
THEMIS: A Mutually Verifiable Billing System
for the Cloud Computing Environment

Ki-Woong Park, Member, IEEE, Jaesun Han, Member, IEEE,

JaeWoong Chung, Member, IEEE, and Kyu Ho Park, Member, IEEE

Abstract—With the widespread adoption of cloud computing, the ability to record and account for the usage of cloud resources in a

credible and verifiable way has become critical for cloud service providers and users alike. The success of such a billing system

depends on several factors: The billing transactions must have integrity and nonrepudiation capabilities; the billing transactions must

be nonobstructive and have a minimal computation cost; and the service level agreement (SLA) monitoring should be provided in a

trusted manner. Existing billing systems are limited in terms of security capabilities or computational overhead. In this paper, we

propose a secure and nonobstructive billing system called THEMIS as a remedy for these limitations. The system uses a novel

concept of a cloud notary authority for the supervision of billing. The cloud notary authority generates mutually verifiable binding

information that can be used to resolve future disputes between a user and a cloud service provider in a computationally efficient way.

Furthermore, to provide a forgery-resistive SLA monitoring mechanism, we devised a SLA monitoring module enhanced with a trusted

platform module (TPM), called S-Mon. The performance evaluation confirms that the overall latency of THEMIS billing transactions

(avg. 4.89 ms) is much shorter than the latency of public key infrastructure (PKI)-based billing transactions (avg. 82.51 ms), though

THEMIS guarantees identical security features as a PKI. This work has been undertaken on a real cloud computing service called

iCubeCloud.

Index Terms—Records, verification, transaction processing, pricing, and resource allocation

Ç

1 INTRODUCTION

CLOUD computing is representative of an important
transition and paradigm shift in service-oriented

computing technology. Emerging cloud services, such as
Amazon EC2, S3 [1], and Microsoft Azure [2], have become
popular in recent years. Although cloud computing has its
roots in grid computing and utility computing technologies,
it differs significantly from those technologies in terms of its
service model.

Cloud service providers (CSPs) generally use a pay-per-
use billing scheme in their pay-as-you-go pricing model:
That is, the consumer uses as many resources as needed
and is billed by the provider for the amount of resources
consumed by the end of an agreed-upon period. CSPs
usually guarantee the quality of service (in terms of
availability and performance) in the form of a service
level agreement (SLA) [3]. An SLA is supported by clear
metrics and regular performance monitoring. In this
service model, users who use an infrastructure-as-a-service

(IaaS) may wish to figure out the billed charges for the
total service time and the guaranteed service level. If a
company uses a platform-as-a-service (PaaS) or software-
as-a-service (SaaS), the accounting department of the
company may require the service usage logs so as to
verify the billed charges by checking the company’s total
number of running software programs or platforms. We
refer to this type of transaction as a billing transaction; it is
used to keep track of cloud service usage records and to
verify whether the CSP has offered the quality of service
promised under the SLA arrangement.

Providing a billing mechanism in a trusted manner is

critical for CSPs and users [4]. However, the security aspects

of a cloud billing system and the scale of cloud services

often raise the following security and system issues:

. A billing transaction with integrity and nonrepudiation
capabilities. For transparent billing of the cloud
services, each billing transaction should be protected
against forgery and false modifications [5]. Although
commercial CSPs [1], [2] provide users with service
billing records and while several researchers have
presented resource usage processing systems [6], [7],
[8], [9] that record the use of grid resources, they
cannot provide a trustworthy audit trail. It is because
the user or the CSP can modify the billing records
even after a mutual agreement between the user and
the CSP, leading to the dispute between them. In this
case, even a third party cannot confirm that the user’s
record is correct or that the CSP’s record is correct.
Therefore, a trustworthy audit trail is important for
resolving disputes, and the billing record in the billing
transaction must be assuredly incorruptible per

300 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2013

. K.-W. Park is with the Computer Hacking and Information Security
Department, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon 300-
716, South Korea. E-mail: oongbak@dju.kr.

. J. Han is with NexR Co. Ltd., #9, Samheung Building, 735-10, Yeoksam-
Dong, Gangnam-Gu, Seoul 137-070, South Korea.
E-mail: jason.han@nexr.com.

. J. Chung is with Intel Labs, Intel Co. Ltd., Santa Clara, CA 95054-1537.
E-mail: jaewoong.chung@intel.com.

. K.H. Park is with the Electrical Engineering Department, Korea Advanced
Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon
305-701, South Korea. E-mail: kpark@ee.kaist.ac.kr.

Manuscript received 11 July 2011; revised 30 Oct. 2011; accepted 27 Dec.
2011; published online 12 Jan. 2012.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2011-07-0067.
Digital Object Identifier no. 10.1109/TSC.2012.1.

1939-1374/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

mutual agreement. One way of ensuring the integrity
and nonrepudiation of a transaction (i.e., where
participants cannot deny the context of a billing
transaction) is to integrate a public key infrastructure
(PKI)-based digital signature [10] into each billing
transaction to prevent corruption. Several studies
[11], [12], [13] have addressed this issue by deploying
a PKI-based digital signature mechanism in an
underlying security layer; however, they were handi-
capped by computational overhead due to the
extreme complexity of the PKI operations [14].

. Computation efficiency of a billing transaction. Cloud
service users and CSPs can generate a vast number
of billing transactions because on-demand cloud
services dynamically scale their capacity upwards or
downwards. For example, in the case of iCubeCloud
[15] (which is the underlying cloud computing
platform of this study), the billing frequency per
user of the top 15 percent heavy users is typically
about 4,200 billing transactions per day. They
occasionally generate more than 200 billing transac-
tions per second (e.g., when starting a Hadoop
cluster), as they usually invoke massively parallel
processes in a bursty manner. The frequent billing
transactions lead to excessive computational over-
head for both the CSP and the user when the above-
mentioned security feature is involved in the billing
transaction. Consequently, the overhead imposed by
the billing transaction should be within acceptable
limits so as to be applicable to a wide spectrum of
computing devices, such as smartphones, tablets,
netbooks, and desktop PCs.

. Trusted SLA monitoring. Once a cloud service user
and CSP agree on an SLA, the service quality should
be monitored in a trusted manner. A CSP may
deploy a monitor and make the monitor’s function-
ality available to its users. However, the presence of
the monitor itself is insufficient because the monitors
are deployed on cloud resources that are not
operated by users [16]. The CSP may deliberately
or unintentionally generate incorrect monitoring
records, resulting in incorrect bills. To provide an
SLA monitoring mechanism, several studies have
made great efforts to design solutions that meet
various requirements, including scalability with
distributed resource monitoring [17], data-flow
monitoring [18], and predictions of SLA violations
[19], rather than addressing security concerns such
as the integrity and trustworthiness of the monitor-
ing mechanism. Thus, they are not fully supportive
of the security issues.

A thorough investigation of existing billing systems in
various computing environments has helped us identify the
above limitations in terms of security capabilities or
computational overhead. To overcome these limitations,
we propose a secure and nonobstructive billing system
termed THEMIS. Specifically, we devised the following
three mechanisms, which drive the architecture of our
billing system:

. Support for a mutually verifiable billing mechanism. We
refer the security features of integrity and nonrepu-
diation to mutual verifiability. Our proposed billing

system, THEMIS, introduces the concept of a cloud
notary authority (CNA) for the supervision of billing
transactions. For each billing transaction, the CNA
generates mutually verifiable binding information
that can be used to resolve future disputes between a
user and a CSP. Consequently, THEMIS can con-
struct credible and verifiable billing transaction,
which is likely to be accepted by users and CSPs.

. A billing mechanism with minuscule computational
overhead. The huge number of billing transactions
leads to excessive computational overhead or to a
billing system bottleneck. To mitigate these pro-
blems, we propose a computationally efficient bill-
ing scheme, which replaces the prohibitively
expensive PKI operations with a few hash and
symmetric key operations while providing mutual
verifiability. As a result, the billing transaction
overhead is significantly reduced.

. Support for trusted SLA monitoring. We devised an
SLA monitoring module, called S-Mon, which can be
deployed in the computing resources of CSPs. S-Mon
has a forgery-resistive monitoring mechanism in
which even the administrator of a cloud system
cannot modify or falsify the logged data. S-Mon
exploits two hardware-based security mechanisms:
The trusted platform module (TPM) [20] and the
Trusted Execution Technology (TXT) [21]. A more
comprehensive description of TPM and TXT is given
in Section 4.2. By means of the hardware components
above, S-Mon can: 1) monitor the level of SLA
achievements with regard to the user’s cloud
resources; 2) take action when a violation is detected,
such as accurately recording a violation in a secure
storage region; and 3) deliver the logged data to the
CNA after the service session is finished.

The remainder of the paper is organized as follows: In
Section 2, we review related works and analyze existing
billing systems. In Section 3, we present the overall system
design and components of the proposed billing system.
In Section 4, we illustrate the proposed billing protocol. In
Section 5, we evaluate the performance of the proposed
billing system. In Section 6, we discuss the real deployment
and additional extensibility of this work. Finally, in Section 7,
we present our conclusions.

2 RELATED WORKS

Billing systems that track and verify the usage of comput-
ing resources have been actively studied and developed in
the research area of grid and cloud computing. Many
studies have analyzed preexisting billing systems of grid
and cloud computing environments [22], [23]. They have
tried to identify the new requirements of the shift in the
computing paradigm from grid computing to cloud
computing. In this section, we briefly discuss experimental
results as we evaluate existing billing systems in terms of
their security level and billing overhead. We evaluate the
billing systems in an identical computing and network
environment. A more comprehensive evaluation of the
experimental results and the experimental environment can
be found in Section 5.

PARK ET AL.: THEMIS: A MUTUALLY VERIFIABLE BILLING SYSTEM FOR THE CLOUD COMPUTING ENVIRONMENT 301

2.1 Billing Systems with Limited Security Concerns

Two pioneering studies identified challenges in managing
the resources of a grid computing environment and
proposed a computational economy as a metaphor for
effective management of resources [24], [25]. Several
researchers presented a resource usage processing system
[6], [7], [8], [9] for recording the usage of grid resources.
Fig. 1a shows the architecture and characteristics of a billing
system with limited security concerns. The resource usage
information, which pertains to the CPU cycles, storage, and
network bandwidth, is collected via a resource usage
monitor and charged over the billing agent. APEL [6]
presents a billing system that processes log information to
create quantified accounting records. Other resource man-
agement and billing frameworks that were suggested as
part of traditional grid approaches: Namely, Condor/G [7],
GRASP [8], and Tivoli [9].

However, rather than addressing security concerns, they
focus on notions such as distributed resource usage
metering and an account balancing mechanism for a
distributed grid environment. Thus, they cannot provide
transaction integrity, nonrepudiation, and trusted SLA
monitoring, even though they had a nonobstructive billing
transaction latency of 4.06 ms in our experimental environ-
ment. These security functions are precluded because the
frameworks were designed for a distributed grid environ-
ment, not for a pay-per-use billing scheme.

2.2 Security-Enhanced Billing Systems

Several electronic payment schemes have been proposed in
the literature in an attempt to provide security-enhanced
billing mechanisms. They include micropayment-based
schemes such as MiniPay [26] and NetPay [27]. Broadly
deployed in e-payment systems, these schemes enable users
to securely and efficiently perform repeated payments.
Many of these schemes are based on the use of one-way
hash functions that generate chains of hash values; users
perform billing transactions by releasing a certain number
of hashes in the hash chain. On the basis of the micropay-
ment-based scheme, Pay-as-you-Browse [28] and XPay [29]
incorporated the micropayment concept into distributed
computing frameworks and cloud-hosted services. As
shown in Fig. 1b, the micropayment-based scheme has a
short billing latency (4.70 ms) in our experimental environ-
ment. However, it cannot support the security features of
nonrepudiation and trusted SLA monitoring because
micropayment schemes are mainly designed for transaction
integrity rather than other security features.

Research on cloud or grid computing has developed the
following market models and PKI-enhanced billing and
accounting frameworks: DGAS [11], SGAS [12], and
GridBank [13]. They have a secure grid-wide accounting
and payment handling system in which each user’s
accounts and resource usage records are maintained with
a PKI-based digital signature. The commercial cloud
services of Amazon EC2, S3 [1], and Microsoft Azure [2]
provide users with a service usage report via secure
communication and monitoring tools such as CloudWatch
[30]. Yet, the CSPs have not been adopting transparent
utility-type pricing models for their SLAs.

Fig. 1c illustrates the organization of a PKI-based billing
system and its characteristics in terms of the security level
and billing overhead. It has a longer billing latency
(82.51 ms) than the other systems in our experimental
environment. The extent of the overhead is mainly
determined by the extremely high complexity of the RSA
[31] operations when the PKI is used for a billing system

302 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2013

Fig. 1. Brief overview of billing systems and its characteristics in terms of
billing function and transaction latency: (a) billing system with limited
security concerns, (b) billing system with micropayment, and (c) PKI-
based billing system.

by a thin client or a heavily loaded server. The computa-
tional overhead can be a severe drawback when a number
of cloud service users and the CSP generate a vast amount
of billing transactions.

2.3 Summary

Fig. 2 shows the security functions and billing transaction
latency values of the above-mentioned works. The billing
systems with limited security concerns and the micropay-
ment-based billing system require a relatively low level of
computational complexity: The nonobstructive billing
transaction latency is 4.06 ms for the former and 4.70 ms
for the latter. Nevertheless, these systems are inadequate in
terms of transaction integrity, nonrepudiation, and trusted
SLA monitoring.

Despite the consensus that PKI-based billing systems
offer a high level of security through two security functions
(excluding trustworthy SLA monitoring), the security
comes at the price of extremely complex PKI operations.
Consequently, when a PKI-based billing system is used in
a cloud computing environment, the high computational
complexity causes high deployment costs and a high
operational overhead because the PKI operations must be
performed by the user and the CSP.

The last row clarifies the design goal of THEMIS and the
final value of the billing transaction latency. THEMIS
comply with the system requirements mentioned above
and are based on three main principles, namely, mutually
verifiable billing with a CNA, nonobstructive billing
transactions (4.89 ms), and trusted SLA monitoring.

From the viewpoint of SLA monitoring, several studies
[17], [18], [19] have made great efforts to design solutions
that meet various requirements. These works focus on the
notions of scalability with a distributed resource monitoring
[17], a data flow monitoring [18], and a prediction of SLA
violations [19], rather than addressing security concerns
such as the integrity and trustworthiness of a monitoring
mechanism. When the above monitoring techniques are
used in conjunction with THEMIS, the extensibility of this
work can be improved further.

This study is an extension of our previous work [32], in
which we focused on the protocol design of a mutually
verifiable billing system. Our objective in this study,
however, is to devise a trusted SLA monitoring module
and integrate the overall components in iCubeCloud, a real
cloud computing platform [15]. THEMIS act as the key
primitive for secure, trustworthy billing transactions.

3 DESIGN OF THEMIS BILLING SYSTEM

We present an overview of the THEMIS billing system in
this section. We first introduce the important components of
THEMIS and then describe the overall billing process.

3.1 The Proposed THEMIS Infrastructure

Fig. 3 shows the overall architecture of THEMIS billing
system. The four major components of the architecture are
listed as follows:

. CSP. The CSP enables users to scale their capacity
upwards or downwards regarding their computing
requirements and to pay only for the capacity that
they actually use.

. Users. We assume that users are thin clients who use
services in the cloud computing environment. To
start a service session in such an environment, each
user makes a service check-in request to the CSP
with a billing transaction. To end the service session,
the user can make a service check-out request to the
CSP with a billing transaction.

. CNA. The CNA provides a mutually verifiable
integrity mechanism that combats the malicious
behavior of users or the CSP. The process, which
involves a generation of mutually verifiable binding

PARK ET AL.: THEMIS: A MUTUALLY VERIFIABLE BILLING SYSTEM FOR THE CLOUD COMPUTING ENVIRONMENT 303

Fig. 2. Summary of relevant works in terms of security functionality and
billing latency.

Fig. 3. Overall architecture and flowchart of the billing transactions of THEMIS.

information among all the involved entities on the
basis of a one-way hash chain, is computationally
efficient for a thin client and the CSP.

. Trusted SLA Monitor (S-Mon). The S-Mon has a
forgery-resistive SLA measuring and logging me-
chanism, which enables it to monitor SLA viola-
tions and take corrective actions in a trusted
manner. After the service session is finished, the
data logged by S-Mon are delivered to the CNA.
We devised S-Mon in such a way that it can be
deployed as an SLA monitoring module in the
computing resources of the user.

3.2 Overall Billing Process of THEMIS

After a registration phase, THEMIS can use the above
components to provide a mutually verifiable billing
transaction without asymmetric key operations of any
entities. The registration phase involves mutual authentica-
tion of the entities and the generation of a hash chain by
each entity. The hash chain element of each entity is
integrated into each billing transaction on a chain-by-chain
basis; it enables the CNA to verify the correctness of the
billing transaction. In addition, S-Mon has a forgery-
resistive SLA measuring and logging mechanism. THEMIS
consequently supervises the billing, and because of its
objectivity, it is likely to be accepted by users and CSPs alike.

The billing transactions can be performed in two types of
transactions: A service check-in for starting a cloud service
session and a service check-out for finalizing the service
session. These two transactions can be made in a similar
way. Each billing transaction is performed by the transmis-
sion of a message, called a �-contract. A �-contract is a data
structure that contains a hashed value of a billing context
and the hash chain element of each entity. With the sole
authority to decrypt both the �-contract from the CSP and
the �-contract of the user, the CNA can act as a third party to
verify the consistency of the billing context between the
user and the CSP.

Fig. 3 shows the overall process of the billing transaction
with our billing system. The main steps are as follows:

1. The user generates a service check-in or check-out
request message and sends it to the CSP.

2. The CSP uses an element from the CSP’s hash chain to
send the user a �-contract-CSP as a digital signature.

3. The user uses an element from the user’s hash
chain to generate a �-contract-User as a digital
signature. The user then combines the �-contract-
User with �-contract-CSP and sends the combined
�-contract to the CNA.

4. The CNA verifies the �-contract from the user, and
generates mutually verifiable binding information of
the user and the CSP to ensure the consistency of the
�-contract.

5. The billing process is completed when the user and
the CSP receive confirmation from the CNA.

6. Finally, in the case of a service check-in, the S-Mon of
the user’s cloud resource transmits authentication
data of the S-Mon to the CNA. In the case of a service
check-out, S-Mon sends a report of the SLA
monitoring results to the CNA.

A more comprehensive description of the above transac-
tion can be found in Section 4.

4 PROPOSED BILLING PROTOCOL

In this section, we describe the overall transactions of the
proposed billing scheme, and in Section 4.4, we analyze the
security and safety of the proposed billing system.

4.1 Description of the THEMIS Billing Protocol

Fig. 4 shows a flow diagram of the overall transactions of
the proposed billing protocol. The protocol consists of the
three states.

State 1 involves key sharing and State 2 involves the
generation of a hash chain. Together these states serve as
the initial step of future billing transactions. They help
optimize the computational overhead of the billing mechan-
ism and facilitate mutual verifiability.

State 3 is for an actual billing transaction. During the
billing transaction, the user and the CSP both generate a
�-contract. The �-contract is notarized by the CNA. The use
of the �-contract means that the billing transaction replaces
the prohibitively expensive PKI operations to a few hash
and symmetric key operations without compromising the
security level of the PKI; as a result, the billing transaction
overhead is significantly reduced. In addition, S-Mon
exchanges data for trusted SLA monitoring. Table 1 lists
the notations of the entities and messages of the proposed
protocol. The details of the three states are as follows:

State 1 (mutual authentication). This state is for a user who
accesses the CSP for the first time. When the user first
accesses the CSP, PKI-based authentications are performed
by the user, the CSP, and the CNA. Throughout the mutual
authentications, the user, the CNA, and the CSP exclusively
share the following three keys:

. CSP $ CNA: Kc;n,

. User $ CNA: Ku;n, and

. User $ CSP: Ku;c.

304 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2013

Fig. 4. Flow diagram of the proposed billing protocol.

State 2 (hash chain generation). This state is for generating
and registering a hash chain among the CSP, the CNA, and
the user. Each of these three parties generates a hash chain
of length N by applying the hash function N times to a seed
value (Cu;N , Cc;N , and Cn;N) so that a final hash (Cu;0, Cc;0,
and Cn;0) can be obtained. As shown in Fig. 5, the user and
the CSP commit to the final hash by digitally signing the
final hash (Cu;0 and Cc;0), and by registering the signed hash
chain elements to the CNA.

The purpose of this registration is to commit the final hash
values to the CNA and to receive the final hash (Cn;0)
generated by the CNA. Once the commitment of the one-way
hash chains is successfully completed, the elements of the
hash chains are used chain by chain to generate a �-contract
for future billing transactions. State 2 is skipped until the
corresponding hash chain is depleted.

State 3 (billing transaction). An actual billing transaction is
performed at the beginning of State 3. In this state, a user
can perform two types of billing transactions: “a service
check-in” (to start a service session, State 3-1) and “a service

check-out” (to end a service session, State 3-2). The service
check-in is for requesting a new cloud service, such as a
virtual machine service or a storage service. A user who
wants to end the cloud service can perform a billing
transaction for “a service check-out.”

Both types of transactions can be performed in a similar
way. The difference between them is the context of the
message. The context of a service check-in includes the SLA
and data for the initialization of SLA monitoring. The
context of the service check-out includes information that
can be used to verify data from the SLA monitoring
module, S-Mon.

. State 3-1 (billing transaction for a service check-in). As
shown in Fig. 5, a user who intends to receive a
cloud service from a CSP sends a service check-in
request message (Message 3-1) to the CSP. Upon
receiving the message, the CSP transmits a stipula-
tion (S) and a �-contract-CSP to the user. The S
contains a service invoice and an SLA that covers
guaranteed performance factors, such as availabil-
ity, CPU speed, I/O throughput, a time stamp,
and the price. The �-contract-CSP contains a hash
chain element of the CSP, Cc;n. The hash chain
element, which is listed in Table 1, is updated for
each �-contract-CSP on a chain-by-chain basis so
that all of the �-contract-CSP can be linked and
verified sequentially toward the seed value (Cc;0) of
the hash chain.

After receiving the �-contract-CSP (Message 3-2),
the user generates a notary request message (Mes-

sage 3-3, which is a combination of the �-contract-CSP
and the �-contract-User) and sends it to the CNA.
When Message 3-3 arrives, the CNA compares the
HðSÞ section of �-contract-User with the HðSÞ section
of �-contract-CSP to check the justness of the billing
request message. We note that only the CNA can
acquire both the HðSÞ section of the �-contract-CSP

and the HðSÞ section of the �-contract-CSP. If the two
contexts are identical to each other, the CNA sends a
confirmation message (Message 3-4) to the user and

PARK ET AL.: THEMIS: A MUTUALLY VERIFIABLE BILLING SYSTEM FOR THE CLOUD COMPUTING ENVIRONMENT 305

TABLE 1
Notation of the Entities and Messages

Fig. 5. Overall message transaction of THEMIS from State 1 to State 3.

the CSP. Otherwise, the CNA sends an error message
to the user and the CSP. The billing transaction is
completed when the user and the CSP receive the
confirmation message.

In this transaction, the �-contract-CSP contains the
output of the hash function with two input values (S
and Cc;n). Due to the NP-completeness of the hash
function, only the CSP can perceive the Cc;n.
Similarly, only the user and the CNA can perceive
the Cu;n value of �-contract-User and the Cn;n value of
the confirmation message, respectively. This method
enables the CNA to generate information that is
binding among all the involved entities. The verified
�-contract is subsequently retained on the local
repository of the CNA for future accusations. This
is the end of the billing transaction of the service
check-in.

Following that, the S-Mon of the user’s cloud
resource sends a monitor start message (Message 3-5)
to the CNA so that the service session is started.
Section 4.2 describes in more detail how the SLA is
monitored and verified.

. State 3-2 (billing transaction for a service check-out). A
user who intends to end the cloud service of the CSP
performs a billing transaction that is similar to the
service check-in transaction. The main difference
between the check-in and check-out transactions is
that S-Mon sends an SLA monitoring result to the
CNA in the confirmation message (Message 3-5). The
CNA can consequently determine whether the SLA
has been violated. If the CSP is unable to meet the
SLA, the CNA may impose penalties, such as
reducing or canceling the payment.

4.2 S-Mon: SLA-Monitor

To provide trusted SLA monitoring, we devised S-Mon,
which can be deployed into computing resources of the
CSP. S-Mon provides a forgery-resistive SLA measuring
and logging mechanism in a black-box (BB) manner. Thus,
even the administrator of the CSP cannot modify or falsify
the logged data.

S-Mon is tightly coupled with the billing protocol
described in previous section. First, S-Mon is initialized
and verified during the service check-in transaction
(via State 3-1). Second, during the service session, S-Mon
monitors the level of SLA achievement with regard to the
user’s cloud resources. Third, S-Mon reports the SLA
monitoring result to the CNA upon the service check-out
transaction (via State 3-2). Finally, by measuring the service
interval and verifying the monitoring result, the service
session is confirmed with the above transactions. Thus,
the billing transactions become more objective and accep-
table to users and CSPs due to the provision of the trusted
and forgery-resistant SLA monitoring mechanism of S-Mon.

S-Mon has two hardware-based mechanisms: The TPM
[20] and the TXT [21]. The TPM is a widely deployed
security chip in commercial-off-the-shelf computer systems.
It is designed for the purpose of secure storage and remotely
determining the trustworthiness of a platform. TXT is a set
of technology by Intel. It provides a secure execution
mechanism called a measured launch environment (MLE);

it enables a verified execution code in a secure memory
region. S-Mon uses the following fundamental technologies:

. Platform integrity measurement. To ensure the trusted
execution of S-Mon, we utilize a TPM. One of the
important features of the TPM is a set of platform
configuration registers (PCRs). The PCRs are a set of
built-in registers that can be used to store the 160-bit
hash values obtained from the SHA-1 hashing
algorithm. The PCR values can only be changed by
the Extend() function, which is an internal function of
the TPM. It outputs a hash result with (input value +
current PCR value), and then replaces the current
PCR value with the output of this operation.

The MLE uses the PCR’s characteristics. Before
handling over the control to a program to be executed,
the MLE uses the Extend() function to extend the
resultant value into a PCR. MLE can compare the PCR
value with a reference value to ensure that only a
verified execution code is invoked in a secure
memory region.

To enable the CNA to verify the platform status,
the TPM provides a Quote() function, which uses a
TPM private key called an attestation identity (AIK) to
return a digital signature of the current PCR values.
The AIK is created inside the TPM and protected by
the TPM so that Quote() provides proof that the
output of Quote() was generated on the platform.

. Secure storage with the TPM. The TPM provides a
means of storing data in a secure fashion. The Seal()
function encrypts the input data with a TPM key
and specified PCR values. The Unseal() function
decrypts the encrypted data only when the specified
PCR values and the key are matched with the status
of sealing [33]. S-Mon uses the Seal() and Unseal()
functions to protect the SLA monitoring data in
such a way that the data can only be decrypted by
S-Mon itself.

. Execution integrity with the TPM. The TPM has built-
in support for a monotonic counter. The increments
of this type of counter are in single steps, and the
value of the counter is only incremented by the
IncrementCounter() function. In addition, the TPM
has a mechanism that creates a signature of the
current tick value of the TPM. The tick data include
a signature of the current tick value and its update
cycle. These functions are utilized in our verifica-
tion mechanism. The verification mechanism en-
ables the CNA to determine whether the S-Mon has
been executed without a block or a data loss; it
also determines when SLA violations occur with
the tick value.

We incorporated these fundamental technologies into a
three-phase procedure of forgery-resistive SLA measuring
and logging. Fig. 6 shows the overall procedure of S-Mon.
Each cloud resource has a trusted boot module, called
Tboot [34] as an underlying security module. Tboot is an
open source module that supports MLE functionality;
it enables S-Mon to be executed in a trusted environment.
Consequently, only the CNA’s registered software (hyper-
visor, dom0, and S-Mon) can be invoked [35].

306 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2013

The S-Mon procedure consists of three phases. Phase1
is performed for the beginning of a service session; Phase2
is periodically invoked during a service session; and
Phase3 is performed for the end of the service session. The
CNA can consequently determine whether the SLA has
been violated. We note that S-Mon deliver the logged data
to the CNA only after the service session is finished or
when the user requires SLA monitoring data from the
CNA via Phase3. The details of the three S-Mon phases
are as follows:

. Phase1 (S-Mon initialization). In a billing transaction
for a service check-in, the S-Mon of the user’s cloud
resources initializes itself by accepting S, which
contains the SLA to be monitored and Nu (line 1). To
enable the CNA to check the freshness of the S-Mon,
S-Mon performs an extend() operation by inputting
HðSÞ and a tick-stamp (line 2). The tick-stamp
confirms the starting time of S-Mon.

For secure communication between S-Mon and the
CNA, S-Mon generates a pair of private and public
keys, SKm and PKm (line 3). The counter of line 5 is
the value of the monotonic counter of S-Mon’s TPM.
The counter and Seed (initial value ¼ Nu) are used in
Phase2 and Phase3 for the integrity check of the data
logged by S-Mon.

The initial data (SKm, SLA, counter, Seed, and the
tick-stamp) are sealed in a nonvolatile region (NV)
of the TPM and BB data structure by the seal()
operation (lines 5-6). The NV represents areas of
flash storage inside the TPM itself, and the BB is a
repository for storing all the data logged by S-Mon.
The NV and the BB can be accessed only when the
corresponding PCR value is matched with the status
of the sealing. This limitation enables S-Mon to store
persistent data in such a way that only S-Mon itself
can access the data.

S-Mon subsequently stores the current status of
S-Mon in q by using the Extend() and Quote()
operations (lines 7-8). The ExtendðPCR; 0xFF Þ
operation prevents any other software from acces-
sing the NV and BB. Finally, S-Mon transmits a
message (Message 3-5) to start the SLA monitoring
(line 9).

Message 3-5 contains data on the freshness of S-Mon
as well as the authentication data (Auth) of the user’s
cloud resources. The message enables the CNA not
only to ensure that the S-Mon was initialized with the
correct parameters (S,Nu, and the tick-stamp) but also
to verify that the target resources to be monitored by
the S-Mon are correctly bound to the cloud resources
of the user. The Auth comprises the context of Message
3-4 between the CNA and the user, which is encrypted
with Ku;n so that the only the user and the CNA can
decrypt the message. During the service check-in
phase (via State 3-1), the user enters the Auth into the
user’s cloud resource as a log-in parameter, and the
data are delivered to the S-Mon by means of Xen-
hypercall [36]. The S-Mon then includes the data in
Message 3-5. Finally, the CNA can verify the freshness
and correctness of the S-Mon by comparing the
context of Message 3-5 with the expected value.

. Phase2 (SLA monitoring). Phase2 periodically occurs
during the service time. To ensure its own execution
integrity, S-Mon performs this phase only when the
counter value stored in the NV is the same as the
monotonic counter value of the TPM (lines 1-3).
Whenever this phase occurs, the monotonic counter
is increased, and the value of the counter is stored in
theNV (line 7). Thus, when Phase2 is executed again,
the counter value in the NV must be the same as the
value of the monotonic counter. Otherwise S-Mon is
aborted, which means the counter value was tam-
pered with or the unsealed data were stale.

To detect the current system status, we imple-
mented a back-end driver deployable into a hyper-
visor to read the system status of the user’s cloud
resources. The driver uses Xen-hypercall [36] to read
the system status details of the CPU time, memory,
and network status (line 3) and it records the
violation in the BB whenever a violation is detected
(line 4-6).

Whenever a violation is detected, the violation
context, the extended Seed value (line 5), and the
current tick-stamp are appended to the BB. Each
violation context and tick-stamp is bound by the
Seed. Because the Seed value is extended by a hash
function for every SLA violation, each violation
context is linked to the previous violation context.
This linking process enables the CNA to check the
consistency of the BB context.

. Phase3 (SLA Report). Phase3 is executed when the
corresponding service session is ended by the user.
S-Mon transmits the BB, which contains the SLA
monitoring result to the CNA. Before sending the BB,
S-Mon appends the final tick-stamp, the counter, and
Seed (line 3). S-Mon stores the current status itself by
using the Extend() operation (line 4). A digital
signature of TPM is used to bind BB, Nu, and Auth

PARK ET AL.: THEMIS: A MUTUALLY VERIFIABLE BILLING SYSTEM FOR THE CLOUD COMPUTING ENVIRONMENT 307

Fig. 6. Overall process and message transactions of S-Mon interacting
with CNA.

to q with the PCR values (line 6). Finally, S-Mon
returns the results with its digital signature by SKm

to the CNA (line 7). The context of BB enables the
CNA to check whether S-Mon was executed cor-
rectly without a break or halt and whether the
returned result was truly generated by S-Mon.

4.3 Verification of the Billing Records

This section elaborates how the billing can be verified in
collaboration with the CNA. As shown in Fig. 7, when
Message 3-3 arrives at the CNA during a service check-in or
check-out transaction, the CNA checks the consistency of
the hash chain elements (Cu;n and Cc;n) from the user and
the CSP by checking the link with the previously used hash
chain elements (Cu;n�1 and Cc;n�1). Next, the CNA checks
the consistency between the HðSÞ of �-contract-User and the
HðSÞ of �-contract-CSP.

The checking process enables the CNA to verify
whether the CSP and user have the same stipulation (S).
The CNA subsequently generates binding information,
which contains the hashed value of HðSÞ and the hash
chain element (Cn;n) of the CNA. The CNA then sends the
user and the CSP a confirmation message with the binding
information (Message 3-4). Upon receiving the message,
the user and the CSP confirm that the corresponding
billing transaction (the �-contract) is correctly notarized. In
the case of the billing transaction for a service check-out,
the S-Mon of the user’s cloud resources transmits the BB
via Message 3-5. After each billing transaction, the CNA
retains the corresponding binding information and the BB
at the CNA’s local repository in a type of notarized billing
list (NBL). The NBL is an XML-based data structure for
storing evidence of the billing transactions for future
accusations. All of the contexts are periodically stored with
the digital signature of the CNA to ensure the integrity of
the NBL context. The user and the CSP also store the
billing-related information as evidentiary data.

Fig. 8 illustrates how the NBL is used to prove the
integrity of certain billing transactions by the verification
module of the CNA. The verification module has three hash
modules: The User-Verifier, the CNA-Verifier, and the CSP-
Verifier. The CNA-Verifier verifies the integrity of the
stipulation (S) from the user or the CSP by comparing the
stipulation with the binding information of the CNA. In
addition, the CNA-Verifier can check the correctness of the
BB by comparing the HðSÞ of the NBL with the HðSÞ of
the BB. The User-Verifier and the CSP-Verifier check the

correctness of a billing transaction asserted by the user and
the CSP, respectively.

For example, if a CSP asserts that a user repudiates a
certain billing transactions, the CSP can submit a claim for
justice to the CNA, drawing attention to the stipulation (S)
included in the corresponding �-contract-CSP. The CNA
then uses the CNA-verifier to verify the claim. If the claim
is correct, the CNA then demands to see the stipulation (S)
used to generate the �-contract-User. The CNA uses the
User-Verifier and the CSP-Verifier to derive the hash
value. Any discrepancy between the output of the hash
function and the stored data of the NBL proves that either
the user or the CSP has modified the stipulation of the
relevant billing.

4.4 Case Study on Potential Attacks against
THEMIS

In this section, we analyze the security and safety of the
proposed billing system. Our analysis is based on con-
sideration of falsified data, replay attacks, and man-in-the-
middle (MITM) attacks. On the one hand, we assume that
the underlying cryptography and hardware-based security
mechanisms (TPM and TXT) are invulnerable in terms of
data confidentiality and integrity; hence, we ignore attacks
with cryptanalysis and physical attacks against the system’s
CPU or TPM. One the other hand, any principle can place
or inject data on any storage device and link at any time. In
addition, any principle can see, delete, alter, and redirect all
exchanged messages or replay messages recorded from
past communications.

308 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2013

Fig. 7. Overall message transactions and local repositories for mutually verifiable billing transactions.

Fig. 8. Verification mechanism with the NBL in the CNA.

Case 1. Falsified �-contract attacks by a malicious CSP or

malicious user:

1. Forgery of the �-contract by a malicious CSP or a
malicious user before the confirmation of a billing
transaction.

2. Forgery of the �-contract by a malicious CSP or a
malicious user after the confirmation of a billing
transaction.

Defense mechanism:

. In the case of 1, a malicious CSP or user can try to
falsify the �-contract before the corresponding billing
transaction is confirmed. However, the CNA com-
pares the hash chain element of the �-contract-CSP
with that of the �-contract-User. If these elements do
not match, the CNA does not send a confirm
message to the CSP and the user.

. In the case of 2, a malicious CSP or user can try to
falsify the �-contract after the confirmation of the
billing transaction. However, the CNA records the
�-contract in the NBL. Hence, the CNA can identify
the malicious CSP or user by comparing the HðSÞ
and Cn of the NBL with the falsified �-contract.

Case 2. Falsified BB attacks or system modification by a

malicious CSP:

1. Forgery of the BB or system modification by a
malicious CSP during a service session to induce
inaccurate SLA monitoring.

2. Forgery of the BB by a malicious CSP after the
service session.

Defense mechanism:

. In the case of 1, a malicious CSP can try to falsify
the context of the BB during the corresponding
service session. However, the BB can be accessed
only by S-Mon because the TPM seals the BB with
the PCR values of the trusted S-Mon. In addition, a
malicious CSP can try to modify the system layer
to induce inaccurate SLA monitoring. However,
Tboot invokes only registered software, namely,
hypervisor, dom0, and S-Mon. Any invocation of
the modified hypervisor or dom0 or S-Mon is
blocked because the PCR values of the TPM fail to
match the known PCR values of the predefined
trusted software set.

. In the case of 2, a malicious CSP can try to falsify the
context of the BB after the service session. However,
the context of the BB contains its digital signature by
a private key (SKm), which can be accessed only by
S-Mon. Furthermore, all the items of logged data in
the BB are linked to each other in a hash chain
manner so that any modification or deletion of the
BB can be detected.

Case 3. Replay and MITM attacks:

1. A replay attack for THEMIS-based billing transac-
tion messages.

2. An MITM attack for THEMIS-based billing transac-
tion messages.

Defense mechanism:

. In the case of 1, An intruder can try to attack by
sending captured messages recorded from past
billing transactions. However, all the messages
contain nonce data and a time stamp in this billing
protocol to verify the freshness of the data.

. In the case of 2, the CSP and user generate billing
transaction messages that are altered for each
billing transaction, and the messages are encrypted
and transmitted by means of the shared keys that
are paired in a previous state. Thus, the intruder
cannot successfully masquerade as the user or the
service device.

5 PERFORMANCE EVALUATION

In this section, we present the performance results of our
prototype version of THEMIS. First, we demonstrate the
overall experimental environment. We then describe the
operational efficiency of the billing protocol to evaluate
the performance of THEMIS in terms of latency and
throughput. Finally, we present the performance overhead
of S-Mon with respect to the cloud computing platform.

5.1 Experimental Environment

Fig. 9 shows the overall experimental environment. To
evaluate the performance characteristics of THEMIS, we
constructed a cloud user emulator and coupled it to a
billing transaction generator.

The user emulator is connected to THEMIS, and the
emulator receives control signals from the billing transac-
tion generator. The generator is a module that generates
control signals to produce billing request messages. The
user emulator has an Intel Z510 processor and a 1-GB main
memory; the other components, including the CNA, the
billing agent of the CSP, and the cloud computing platform,
have a Xeon X5650 processor and a 24-GB main memory.

5.2 Billing Protocol Efficiency and Comparative
Evaluation

The performance of the billing protocol in terms of the
consumption of processing and communication resources is
an important factor to be considered when designing billing
protocols. First, we analyze how THEMIS compares with
other billing schemes in terms of computation and commu-
nication efficiency. To compare the overall latency of each
billing transaction scheme, we measured the billing transac-
tion latency, which is based on the interval between the start

PARK ET AL.: THEMIS: A MUTUALLY VERIFIABLE BILLING SYSTEM FOR THE CLOUD COMPUTING ENVIRONMENT 309

Fig. 9. Experiment environment for measuring the performance of
THEMIS.

and end of each billing scheme. In the case of THEMIS,
we measured the interval between the starting time of
Message 3-1 and the ending time of Message 3-4 on the client
side. Because Message 3-5 is related to the S-Mon after the
confirmation of the billing transaction, the interaction can be
interleaved with the other message transaction.

Fig. 10 shows the number of public and private keys
(RSA 2,048 bits), the symmetric key (AES 256 bits), and the
hash (SHA-1) operations performed with the total operating
time for each billing scheme. The operating time of each
entity is estimated for each billing transaction so that we can
measure how much the cryptography contributes to the
billing overhead. We note that the keywords “Limited
Security” and “THEMIS” in Fig. 10 are the experimental
results of iCubeCloud with a traditional approach and
iCubeCloud empowered with THEMIS, respectively. In the
case of the billing system with limited security (as described
in Section 2.1) and the micropayment (as described in
Section 2.2), the billing transaction can be accomplished
without asymmetric key operations. These results confirm
that even though they have a shorter billing latency (4.06,
4.70 ms) than the others, it fails to meet our security
requirement. Despite having a smaller number of crypto-
graphy operations per billing, the PKI-based billing scheme
(as described in Section 2.2) has a long billing latency
(82.51 ms) because it has a certain number of private and
public key operations for all of the entities.

In the case of THEMIS, a user who accesses the CSP for
the first time or needs the hash chain renewal is asked to
perform State 1 or State 2, which requires an asymmetric
key operation and multiple hash operations. The authenti-
cation and hash chain generation time of THEMIS
(93.05 ms) is slightly higher than the operating time of
PKI-based billing. However, after the operations, the user
can perform a billing operation by processing only four
symmetric key operations and two hash operations with-
out compromising the PKI security level. THEMIS’s total
billing transaction time (4.89 ms) is much shorter than that
of PKI-based billing.

From a communication perspective, PKI-based billing
transactions and the initial registration process of THEMIS
have a longer communication delay than the others
because they need to transmit each entity’s certificate. In
a network environment with a low bandwidth and long
delays, the billing latency is affected by the communication
overhead. Because THEMIS has a much smaller commu-
nication overhead (4.379 ms) than the PKI-based billing

system (13.81 ms), THEMIS can provide a shorter billing
latency than a PKI-based billing system in the limited
network environment.

5.3 Throughput Evaluation

Fig. 11a illustrates how the throughput of the billing
transactions mutates as the number of billing requests per
second varies. The number of billing requests per second
ranges from 1,000 to 15,000. For the PKI-based billing
protocol, we found that the throughput was saturated on
903.3 transactions per second as the number of billing
requests increased. This outcome is due mainly to the
cryptography operations and the communication overhead
of both the client side and the server side. In the case of the
billing system with limited security concerns as described in
Section 2.1, the throughput is saturated on 12,088.1 transac-
tions per second. This outcome is due to their lower
computation and communication overhead than the other
systems. In the case of THEMIS and the micropayment, the
throughput is saturated on 10,680.9 and 10,770.4 transac-
tions per second, respectively, as the number of billing
requests increases. This phenomenon is due to the fact that
the quantity of THEMIS and micropayment operations of
the user and server provider is much smaller than that of
PKI-based billing. This result confirms that the THEMIS
billing protocol can seamlessly provide a nonobstructive
billing transaction whenever the number of requests per

310 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2013

Fig. 10. The number of public/private keys and the symmetric key operations with the total operation time for each billing schemes.

Fig. 11. (a) Throughput of the billing transactions with varying numbers
of billing transactions per second; (b) throughput of THEMIS and PKI-
based billing with varying the batch size.

second is less than 11,000. From the perspective of
performance saturation, we believe that putting multiple
trusted third parties in charge of the CNA is an appropriate
way forward, as is the case with the PKI. We are working
toward a THEMIS-based system with more fault tolerance
to scalable billing.

To investigate the tradeoff between performance and
security, we measured the throughput of the PKI-based
billing protocol while varying the batch size. For instance,
both the cloud user and the CSP can digitally sign a
sequence of transactions for every n transaction as opposed
to digitally signing every transaction. Considering perfor-
mance, maintaining a large batch size improves the
throughput. Meanwhile, from a security perspective,
achieving a digital signature per transaction prevents an
advisory from modifying the service contract. Fig. 11b
depicts the throughput for each billing scheme. By compar-
ing the cost of THEMIS with the batch signature approach,
we confirm that THEMIS, while retaining mutual verifia-
bility at a per-transaction level, has a computation overhead
level that is similar to that of the batch signature approach
with a batch level of 50. This result arises because THEMIS
drastically minimizes the billing transaction overhead.

5.4 Performance Impact of S-Mon

The goal of our next experiment is to examine the
performance impact when S-Mon is applied to the cloud
computing platform. To measure the S-Mon monitoring
overhead, one cloud computing resource hosts four virtual
machines which are assigned to users. In addition, each
virtual machine is a 64-bit Linux 2.6.18 system with a 4-GB
main memory. In the cloud computing platform, we use
Xen 4.1 as a hypervisor. In this experiment, we measured the
operating time of each phase (specifically, the initialization,
monitoring, and report phases). Fig. 12a shows the operating
time of each phase of S-Mon. The bar on the left-most side
(Phase1) shows the time needed to initialize S-Mon. The
operational overhead has an average execution time of
647 ms. The next two measurements (Phase2) show the
operating time of the SLA monitoring phases. When
monitoring without any type of SLA violation detection,
the operational overhead averages 63 ms. When monitoring
with SLA violation detection, the operational overhead
averages 293 ms. The time difference is due to the overhead
incurred when recording violations with the seal operation

of S-Mon. The bar on the right-most side (Phase3) is
measured at the end of the SLA monitoring session, and a
report of the monitoring results is sent to the CNA. The
operational overhead averages 1,055 ms.

The next experiment was done to examine the
performance overhead of guest systems that are assigned
to users when S-Mon is periodically invoked. The
monitoring procedure of S-Mon was invoked every
3 seconds. The S-Mon driver on Xen gathers data on the
system status for a period of 3 seconds, after which S-Mon
reads the data from the driver. The performance overhead
by S-Mon is measured using the UnixBench [37] bench-
mark. We measure the total execution time of the bench-
mark when S-Mon is applied to the cloud computing
platform and compare it to the results of a system without
S-Mon. The results of our experiment are shown in
Fig. 12b. The black bars represent the normalized execu-
tion time when S-Mon is applied to the cloud computing
platform in comparison with the system without S-Mon as
the baseline (100 percent). The performance result implies
from 0.01 to 1.11 percent performance overhead if S-Mon
is applied to the cloud computing platform. This can be
attributed to the very low overhead imposed by S-Mon, as
it can achieve trusted SLA monitoring with system
overhead of less than 1.11 percent.

6 DISCUSSION AND FURTHER WORKS

In this section, we discuss additional issues, including an
instance of actual deployment from the perspective of
feasibility and additional extensibility, which may benefit
from the security properties of THEMIS.

6.1 Real Deployment and Its Feasibility

The deployment of THEMIS in the context of existing cloud
computing services requires minimal modification to the
CSPs, CNA, and users if seeking to provide mutually
verifiable billing transactions. The cost of these security
features is that THEMIS requires additional roles by CSPs
and the CNA. The CSP needs to deploy hardware resources
equipped with TPM and TXT if CSP intends to provide
additional assurances to their users. This is not a great
impediment, as TPM and TXT are widely deployed security
technologies in commercial off-the-shelf computer systems.
CNA will play the additional role of a trusted third party, as
discussed in Section 3.

Our next step is to consider the scalability and fault
tolerance of THEMIS. Currently, we are investigating
THEMIS from the perspectives of massive scalability and
robustness. We believe that putting multiple trusted third
parties in charge of the CNA is an appropriate way
forward, as is the case with the PKI. We are working
toward a THEMIS-based system with more fault tolerance
against scalable billing.

6.2 Extensibility for Various Target Services

In this work, THEMIS is focused on SLA-monitoring,
especially for IaaS services (in terms of availability and
performance) and related billing transactions for mutual
verifiability. From the perspective of extensibility, THEMIS
should be naturally applicable to various target services as
well to improve the accountability of each service. For

PARK ET AL.: THEMIS: A MUTUALLY VERIFIABLE BILLING SYSTEM FOR THE CLOUD COMPUTING ENVIRONMENT 311

Fig. 12. Performance impact on users’ cloud resource when S-Mon
monitors SLA for user’s service session.

instance, by applying monitoring techniques such as [17],
[18], [19] to S-Mon, we believe that THEMIS can facilitate
the cloud-based services with accountability. Examples
include PaaS, SaaS, and a cloud storage service. This type of
facilitation is possible as long as the monitoring techniques
can be plugged into the internal monitoring module of S-
Mon. As a result, we believe that the complementarity of
THEMIS and the existing monitoring techniques signifi-
cantly improve the extensibility of this work.

6.3 Multi-CNA Support

If different users subscribe to different CNAs on a single
physical resource, it becomes necessary for multiple S-Mons
to be deployable for the multiple CNAs. Implementing this
support requires multiple S-Mons to be invoked on a single
physical resource. In addition, S-Mon needs to implement
locking primitives to synchronize access to its global data of a
physical TPM because multiple S-Mons share the physical
TPM. By equipping each S-Mon with a virtual TPM (vTPM)
device [38] involving the virtualization of the hardware TPM,
S-Mon can overcome this restriction. The vTPM component
proposes a method of virtualizing the hardware TPM. It
provides the illusion of a physical TPM to S-Mons running on
a single physical resource. This facility enables the multiple
invocation of S-Mon on a physical TPM. Each S-Mon can be
mapped to a different CNA because each S-Mon can have a
different public key of CNA. Thus, the multiple CNA
support would be a promising augmentation of this paper.

7 CONCLUSION

Our aim in this study was to provide a full-fledged trusted,
nonobstructive billing system tailored for a cloud comput-
ing environment. To accomplish this task, we thoroughly
reviewed the ways in which existing billing systems are
used in the environment. We consequently derived blue-
prints for THEMIS, our mutually verifiable, computation-
ally efficient billing system. In addition to utilizing existing
billing systems, we conceived and implemented the con-
cepts of a CNA and S-Mon, which supervise billing
transactions to make them more objective and acceptable
to users and CSPs alike.

Our billing system features three remarkable achieve-
ments: First, we introduce a new concept of a CNA to
ensure undeniable verification of any transaction between a
cloud service user and a CSP. Second, our mutually
verifiable billing protocol replaces prohibitively expensive
PKI operations without compromising the security level of
the PKI; as a result, it significantly reduces the billing
transaction overhead. Last but not least, we devised a
forgery-resistive SLA measuring and logging mechanism.
By integrating the module into each cloud resource, we
made the billing transactions more objective and acceptable
to users and CSPs.

REFERENCES

[1] Amazon Web Services, “Amazon Elastic Compute Cloud EC2,
Simple Storage Service,” http://aws.amazon.com/ec2, http://
aws.amazon.com/s32, Apr. 2011.

[2] Microsoft, “Microsoft, Windows Azure Platform,” http://
www.microsoft.com/windowsazure, 2010.

[3] M. Armbrust and A.E. Fox, “Above the Clouds: A Berkeley View
of Cloud Computing,” Technical Report UCB/EECS-2009-28,
Electrical Engineering and Computer Sciences Dept., Univ. of
California, Berkeley, Feb. 2009.

[4] N. Santos, K.P. Gummadi, and R. Rodrigues, “Towards Trusted
Cloud Computing,” Proc. Conf. Hot Topics in Cloud Computing
(HotCloud), 2009.

[5] R.T. Snodgrass, S.S. Yao, and C. Collberg, “Tamper Detection in
Audit Logs,” Proc. 30th Int’l Conf. Very Large Data Bases (VLDB
’04), pp. 504-515, 2004.

[6] L. Cornwall, M. Craig, R. Byrom, and R. Cordenonsib, “APEL:
An Implementation of Grid Accounting Using R-GMA,” Proc. UK
E-Science All Hands Conf., Sept. 2005.

[7] F. Tannenbaum, L. Foster, and Tuecke, “Condor-G: A Computa-
tion Management Agent for Multi-Institutional Grids,” Cluster
Computing, vol. 5, pp. 237-246, 2002.

[8] O.-K. Kwon, J. Hahm, S. Kim, and J. Lee, “GRASP: A Grid
Resource Allocation System Based on OGSA,” Proc. IEEE 13th Int’l
Symp. High Performance Distributed Computing, pp. 278-279, 2004.

[9] “Tivoli: Usage and Accounting Manager,” IBM press release, 2009.
[10] PKIX Working Group, http://www.ietf.org/html.charters/pkix-

charter.html, 2008.
[11] A. Guarise, R. Piro, and A. Werbrouck, “Datagrid Accounting

System—Architecture—v1.0,” technical report, EU DataGrid, 2003.
[12] P. Gardfill, E. Elmroth, L. Johson, O. Mulmo, and T. Sandholm,

“Scalable Grid-Wide Capacity Allocation with the SweGrid
Accounting System (SGAS),” Concurrency Computation: Practice
Experience, vol. 20, pp. 2089-2122, Dec. 2008.

[13] A. Barmouta and R. Buyya, “Gridbank: A Grid Accounting
Services Architecture (GASA) for Distributed Systems Sharing
and Integration,” Proc. 17th Int’l Symp. Parallel and Distributed
Processing (IPDPS ’03), pp. 22-26, 2003.

[14] G. von Voigt and W. Muller, “Comparison of Grid Accounting
Concepts for D-Grid,” Proc. Cracow Grid Workshop, pp. 459-466,
Oct. 2006.

[15] NexR, “iCube Cloud Computing and Elastic-Storage Services,”
http://www.nexr.co.kr/, Mar. 2011.

[16] H. Rajan and M. Hosamani, “Tisa: Toward Trustworthy Services
in a Service-Oriented Architecture,” IEEE Trans. Services Comput-
ing, vol. 1, no. 4, pp. 201-213, Oct.-Dec. 2008.

[17] S. Meng, L. Liu, and T. Wang, “State Monitoring in Cloud
Datacenters,” IEEE Trans. Knowledge and Data Eng., vol. 23, no. 9,
pp. 1328-1344, Sept. 2011.

[18] C. Olston and B. Reed, “Inspector Gadget: A Framework for
Custom Monitoring and Debugging of Distributed Dataflows,”
Proc. ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’11),
pp. 1221-1224, 2011.

[19] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar,
“Monitoring, Prediction and Prevention of SLA Violations in
Composite Services,” Proc. IEEE Int’l Conf. Web Services (ICWS),
pp. 369-376, 2010.

[20] S. Pearson and B. Balacheff, Trusted Computing Platforms: TCPA
Technology in Context. Prentice Hall Professional, 2003.

[21] “Intel Trusted Execution Technology, Hardware-Based Technol-
ogy for Enhancing Server Platform Security,” white paper, Intel,
2010.

[22] A. Haeberlen, “A Case for the Accountable Cloud,” SIGOPS
Operating Systems Rev., vol. 44, pp. 52-57, Apr. 2010.

[23] F. Koeppe and J. Schneider, “Do You Get What You Pay for?
Using Proof-of-Work Functions to Verify Performance Assertions
in the Cloud,” Proc. IEEE Second Int’l Conf. Cloud Computing
Technology and Science (CloudCom), pp. 687-692, 2010.

[24] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger, “Economic
Models for Resource Management and Scheduling in Grid
Computing,” J. Concurrency Computation: Practice and Experience,
vol. 14, pp. 1507-1542, 2002.

[25] B.N. Chun and D.E. Culler, “Market-Based Proportional Resource
Sharing for Clusters,” technical report, 1999.

[26] A. Herzberg and H. Yochai, “MiniPay: Charging per Click on the
Web,” Proc. Selected Papers from the Sixth Int’l Conf. World Wide
Web, pp. 939-951, 1997.

[27] X. Dai and J. Grundy, “NetPay: An Off-Line, Decentralized
Micro-Payment System for Thin-Client Applications,” Electronic
Commerce Research Applications, vol. 6, pp. 91-101, Jan. 2007.

[28] G.O. Karame, A. Francillon, and S. Čapkun, “Pay as You Browse:
Microcomputations as Micropayments in Web-Based Services,”
Proc. 20th Int’l Conf. World Wide Web (WWW), pp. 307-316, 2011.

312 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2013

[29] Y. Chen, R. Sion, and B. Carbunar, “XPay: Practical Anonymous
Payments for tor Routing and Other Networked Services,” Proc.
Eighth ACM Workshop Privacy in the Electronic Soc., pp. 41-50, 2009.

[30] Amazon Web Services, http://aws.amazon.com/cloudwatch/,
2010.

[31] R.L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems,” Comm. ACM,
vol. 26, pp. 96-99, Jan. 1983.

[32] K.-W. Park, S.K. Park, J. Han, and K.H. Park, “THEMIS: Towards
Mutually Verifiable Billing Transactions in the Cloud Computing
Environment,” Proc. IEEE Third Int’l Conf. Cloud Computing,
pp. 139-147, 2010.

[33] D. Challener, K. Yoder, and R. Catherman, A Practical Guide to
Trusted Computing. IBM Press, 2008.

[34] “Trusted Boot: Open Source, Pre-Kernel/VMM Module,” http://
tboot.sourceforge.net/, 2011.

[35] J. Cihula, “Trusted Boot: Verifying the Xen Launch,” Intel
presentation at Xen Summit, Oct. 2007.

[36] C. Li, A. Raghunathan, and N.K. Jha, “Secure Virtual Machine
Execution under an Untrusted Management OS,” Proc. IEEE Int’l
Conf. Cloud Computing, pp. 172-179, 2010.

[37] The UNIX and Linux Forums, “UNIX Benchmarks,” http://
www.unix.com/unix-benchmarks/, 1991.

[38] S. Berger, R. Cáceres, K.A. Goldman, R. Perez, R. Sailer, and L. van
Doorn, “vTPM: Virtualizing the Trusted Platform Module,” Proc.
15th Conf. USENIX Security Symp., vol. 15, 2006.

Ki-Woong Park received the BS degree in
computer science from Yonsei University in
2005 and the MS and PhD degrees in electrical
engineering from the Korea Advanced Institute
of Science and Technology in 2007 and 2012,
respectively. He is currently an assistant pro-
fessor in the Computer Hacking and Information
Security Department at Daejeon University. He
worked as a researcher at the National Security
Research Institute in 2012. His research inter-

ests include security issues for cloud and mobile computing systems as
well as the actual system implementation and subsequent evaluation in
a real computing system. He received a 2009-2010 Microsoft Graduate
Research Fellowship. He is a member of the IEEE and the ACM.

Jaesun Han received the BS degree in electrical
engineering from Pusan National University in
1998 and the MS and PhD degrees in electrical
engineering from the Korea Advanced Institute
of Science and Technology (KAIST) in 2000 and
2005, respectively. He is the founder and CEO
of NexR, which has been developing a big data
analytics platform and a cloud computing plat-
form since 2007. He has been an adjunct
professor at KAIST Business School since

2007. He founded and has led the Korean Hadoop User Group since
2009. His research interests include big data analytics and cloud
computing. He is a member of the IEEE.

JaeWoong Chung received the BS and MS
degrees from the Korea Advanced Institute of
Science and Technology in 1997 and 1999,
respectively, and the PhD degree from Stanford
University in 2008. He is a research scientist at
Intel Labs. He was at Advanced Micro Devices
from 2008 to 2010, TmaxSoft from 2001 to 2004,
and Samsung from 1999 to 2000. His research
interests include enterprize system design,
transactional memory, and cloud computing.

He is a member of the IEEE.

Kyu Ho Park received the BS degree in
electrical engineering from Seoul National Uni-
versity, Korea, in 1973, the MS degree in
electrical engineering from the Korea Advanced
Institute of Science and Technology (KAIST) in
1975, and the DrIng degree in electrical en-
gineering from the University de Paris XI,
France, in 1983. He has been a professor in
the Division of Electrical Engineering at KAIST
since 1983. His research interests include

computer architectures, storage systems, cloud computing, and parallel
processing. He is a member of the IEEE and the ACM.

PARK ET AL.: THEMIS: A MUTUALLY VERIFIABLE BILLING SYSTEM FOR THE CLOUD COMPUTING ENVIRONMENT 313

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

