. The
method uses this feature to detect audio adversarial examples. This
study is an extension of our previous work [8], presented at ACM
CCS 2019, in which we focused on concepts and ideas for detecting
an adversarial example. In the current study, we focus on the
detection of audio adversarial examples by using audio modifica-
tion. The contributions of this paper for defending against adver-
sarial examples are as follows:

� We describe the principle and the procedure of the proposed
method, and we systematically show its foundation. We exper-
imentally demonstrate using a Mozilla dataset that the pro-
posed method can be used for detecting adversarial examples.
� We analyze the spectra, waveforms, similarity rates, and detec-
tion rates that are produced by applying the proposed method.
The proposed method is quantitatively compared with existing
audio defense methods. We also present the possibility of com-
bining the method with others to create various ensemble
methods of audio modification.
� We show the performance of the proposed scheme for defend-
ing the state-of-the-art DeepSpeech model against an attack
that uses the state-of-the-art CW method. In addition, we ana-
lyze the decibel difference between the original sample and
adversarial examples after applying audio modifications using
the low-pass filtering, 8-bit reduction, and audio silence
removal techniques.

The rest of this paper is structured as follows: In Section 2, we
describe related work and provide background information on the
target speech recognition system and attacks using adversarial
examples. The conceptual basis for the proposed scheme is given
in Section 3. Section 4 introduces the proposed detection scheme.
In Section 5, results of experiments using the proposed method
are presented. The proposed method is discussed in Section 6.
Finally, Section 7 concludes the paper.
2. Related work and background

Szegedy et al. [9] first proposed an adversarial example that can
cause misclassification by a DNN classifier yet has minimal distor-
tion from the original sample.

The structure of this section is as follows. Section 2.1 explains
the target speech-to-text recognition system. In Sections 2.1–2.6,
five aspects of adversarial examples are described: classification
by target model information, classification by type of recognition
intended, distortion measure, audio adversarial example attacks,
and audio adversarial example defenses.

2.1. Targeted speech-to-text model

Hidden Markov models (HMMs) [10] predict label sequences of
speech data after applying pre-segmentation and post-processing.
However, this method exponentially increases the number of cases
by 26N per character, and so it is not feasible to calculate all of the
possible phrases. In contrast with pre-segmentation and post-
processing with HMMs, the connectionist temporal classification
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(CTC) method, presented by Graves et al. [11], uses recursive neu-
ral networks (RNNs) [12] to directly train an unsegmented
sequence label. This method maximizes the number of correct
labels per input sequence in a probability distribution among all
label sequences. To enhance the scalability of the CTC, Hannun
et al. [7] presented the DeepSpeech model, which is an
optimized-RNN training system using multiple GPUs. The Deep-
Speech model can provide synthesis methods to efficiently create
a variety of data. In this study, we used the DeepSpeech model
as the target speech-to-text model in our testing.

2.2. Information known about target model

In terms of the information known about the target model,
adversarial examples can be divided into two types: black box
attacks and white box attacks. In a black box attack, the attacker
does not have the target model information but can query the tar-
get model. In a white box attack, on the other hand, the attacker
has all of the information about the target model, such as the prob-
abilities of the output class result. The scheme proposed in this
paper assumes that the attacker does not have information about
the detector but rather is executing a limited-knowledge attack,
in which the attacker knows about the target classifier but does
not know that a detector employing audio modification is being
used.

2.3. Type of recognition intended

We can also divide adversarial examples according to the class
as which they are intended to be recognized by the target model
[13–15]; these two categories are untargeted adversarial examples
and targeted adversarial examples. An untargeted adversarial
example can cause the target model to recognize the adversarial
example as any class other than the original class. A targeted
adversarial example, on the other hand, is designed to cause the
target model to recognize the adversarial example as a particular
target class selected by the attacker. In this paper, the proposed
method assumes a targeted adversarial example that can choose
the target class.

2.4. Distortion measure

In the audio domain, the proposed method applies the L1 mea-
sure of distortion [13], denoted as d. If the distortion d (noise level)
is expressed in decibels, then dBðdÞ ¼max

i
f20 � log10ð x�i � xi

�� ��Þg [5].
The smaller the value of dBðdÞ, the more similar the adversarial
example is to the original sample.

2.5. Audio domain methods of adversarial example attack

Vaidya et al. [2] presented the ‘‘cocaine noodles” method, which
can generate a mangled command sound that cannot be under-
stood by a person in order to mislead a speech recognition system.
After extracting each feature from the mel-frequency cepstral coef-
ficients (MFCC) parameter, the method inverts the MFCC. This
method can cause the malfunction of a machine without consider-
ing the distortion.

To enhance the cocaine noodles method, Carlini et al. [3] pro-
posed a hidden voice command method to add human feedback
to improve the strange sound that humans cannot understand.
The hidden voice produced by the method is not comprehensible
to human perception and can induce a malfunction. Like the
cocaine noodles method, this method inverts the MFCC after
extracting each feature from the MFCC parameter. The method
then tests the mangled commands using human feedback. This



Fig. 1. Example of an adversarial example and its corresponding original sample in
relation to the decision boundary of a target model.
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method is a version of the cocaine noodles method, extended to
black box attacks by incorporating human recognition testing.

In contrast to methods that create hidden voice commands,
Zhang et al. [4] presented the dolphin attack, which causes the
speech recognition system to be misled by producing a high-
frequency sound outside the range of human hearing. In addition,
the Houdini method was suggested by Cisse et al. [16] for opti-
mization using the CTC loss function. A targeted audio attack was
proposed by Alzantot et al. [17] as a black box attack that operates
by inserting background noise, which achieved an attack success
rate of 87%. However, it is limited in that it only has ten classes
in the datasets.

Recently, Carlini and Wagner [5] generated an audio adversarial
example by inserting a slight noise into the original sample. The
generated adversarial example was misclassified as the target
phrase by the model. The Carlini method uses a modified CTC loss
function to create an adversarial example:

minimize dBxðx�; xÞ þ
X

i

ci � giðx�;piÞ; ð1Þ

where
P

ici � giðx�;piÞ is a loss function of the sequence [5].
dBxðx; x�Þ is a distortion loss function between original sample x
and adversarial example x�. DeepSpeech misclassifies x� as target
phrase t because of this loss function of the sequence. By adjusting
the value of c appropriately, the Carlini method creates an adversar-
ial example that will be misinterpreted as the target phrase by the
model, while minimizing the distortion. The experiments con-
ducted in this study used the Carlini method, a state-of-the-art tar-
geted audio attack, to create the adversarial examples.

2.6. Audio domain methods of adversarial example defense

Some studies of defense-related methods in the audio domain
do not specifically address audio adversarial examples. The spoof-
ing detection method [18] uses a Gaussian mixture model (GMM)
and a deep neural network to detect spoofing attacks. Unlike con-
ventional methods, it includes additional detection through scor-
ing by humans in a log-likelihood method. Another method, the
temporarily aware context modeling method [19], performs
speech activity detection that guarantees temporary continuity to
an expected signal using a generative adversarial net. This method
determines whether an observed audio segment has salient infor-
mation by predicting the audio sequence in the next frame.

Methods of defense in the audio domain that do address attack
by adversarial examples include the white noise method, down-
sampling, and the temporal dependency method. The first of these,
proposed by Subramanian et al. [20], detects adversarial examples
using white noise. This method adds white noise to the input data
as a standard digital distortion. The second method, proposed by
Tamura et al. [21], is a denoise down-sampling method with a
sandbox approach. This method determines whether an input is
an adversarial example or an original sample by randomly down-
sampling the input data and removing low-frequency sounds.
The temporal dependency method, proposed by Yang et al. [22],
uses the property of temporal information loss in the original
sequence due to the adversarial noise in the adversarial example.
This method determines whether the input is an adversarial exam-
ple or an original sample by comparing the concordance rate
between the classification result of the k portion of the speech
and the k portion of the entire classification result.

These last three defense methods were used in the performance
analysis conducted in the present study for comparison with the
proposed method (Section 5.2.5).
359
3. Conceptual basis for proposed scheme

Fig. 1 shows an example of an adversarial example and its cor-
responding original sample in relation to the decision boundary of
a model D. Model D correctly classifies the sample that is within
the boundary. However, an adversarial example can be created just
outside the boundary of model D. It is considered an adversarial
example because it will be incorrectly classified by model D and
yet is minimally distorted from the original sample.

In the figure, because the adversarial example is near the deci-
sion boundary, it is sensitive to class changes due to external dis-
tortion. On the other hand, as the original sample lies inside the
decision boundary, even if the distance is changed by an external
distortion, the original class will remain unaffected. Therefore,
the adversarial example can be detected using its relatively greater
sensitivity to external distortion.

4. Proposed scheme

4.1. Assumption

The proposed method assumes that the attacker does not have
information about the audio modification used by the detector.
Rather, it is a limited-knowledge attack: The attacker knows about
the target classifier but does not know that a detector employing
audio modification is being used. In other words, the model archi-
tecture, parameters, and probabilities of output classifications for
the target classifier are known. Under this assumption, the attacker
creates an optimized adversarial example with minimal distortion
through multiple iterations, which causes misclassification by the
target classifier. Therefore, the adversarial example has a high
attack success rate against the target classifier, with minimal dis-
tortion from the original sample.

The target classifier is a neural network such as those used in
artificial intelligence synthesizers [23], self-driving cars [24],
speech classifiers [7], and many other applications [25,26].
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4.2. Proposed method

Fig. 2 illustrates the concept of the proposed scheme, which
comprises two procedures. First, the initial sample is verified
against the recognition system and is given an initial classification
result. Next, a modified sample is created by audio modification.
Then, the classification result for this modified audio signal is com-
pared with that for the initial audio sample. The difference
between the result for the initial classification and that for the last
classification plays a major role in the method because a given
audio sample will be classified as either an original sample or an
adversarial example based on how large the difference is. If there
is a very large difference between the results, the sample will be
classified as an adversarial example; if there is not so much differ-
ence, it will be classified as an original sample.

Expressed in mathematical terms, the first step is to calculate
the classification results f ðtinitialÞ for the input tinitial if the proposed
method receives the original sample or the adversarial example as
the input value. Then, input value tinitial is passed through modifi-
cation module gðtinitialÞ to generate modified sample tmodified. The
classification result f ðtmodifiedÞ is calculated by the classifier using
the modified sample tmodified.

In the second step, the coincidence rate is checked for the calcu-
lated classification results f ðtmodifiedÞ and f ðtinitialÞ to determine
whether it is an adversarial example (if the rate is less than a prede-
termined threshold T) or an original sample (if the rate is greater).

Expressed in terms of the principle, the proposed method uses
the features of the audio adversarial example. In the process of
generating an adversarial example, distortion is inserted into the
original sample to the point at which the machine begins to misin-
terpret the signal. Therefore, when the distortion is added by audio
modification, the difference in classification for an adversarial
example will be larger than that for an original sample.

As one audio modification technique, various types of filters can
be applied, such as low-pass filters [27], high-pass filters [28], or
notch filters [29]. An analysis of various audio modification tech-
niques for use in the proposed method is given in Sections 5 and
6. As low-pass filtering, 8-bit reduction, and the removal of audio
silence displayed good detection performance because of their
minimal noise, which is due to the characteristics of the adversarial
example, we use these three techniques for the audio modification.
The details of the procedure for detecting an adversarial example
using each audio modification technique are given in Algorithm 1.

Algorithm 1 Adversarial example detection

Input: test audio tinitial, classifier function f ð�Þ, modification
function gð�Þ, coincidence threshold T

Adversarial example detection:
resultbefore  f ðtinitialÞ
tmodified  gðtinitialÞ
resultafter  f ðtmodifiedÞ
wd  coincidenceðresultafter; resultbeforeÞ
if wd 6 T then

flag  1
else

flag  0
end if
return flag
5. Experiment and evaluation

Through experiments, we show that the proposed method can
effectively detect adversarial examples by using audio
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modification. We used the Tensorflow library [30], widely used
for machine learning, and an Intel(R) i5-7100 3.90-GHz server. This
section consists of two parts, the experimental setup and the
experimental results.

5.1. Experimental setup

In the experiment, pre-trained model D essentially had the
structure of DeepSpeech [7]. The initial seed for D was 1234, and
the initial weight for D was 0.053424. The training data were from
the Fisher, Switchboard, and Wall Street Journal corpora provided
by the Linguistic Data Consortium [7]. Model D was pre-trained
using 9600 training data [7] that consisted of 5000 h by 9600
speakers.

For test data, the Mozilla Common Voice dataset [31] was used,
consisting of 100 arbitrary samples, which are described in Table 3
(Appendix). In the results on the original test data, model D
showed an error rate of 16.49% on the test data. Given this error
rate, DeepSpeech cannot interpret 100% of the test samples of
the original sentence, but it can interpret whether a test sample
is similar to the original test sentence. Fig. 3 shows the test result
for the original sample ‘‘the boy went to his room and packed his
belongings” as interpreted by model D. As can be seen in the figure,
although there are some differences due to the error rate, model D
interprets the original sample as being similar to the original
sentence.

A demonstration of the performance of the proposed method
must take into account the fact that the proposed method assumes
that the attacker does not have information about the detector but
rather is a limited-knowledge attack, in which the attacker knows
about the target classifier but does not know that a detector
employing audio modification is being used. To generate audio
adversarial examples using the state-of-the-art Carlini–Wagner
attack, Adam [32] was used as an optimizer, with a learning rate
of 10. We created 100 randomly targeted adversarial examples
against the target classifier.

5.2. Experimental results

The accuracy is the rate of coincidence between letters in the
phrase output by D and letters in the original phrase; it is given
by ðO� D� S� IÞ=O, where O is the number of letters in the origi-
nal sentence, D is the number of deletions, S is the number of sub-
stitutions, and I is the number of insertions. The similarity rate is
the proportion of matches between the initial classification result
(recognized before the audio modification) and the classification
result recognized after the audio modification; it is given by
ðB� U � N � EÞ=B, where B is the number of letters in the initial
classification result, U is the number of substitutions, N is the num-
ber of insertions, and E is the number of deletions. If there is no dif-
ference between the results of classification before and after the
audio modification, the similarity rate will be higher; if the differ-
ence between the results of classification before and after the audio
modification is large, the similarity rate will be lower. The defini-
tion of distortion d is dBðdÞ ¼max

i
f20 � log10ð x�i � xi

�� ��Þg.

5.2.1. Analysis of low-pass filtering
The low-pass filtering technique filters out sounds having a

specific high frequency. The parameters of a low-pass filter are
the cut-off frequency and roll-off (slope). The cut-off frequency is
the boundary point between the frequency band through which a
signal may pass and the frequency band through which signals
cannot pass. The roll-off is the decreasing slope outside the cut-
off frequency, which means the decibel decreases every octave.
The higher the roll-off value, the steeper the reduction slope. In



Fig. 2. Proposed architecture.

Fig. 3. Example of transcription of an original sample by model D.
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the low-pass filter used in the experiment, the cut-off frequency
was set to 1000 Hz, and the roll-off was set to 6, 12, 24, 36, or
48 dB per octave.

Fig. 4 shows the waveforms before and after low-pass filtering
for an original sample and a corresponding audio adversarial
example. Fig. 4(b) shows that a small amount of bit noise has been
added throughout the waveform shown in Fig. 4(a). In particular,
referring to the spectra in Fig. 5, it can be seen that Fig. 4(b) shows
overall noise, in contrast with Fig. 4(a). Therefore, the audio wave-
forms of Figs. 4 (a) and 4(b) are nearly identical. However, Fig. 6
shows that the recognition system correctly recognizes the audio
of Fig. 4(a) as ‘‘an y going to tell me” but misrecognizes the audio
of Fig. 4(b) as ‘‘example,” as chosen by the attacker. On the other
hand, the modified samples after the audio modification technique
has been applied (Fig. 4(c) and (d)) are similar to the original sen-
tence. Thus, for the original sample, the waveforms (Fig. 4(a) and
(c)) are different but yield the same interpretation (Fig. 6). For
the adversarial example, however, it can be seen (Fig. 6) that the
interpretation of the waveform in Fig. 4(d) is similar to the original
sentence, owing to the effects of the audio modification, which
removes the adversarial noise.

We tested 100 samples and examined the concordance rate for
the recognized sentence in the adversarial example and the origi-
nal sample. Fig. 7 shows the similarity rates for the adversarial
example and for the original sample over the decibel range of an
octave in the low-pass filtering method. In Fig. 7, the similarity rate
for the original sample is maintained for roll-off values up to 12,
whereas the similarity rate for the adversarial example decreases.
However, if the roll-off increases to greater than 24, the similarity
rate for the original sample is reduced because of the severity of
the audio modification. Therefore, at exactly 12 dB, it can be con-
sidered to have hit a ‘‘sweet spot.”.

The audio files can be heard directly at the links given in [33,34]
(original sample before and after audio modification) and [35,36]
(audio adversarial example before and after audio modification).
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5.2.2. Analysis of 8-bit reduction
The 8-bit reduction technique reduces a 16-bit audio sample to

an 8-bit audio sample. Figs. 8 and 9 show the waveforms and spec-
tra, respectively, of an original sample and a corresponding adver-
sarial example before and after 8-bit reduction. First, we can see
from Figs. 8(b) and 9(b) (before the application of the 8-bit reduc-
tion) that a little noise has been added overall compared with
Figs. 8(a) and 9(a). However, as shown in Fig. 10, the original sam-
ple (before audio modification) of Fig. 8(a) is recognized as being
the same as the original sentence, ‘‘this is for you,” whereas the
adversarial example (before audio modification) of Fig. 8(b) is
misunderstood as ‘‘example,” as chosen by the attacker. Next, we
can see that after application of the 8-bit reduction (Fig. 8(c) and
(d)), the number of samples (y-axis) is substantially reduced. This
is because the number of bits in the audio file drops from 16 to 8 as
a result of the 8-bit reduction. Fig. 9(c) and (d) show similar pat-
terns throughout the spectra, but with additional noise overall.
However, as shown in Fig. 10, the original sample (Fig. 8(c)) is rec-
ognized as the original sentence, ‘‘this is for youd,” and the adver-
sarial example (Fig. 8(d)) is also recognized as the original
sentence, ‘‘tiso for youd,” instead of ‘‘example” as chosen by the
attacker. As can be seen, because 8-bit reduction reduces the effect
of adversarial noise, the adversarial example is now correctly rec-
ognized as the original sentence. Compared with other techniques,
8-bit reduction produces greater distortion of the original sample,
with the result that the similarity rate for the original sample is rel-
atively low (Table 1).

The audio files can be heard directly at the links given in [37,38]
(original sample before and after audio modification) and [39,40]
(audio adversarial example before and after audio modification).

5.2.3. Analysis of audio silence removal
The audio silence removal technique removes unnecessary

silence from sound. After it checks the beginning and end of the
sample, unnecessary parts are removed by this technique. The



Fig. 4. Waveforms for an original sample and an audio adversarial example, before
and after low-pass filtering. ‘‘Before” is before low-pass filtering; ‘‘after” is after
low-pass filtering.

Fig. 5. Spectra for waveforms shown in Fig. 4. ‘‘Before” is before low-pass filtering;
‘‘after” is after low-pass filtering.
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algorithms used for silence removal are the zero-crossing rate
(ZCR) [41] and the short-time energy (STE) [42]. The ZCR algorithm
is a voice activity detection method that uses the change point
(from positive to negative or from negative to positive) of the sign
function. The STE algorithm can effectively classify voice and non-
voice segments by using the feature that the energy of voice sound
is greater than that of non-voice sound. As the parameter values for
the two algorithms, 16,000 Hz was used as the sampling rate, the
threshold was �20 dB, and the window type was Hamming.

Figs. 11 and 12 show the waveforms and spectra, respectively,
of an original sample and a corresponding adversarial example
before and after audio silence removal. First, we can see from
Figs. 11(b) and 12(b) (before the audio silence removal is applied)
that a little noise has been added overall compared with Figs. 11(a)
and 12(a). However, as shown in Fig. 13, the original sample (be-
fore audio modification) of Fig. 11(a) is recognized as being the
same as the original sentence, ‘‘isn’t the party also to announce
his engagement to joanna,” whereas the adversarial example
(before audio modification) of Fig. 11(b) is misunderstood as
362
‘‘example,” as chosen by the attacker. Next, we can see that after
application of the audio silence removal (Figs. 11(c) and 11(d)),
the silent part of each waveform has been removed. The runtimes
have also decreased, from � 4 s to � 3 s. Figs. 12(c) and 12(d) also
show similar patterns throughout the spectra, but the unnecessary
parts have been removed. In terms of recognition, as shown in
Fig. 13, the original sample (Fig. 11(c)) is recognized as the original
sentence, ‘‘isn’t the party also to announce his engagement to
joanna,” and the adversarial example (Fig. 8(d)) is also recognized
as the original sentence, ‘‘isot party also to announce his engagt-
ment to joanna,” instead of ‘‘example” as chosen by the attacker.



Fig. 6. Sentences recognized by DeepSpeech from waveforms shown in Fig. 4.

Fig. 7. Similarity rates for adversarial example and original sample through low-
pass filtering.

Fig. 8. Waveforms for an original sample and an audio adversarial example, before
and after 8-bit reduction. ‘‘Before” is before 8-bit reduction; ‘‘after” is after 8-bit
reduction.
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It can be seen that the adversarial noise has been partially removed
from the waveform throughout the audio and that the adversarial
example after audio silence removal is recognized as the original
sentence, ‘‘isot party also to announce his engagtment to joanna.”.

The audio files can be heard directly at the links given in [43,44]
(original sample before and after audio modification) and [45,46]
(audio adversarial example before and after audio modification).

5.2.4. Comparisons of similarity rates, decibels, and detection rates
Table 1 shows the similarity rates for the original sample and

for the adversarial example using the low-pass filtering, 8-bit
reduction, and audio silence removal techniques. The low-pass fil-
tering technique filters out sounds having a specific high fre-
quency. In the case of the original sample under low-pass
filtering, the similarity rate for the original sample was maintained
at 93.94% because there is less voice corresponding to the high fre-
quency in the original sample. However, in the case of the adver-
sarial example under low-pass filtering, adversarial noise is
reflected in the entire frequency band for generating an adversarial
example, but a specific high frequency has been removed, and the
difference between the classification results before and after the
audio modification is large. Therefore, the similarity rate for the
adversarial example was reduced to 6.21%.

The 8-bit reduction technique reduces a 16-bit audio sample to
an 8-bit audio sample. If the.wav files input to DeepSpeech are
8-bit files, DeepSpeech’s recognition rate drops. This is because
the DeepSpeech model is optimized to correctly recognize.wav
files that are 16-bit samples taken at 16 kHz. Therefore, for an orig-
inal sample under 8-bit reduction, the difference between the clas-
sification results before and after the audio modification is
relatively large, and so the similarity rate for the original sample
was low, 57.75%. In the case of an adversarial example, some of
363
the adversarial noise in the adversarial example is lost by the
8-bit reduction, and the input value has changed to 8 bits; thus,
the difference between the classification results before and after



Fig. 9. Spectra for waveforms shown in Fig. 8. ‘‘Before” is before 8-bit reduction;
‘‘after” is after 8-bit reduction.

Fig. 10. Sentences recognized by DeepSpe
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the audio modification is large. Therefore, the similarity rate for the
adversarial example was reduced to 1.27%.

The audio silence removal technique removes unnecessary
silence from sound. In the case of an original sample, after the
silence segmentation, the speech recognition is less accurate
because the endpoints are cut off or because voices frequently
overlap. Therefore, there is a slight difference in the classification
results before and after the audio modification, and the similarity
rate for the original sample was 71.44%. In the case of an adversar-
ial example, on the other hand, because the optimized adversarial
noise of the adversarial example is partially deleted by the silence
removal, the difference between the classification results before
and after the audio modification is large. Therefore, the similarity
rate for the adversarial example was reduced to 0.66%.

In terms of the similarity rate for the original sample, it can be
seen from the table that the low-pass filtering technique produces
a higher similarity rate than the other techniques and that the 8-bit
reduction technique produces a much lower similarity rate,
57.75%. In terms of the similarity rate for the adversarial example,
audio silence removal produces a lower similarity rate than the
other techniques. It can be seen that the adversarial example is rec-
ognized correctly by the removal of the adversarial noise as
reflected in the silences. We can see that the performance of the
audio silence removal technique is better than 8-bit reduction in
terms of both the similarity rate for the original sample and the
similarity rate for the adversarial example. However, audio silence
removal has a lower similarity rate on the adversarial example
than low-pass filtering but also a lower similarity rate on the orig-
inal sample than low-pass filtering.

Fig. 14 shows the decibels and the difference in the decibels for
the original sample and the adversarial example using the low-
pass filtering (6, 12, 24, and 48 dB), 8-bit reduction, and audio
silence removal techniques applied to 100 test data. As seen in
the figure, the adversarial example and the original sample show
little difference in terms of decibels. On the other hand, in terms
of the difference in the decibels for each technique, the difference
under the low-pass filtering technique decreases because this tech-
nique removes the least noise from the initial audio sample. How-
ever, it can be seen that the decibel difference under low-pass
filtering is very small. In the case of 8-bit reduction, the decibel dif-
ference decreases substantially because the number of bits in the
modified samples is less than that in the initial audio sample. In
Table 1, this decrease in the number of bits can be seen to consid-
erably reduce the similarity rate for the original sample. In terms of
the decibel range, except under the 8-bit reduction technique, the
number of decibels was maintained between 70 and 90 dB; under
8-bit reduction the number of decibels was between 40 and 50 dB.

In terms of the difference in decibels, the table shown in Fig. 14
presents, for each technique, the difference between the number of
decibels for the sample before the modification and that after the
modification. The results for the initial audio sample show that
ech from waveforms shown in Fig. 8.



Table 1
Similarity rates for original samples and adversarial examples under each audio
modification technique: low-pass filtering, 8-bit reduction, and audio silence
removal. ‘‘Orig.” is original sample; ‘‘adv.” is adversarial example.

Parameter or metric Low-pass
filtering

8-bit
reduction

Silence
removal

Roll-off 12 dB – –
Similarity rate for

orig.
93.94% 57.75% 71.44%

Similarity rate for
adv.

6.21% 1.27% 0.66%

Fig. 11. Waveforms for an original sample and an audio adversarial example, before
and after audio silence removal. ‘‘Before” is before audio silence removal; ‘‘after” is
after audio silence removal.

Fig. 12. Spectra for waveforms shown in Fig. 11. ‘‘Before” is before audio silence
removal; ‘‘after” is after audio silence removal.
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the decibel differences under the low-pass filtering and the audio
silence removal techniques are about 2 dB and 0.12 dB, respec-
tively, whereas under 8-bit reduction it is about 37 dB.
365
Fig. 15 shows the detection rates for adversarial examples and
the error rates for original samples through audio modifications
applied using the low-pass filtering (with 12 dB roll-off), 8-bit
reduction, and silence removal techniques. If the input has a simi-
larity rate lower than the threshold, it is determined to be an
adversarial example, and if the input has a similarity rate higher
than the threshold, it is determined to be an original sample. As
seen in the figure, as the threshold increases, the detection rate
for adversarial examples and the error rate for original samples
increase. In terms of the detection rate for adversarial examples,
the silence removal technique has better performance than the
other techniques, achieved by effectively removing adversarial



Fig. 13. Sentences recognized by DeepSpeech from waveforms shown in Fig. 11.

Fig. 14. The decibels and decibel differences for original samples and adversarial examples under each modification technique, using 100 test data. The lower and upper
bounds of the bars are the standard 25th and 75th percentiles, respectively. ‘‘Initial” means initial audio sample before audio modification; ‘‘Lp” means low-pass filtering;
‘‘8-bit” means 8-bit reduction; ‘‘removal” means audio silence removal.
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noise. In terms of the detection rate for original samples, the low-
pass filtering technique, which does not significantly damage the
original sample, has better performance than the other techniques.
The sweet spot for the threshold value was 0.4: At this point, the
silence removal and low-pass filtering techniques produced low
error rates for original samples and high detection rates for adver-
sarial examples.

5.2.5. Comparison with other defense methods
Table 2 shows the detection rates for adversarial examples and

the error rates for original samples by the white noise method,
denoise down-sampling method, temporal dependency method,
and proposed method. The error rate is the proportion of times
an original sample is incorrectly determined to be an adversarial
example. The Mozilla common voice dataset and the DeepSpeech
model were used as the dataset and target model, respectively.

With the white noise method, by which white noise is added to
the input data at 20 dB, the detection rate for adversarial examples
was 91%, and the error rate for original samples was 46%. The error
366
rate for original samples was increased by adding white noise,
which can affect the recognition of the original sample. With the
denoise down-sampling method, the detection rate for adversarial
examples was 92%, and the accuracy for original samples was 21%,
using a frequency fluctuation of 8 kHz on the sound file. The Deep-
Speech model, which is optimized for a sampling rate of 16 kHz,
has poor accuracy for speech at sampling rates other than
16 kHz, and so the DeepSpeech model had an error rate of 21%
for original samples. With the temporal dependency method, the
detection rate for adversarial examples was 94%, and the error rate
for original samples was 9%. In the process of segmenting the audio
sample, endpoints are cut off or voice overlap occurs, and recogni-
tion of the original speech sample is partially lost; therefore, the
temporal dependency method had an error rate of 9% for original
samples. With the proposed method, when a low-pass filter with
a roll-off of 12 dB was used for audio modification and the ‘‘sweet
spot” threshold value of 0.4 was selected, the detection rate for
adversarial examples was 97%, and the error rate for original sam-
ples was 5%. This method removes the high-frequency adversarial



Fig. 15. Detection rates for adversarial examples and error rates for original
samples through audio modifications applied using low-pass filtering (with 12 dB
roll-off), 8-bit reduction, and silence removal techniques.
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noise in the adversarial example while keeping the similarity rate
for the original sample high, as the voice file provided contains few
high-frequency voice bands.
6. Discussion

In this section, we discuss the proposed method as it relates to
generating audio adversarial examples, audio modification tech-
niques, applicability in ensemble methods, threshold value, and
limitations.

6.1. Generation of audio adversarial examples

‘‘Although the proposed scheme is designed as a defense
method against audio adversarial examples, it can also be used
to create an audio adversarial example regardless of its relation
to the original sample and the length of the target phrase. This is
because under the Carlini method [5], with its high attack success
rate, there is no limit on the relationship to the original sample or
the length of the target phrase, in contrast with other methods
[16].

6.2. Audio modification technique

The proposed method performs detection by using audio mod-
ification, exploiting the fact that the adversarial example is more
sensitive than the original sample. However, depending on the
audio modification technique used, there may be too much distor-
tion induced, causing the similarity rate for the original sample to
be severely reduced, or, alternatively, there may be too little
Table 2
Detection rates for adversarial examples and error rates for original samples by the white
proposed method, on the Mozilla common voice dataset and using the DeepSpeech mode

Metric White noise Denoise dow

Detection rate for adv. 91% 92%
Error rate for orig. 46% 21%
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distortion and therefore no change in the adversarial example.
For example, the filtering technique was tested using a high-pass
filter, a notch filter, and other filter types, but these could not be
used as audio modification techniques because they did not change
the adversarial example. Therefore, the performance of the audio
modification technique needs to be considered in advance.

In addition, the various audio modification techniques differ in
performance, so it is necessary to consider their advantages and
disadvantages. For example, audio silence removal produces a
lower similarity rate than low-pass filtering on original samples,
but also a lower similarity rate than low-pass filtering on adversar-
ial examples. Thus, it is also necessary for the defender to consider
this trade-off in selecting the most appropriate audio modification
technique.

6.3. Justification of the proposed scheme

For the audio modification, we tested several techniques,
including low-pass filtering, high-pass filtering, notch filtering,
8-bit reduction, hard-clipping, and silence removal. Of these, the
low-pass filtering, 8-bit reduction, and audio silence removal tech-
niques were found to be suitable for the audio modification. The
use of these three techniques is justified by the fact that they can
reduce the similarity rate for adversarial examples by removing
or manipulating some adversarial noise while maintaining the sim-
ilarity rate for original samples to some extent. The low-pass filter-
ing technique removes the high-frequency range from audio
sound. This technique reduces the similarity rate for adversarial
examples by removing the high-frequency adversarial noise in
the adversarial example while keeping the similarity rate for
original samples high, as the voice file provided contains few
high-frequency voice bands. The 8-bit reduction technique reduces
16-bit audio samples to 8-bit audio samples. While preserving the
similarity rate for original samples to some extent, this technique
reduces the similarity rate for adversarial examples by removing
some of the adversarial noise in the adversarial example by reduc-
ing the dimensionality. The audio silence removal technique
removes unnecessary silence from the sound. This technique
reduces the similarity rate for adversarial examples by removing
the adversarial noise of the silent region from the voice, while
keeping the similarity rate for original samples slightly higher.

In audio modification, the similarity rate for original samples
should be kept high, and the similarity rate for adversarial exam-
ples should be kept low. However, with the high-pass filtering,
notch filtering, and hard-clipping techniques, a performance
degradation occurred, in which the similarity rate for the original
sample was remarkably low or the similarity rate for the adversar-
ial example was high. The high-pass filtering technique removes
low-frequency bands. When this technique was applied, the low-
frequency band of the original sample was largely removed, caus-
ing the similarity rate for the original sample to drop below 21.3%.
The notch filtering technique removes a specific frequency band.
When this technique was applied, the specific frequency band
was also removed in the original sample, causing the similarity
rate for the original sample to drop to 32.6%. The hard-clipping
technique is a type of distortion effect in which the amplitude of
the signal is limited to a given maximum amplitude. When this
noise method, denoise down-sampling method, temporal dependency method, and
l. ‘‘Orig.” is original sample; ‘‘adv.” is adversarial example.

n-sampling Temporal dependency Proposed

94% 97%
9% 5%
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technique was applied, little of the adversarial noise was removed,
and the similarity rate for the adversarial example was high, 71.5%.
6.4. Applicability in ensemble methods

The proposed method can be used in combination with differ-
ent audio modification techniques. For example, an adversarial
example could be detected by using a combination of the low-
pass filtering technique and the audio silence removal technique,
as shown as type 1 and type 2 in Fig. 16. When two audio modifi-
cation techniques are used, in this case low-pass filtering and audio
silence removal, the proposed method compares the results before
and after applying the two audio modifications. In calculating the
similarity rate for original samples, because low-pass filtering is
better, weight will be given to the original sample, whereas in cal-
culating the similarity rate for adversarial examples, as audio
silence removal is superior, weight will be given toward detection
of the adversarial example. Combining techniques may enable the
detection of audio adversarial examples with improved
performance.
6.5. Similarity rate

By definition, the similarity rate is the proportion of matches
between the initial classification result recognized before the audio
modification and the classification result recognized after the
audio modification. If there is no difference between the results
of the classification before and after the audio modification, the
similarity rate will be higher; if the difference between the results
of classification before and after the audio modification is large, the
similarity rate will be lower.

The low similarity rate for adversary examples shown in Table 1
is important because it means that the difference between the clas-
sification results before and after audio modification is large; with
a low similarity rate, adversarial examples can be easily detected.
An attacker creates an adversarial example by adding some noise
to deceive the target classifier into classifying the input as the tar-
get classification, but after the input is passed through the audio
modification, the attack success rate of the adversarial example
decreases, and the adversarial example is recognized as the origi-
nal classification.

In addition, the lower the similarity rate for adversarial exam-
ples, the higher the rate of detection of adversarial examples. The
similarity rate for the original sample is high owing to the small
Fig. 16. Ensemble method u
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change in the classification result from the audio modification,
whereas an adversarial example has a large change in the classifi-
cation result from the audio modification, resulting in a lower sim-
ilarity rate for the adversarial example. The lower the similarity
rate, the greater the gap with the similarity rate for the original
sample, and the easier it is to detect adversarial examples.

6.6. Threshold

The proposed scheme is able to detect an adversarial example
because of the difference in the results before and after the audio
modification is applied. The experimental results show that for
original samples, 93.94%, 57.75%, and 71.44% similarity rates are
maintained with low-pass filtering, 8-bit reduction, and audio
silence removal, respectively. For adversarial examples, on the
other hand, the similarity rates are under 7%. Using the difference
in similarity rates between original samples and adversarial exam-
ples, it was found that when the threshold is 0.4, the silence
removal and low-pass filtering techniques produced low error
rates for original samples and high detection rates for adversarial
examples, with reference to Fig. 15. However, as each technique
has different levels of average similarity rate for original samples
and adversarial examples, it is necessary to select an appropriate
threshold value for each technique.

6.7. Limitations

The proposed scheme can provide a limited-world defense for a
speech recognition system. Our experiments have been with direct.
wav files that do not include noise such as that from microphones,
speakers, the room environment, and other noise sources that may
be present for sounds transmitted through the air. If an adversarial
example is affected by distortions caused by audio compression
encoding, microphones, the indoor environment, the playback
speaker, and other noise sources in an over-the-air transmission,
the performance of the proposed scheme may be decreased. There-
fore, future research will be expanded to include audio adversarial
example defense methods that are effective for sounds transmitted
through the air.
7. Conclusions

In this paper, we have proposed an acoustic-decoy method for
detecting audio adversarial examples through audio modification.
sing proposed method.
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The key feature of the proposed scheme is the addition of well-
formalized distortions using audio modification, enabling the clas-
sification result of an adversarial example to reflect changes
because of its sensitivity, whereas an original sample will undergo
only a slight change in its classification result. Experimental results
show that the proposed method can detect adversarial examples
by reducing the similarity rate for an adversarial example to
6.21%, 1.27%, and 0.66% using the low-pass filtering (with 12 dB
roll-off), 8-bit reduction, and audio silence removal techniques,
respectively. It can detect an audio adversarial example with a suc-
cess rate of 97% by performing a comparison with the initial audio
sample.

Future work will extend the method to other domains such as
the video domain and for malware detection. Another challenge
will be to develop a method for detecting an adversarial example
generated in a real-world external environment. In addition, future
research will examine the proposed defense method in the context
of an ensemble strategy.
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Appendix A

The following are fifteen examples of Mozilla voice test data
[31]. (1) that day the merchant gave the boy permission to build
the display; (2) he was going to miss the place and all the good
things he had learned; (3) it was dropping off in flakes and raining
down on the sand; (4) the shower’s in there; (5) follow the instruc-
tions here; (6) he remembered something his grandfather had once
told him that butterflies were a good omen; (7) the shop is closed
on mondays; (8) even coming down on the train together she
wrote me; (9) i’m going away he said; (10) it must have fallen
while i was sitting over there; (11) a huge hole had been made
by the impact of the projectile; (12) it’s candice now on long dis-
tance from washington; (13) he could always go back to being a
shepherd; (14) the boy went to his room and packed his belong-
ings; (15) their faces were hidden behind blue veils with only their
eyes showing.
Table 3
Characteristics of Mozilla voice test data [31], including average duration and text
length. ‘‘Chars” is characters.

Description Value

Quantity 100
Average duration 6.023 s

Average text length 44.62 chars
Sampling rate 16,000 Hz

Number of sampling bits 16 bits
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