Computers, Materials & Continua & Tech Science Press

DOI: 10.32604/cmc.2022.026621
Article

Ransomware Classification Framework Using the Behavioral Performance
Visualization of Execution Objects

Jun-Seob Kim and Ki-Woong Park*

Department of Computer and Information Security, and Convergence Engineering for Intelligent Drone,
Sejong University, Seoul, 05006, Korea
*Corresponding Author: Ki-Woong Park. Email: woongbak@sejong.ac.kr
Received: 25 January 2022; Accepted: 22 February 2022

Abstract: A ransomware attack that interrupted the operation of Colonial
Pipeline (a large U.S. oil pipeline company), showed that security threats
by malware have become serious enough to affect industries and social
infrastructure rather than individuals alone. The agents and characteristics of
attacks should be identified, and appropriate strategies should be established
accordingly in order to respond to such attacks. For this purpose, the first
task that must be performed is malware classification. Malware creators are
well aware of this and apply various concealment and avoidance techniques,
making it difficult to classify malware. This study focuses on new features
and classification techniques to overcome these difficulties. We propose a
behavioral performance visualization method using utilization patterns of
system resources, such as the central processing unit, memory, and input/out-
put, that are commonly used in performance analysis or tuning of programs.
We extracted the usage patterns of the system resources for ransomware to
perform behavioral performance visualization. The results of the classification
performance evaluation using the visualization results indicate an accuracy
of at least 98.94% with a 3.69% loss rate. Furthermore, we designed and
implemented a framework to perform the entire process—from data extrac-
tion to behavioral performance visualization and classification performance
measurement—that is expected to contribute to related studies in the future.

Keywords: Behavioral performance visualization; ransomware; malware clas-
sification

1 Introduction

A ransomware attack that interrupted the operation of Colonial Pipeline, a large oil pipeline
company in the United States, occurred in 2021. A hacking group called DarkSide was responsible for
the attack, and the pipeline operations were all stopped suddenly [1]. The attack demonstrated that
security threats posed by malware have now become serious enough to affect industries and social
infrastructure rather than individuals alone. In the past, attackers targeted many unspecified people;
moreover, if malware was detected and removed quickly, further damage could be prevented, and the
scale of the damage was limited. The goal of such attacks was mostly to spread massive amounts of

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2022.026621
mailto:woongbak@sejong.ac.kr

3402 CMC, 2022, vol.72, no.2

malware in order to form a botnet or use it for bitcoin mining [2,3]. In recent years, attacks toward
specific companies or social infrastructure have increased, and consequently, the extent of the damage
has increased excessively. Ransomware, which causes the most serious damage, initially targeted
unspecified people; however, ransomware has recently been attacking specific targets persistently until
the attack succeeds. Furthermore, the goal of attacks is not only to demand money through data
encryption but also to leak corporate information, leading to secondary damage [4]. Since attackers’
goals, targets, and methods are changing, response strategies must also be modified in order to block
attacks. Targeted attacks cannot be blocked by standardized responses that simply detect and remove
malware. Appropriate strategies should be established by identifying the agents and characteristics of
the attacks. To this end, a classification of detected malware should be performed first to identify the
malware. If the classification result shows that the malware is already known, the attacker who has used
that particular malware can be identified. If the attacker is identified, the goal or method of the attack
that was performed in the past can be determined. Based on this, the attack in progress and future
ones can be predicted. Thus, a response strategy can be established, such as enhancing monitoring or
patching the vulnerabilities that the attacker uses. Therefore, malware classification for identifying the
attacker is an important task for the establishment of a response strategy.

To classify malware, features should be extracted from it. Traditional malware analysis tech-
niques are mostly used for feature extraction, and a static code analysis-based method or behavior
observation-based dynamic analysis method is usually used [5,6]. Attackers are well aware of this and
create malware by employing various concealment and avoidance techniques to interfere with malware
classification, making feature extraction difficult [7]. In most static analyses, code is first analyzed to
extract the necessary information, but the analysis of malware that uses concealment techniques is
not easy. Although it is possible if an experienced analyst uses a professional program, the task would
require considerable time and effort. Therefore, in this case, it is difficult in practice to extract features
from malware using concealment techniques.

Further, dynamic analysis is a method that can be applied to malware when static analysis is
difficult to perform because it monitors its actual behavior. However, it requires a monitoring program
for the behavior of malware and a limited analysis environment. Malware creators have been using
this fact to their advantage and have developed various avoidance techniques, such as not performing
malicious behavior for a long period or terminating execution immediately if the malware determines
that a monitoring program is running or it identifies the running environment. Thus, even in the case
of dynamic analysis, the features required for classification are difficult to extract from malware that
employs avoidance techniques. In recent years, as in other security fields, artificial intelligence (AI)
techniques such as machine learning and deep learning have often been used in the field of malware
classification [8]. Nevertheless, it is difficult to classify malware equipped with various concealment
and avoidance techniques because the features are extracted using a traditional malware analysis
method. To overcome the difficulties faced by traditional methods, research is required to facilitate
feature extraction from malware that uses concealment and avoidance techniques. Moreover, it is
necessary to conduct research on new features that can be used in malware classification as well as
classification techniques.

In this study, we focused on system resources such as the central processing unit (CPU), memory,
and input/output (I/O), which are commonly used in performance analysis or the tuning of programs.
The reason for focusing on system resources is the characteristics of programs that use resources such
as the CPU, memory, and I/O as the code is executed to perform certain functions. Furthermore,
programs use system resources in various forms depending on the libraries used in the software
development, the code writing method, and the flow of code for performing the function. Since

CMC, 2022, vol.72, no.2 3403

malware is also a program, it uses system resources in various forms while running, and these can be
used as features to distinguish the malware. Indeed, using this approach makes it more challenging to
analyze the malicious behavior of malware in as much detail as it could be using method calls or other
dynamic analysis methods, but such detailed analysis is not needed to classify malware. Furthermore,
the system resource usage data can be extracted for malware equipped with various concealment
and avoidance techniques because they are basic performance metrics that can be obtained from the
system. However, even if the usage information of the system resources can be extracted, it does not
necessarily mean that the features that can classify malware will be readily available. Performance
metrics are time-series data that change in real time and are of various types. To determine unique
malware features, we investigated the metrics that should be selected, the extraction method that
should be used, and how to visualize the extracted data. In addition, we conducted experiments with
ransomware to confirm that malware can be classified using the usage patterns of the system resources.
Ransomware is suitable for measuring classification performance because it has been the most harmful
malware so far and various types exist.

The first contribution of this study is the proposed behavioral performance visualization method
using the usage patterns of system resources and a demonstration of its usability in malware clas-
sification through a classification performance evaluation. The proposed method can be utilized in
a malware classification system because the unique characteristics of malware can be represented
by the visualization results. Moreover, the proposed method can assist analysts in practice because
it enables them to visually identify the similarities and differences between malware. Furthermore,
its suitability for use with Al techniques was confirmed by assessing the classification performance
using deep learning, which is widely used in image classification. Second, a framework was designed
and implemented to perform the entire process, from data extraction to behavioral performance
visualization and classification performance measurement. The design and implementation of this
framework are expected to help related research and be useful in practice.

The structure of the remainder of this paper is as follows. Section 2 examines related studies, and
Section 3 describes the behavioral performance visualization method using usage patterns of system
resources. Section 4 explains the design and implementation of the framework for behavioral perfor-
mance visualization, and Section 5 discusses the results of the proposed method and classification.
Finally, Section 6 summarizes the conclusions and future plans.

2 Related Work

Most studies on malware classification focus on extracting features using traditional malware
analysis methods and classifying malware using machine learning or deep learning [9]. In this section,
we examine studies that have attempted to classify malware through visualizing features extracted from
the malware.

2.1 Visualization of a Malware File as an Image

Among the studies that attempted to visualize features of malware, the study presented in [10]
visualized the file itself as an image. In this method, a malware file is read as binary data (vectors of
8-bit unsigned integers) and converted into a grayscale image, as shown in Fig. 1. The converted image
has different characteristics (shape or texture) of the image depending on the type of malware, and this
method uses these differences to detect and classify malware.

3404 CMC, 2022, vol.72, no.2

Malware Binary

Binary to 8 Bit vector to
011100110101 Lds Gitayscals
100101011010 Wi el
10100001....
Fakerean Dontovo.A

Figure 1: Reading a malware file as binary data and converting it into an image

The study showed that when malware files are visualized as images based on static features,
there are differences among the malware types. It also demonstrated that malware could be classified
without code analysis, such as decompiling (disassembling) malware, unlike conventional static
analysis methods. Given that features are visualized as images, follow-up studies have been continually
conducted to classify malware using Al techniques such as deep learning, which has shown high
performance in image classification.

2.2 Visualization of the Behavior of Malware as an Image

The study described in [1 1] visualized application programming interface (API) calls in the user
mode to classify malware. This method classifies high-risk and relatively less risky APIs in terms of
the possibility that user APIs are used maliciously and represents them using a color map, as shown
in Fig. 2a. If the API calls of malware are visualized using this method, they are expressed differently
depending on the malware type, as shown in Fig. 2b. The study demonstrated that when API call
information (the dynamic features of malware) is used and visualized, the result varies depending on
the malware type. Furthermore, it showed that the characteristics of malware can be better revealed
when API call information is visualized instead of simply listed.

Malicious API

Less malicious API

Figure 2: (a) API and color map, (b) visualization results of three malware types

CMC, 2022, vol.72, no.2 3405

2.3 Malware Detection Using the Usage Patterns of System Resources

As shown in Fig. 3, the study in [12] used the changes in CPU and random access memory (RAM)
usage before and after running malware in a certain system environment to detect certain types of
malware. The study proposed a method that uses a one class support vector machine (OC-SVM)
[13,14], which is a machine learning algorithm, to detect changes in CPU and RAM usage before
and after running malware distributed through a drive-by download [15].

Student Sludenl
100 T T 5000 T T
——— After running malware — Aﬂ.er running malware
90 ——— Before running malware - 4500 Before runrnng malware
80 =] 4000 8
701 1 3500 B
% 60 1 . % 3000 1
S so0f 4 3 2500 .
2 =
S 40} 4 ® 2000 B
30 \ - 1500 1
20} ‘l | 1 1000} -
10 1 h | . 500 .
Ll "

1 00 50 200 250 0 50 100 150 200 250 300
Time Time

Figure 3: Differences in CPU and RAM usage in a specific system environment

Given that the CPU and RAM usage of the entire system was used, significant differences could
occur in the measured data depending on the system condition at the time of measurement, even in
the same system environment; thus, it was difficult to determine the specific time for measuring data.
Despite these limitations, the study was important because usage patterns of system resources—CPU
and RAM—were used as features for malware detection.

3 Behavioral Performance Visualization Method Using the Usage Patterns of System Resources

In this section, we describe the behavioral performance visualization method that specifies unique
features required in malware classification using the usage patterns of system resources (such as CPU,
memory, and 1/O).

3.1 Opverview of Behavioral Performance Visualization

Features that are extracted from a specific type of malware must be distinguishable from those
of other malware types to classify the malware. In this study, we focus on the usage patterns of
systems resources (such as CPU, memory, and 1/O) because malware is also a program. A program
uses system resources depending on the libraries used in its development, the method of writing code,
and the flow of code for executing a certain function. Given that malware is a program, it uses system
resources in various forms when running. Furthermore, because system resource usage derives from
basic performance metrics that can be obtained from the system, they can be extracted even for
malware in which various concealment and avoidance techniques have been applied. Usage patterns
of system resources are time-series data of performance metrics called system resource usage metrics,
which appear as the program performs certain behaviors. If the extracted data are normalized and
visualized, unique characteristics that are distinguishable from those of other malware types appear,

3406

CMC, 2022, vol.72, no.2

and they can be used as the features for malware classification. Fig. 4 shows an overview of behavioral
performance visualization using the usage patterns of system resources.

psmon.exe
A

Data extraction

2 DN
pscollect.exe Malware

(PE file)
psrun.exe

MNormalization

Xt X

(MIN-MAX)

L

Visualization

s A

| ! - - -— I
1 1 1
1 | |
1 | 1
1 1 |
I I]

1 1

Figure 4: Overview of behavioral performance visualization using the usage patterns of system

resources

3.2 Selection of the Ransomware Samples

We collected 525 samples of 28 ransomware types from ransomware that was registered between
2018 and 2020 in VirusTotal [16]. The reason for choosing ransomware instead of other types of
malware is that it has been the most harmful malware so far, and it is suitable for measuring
classification performance because there are a variety of types whereas the file encryption functions
are similar. Tab. 1 lists the types of malware samples.

Table 1: Twenty-eight types of ransomware samples

No. Type Quantity No. Type Quantity
1 Amnesia 20 15 Matrix 20
2 BTCware 20 16 Mole 20
3 Cerber 20 17 MyRansom 20
4 Cryaki 10 18 Radamant 20
5 Crypton 5 19 Rapid 20
6 Crysis 20 20 RotorCrypt 20
7 Filecoder 12 21 Ryuk 20
8 GandCrab 20 22 Scarab 20
9 Globelmposter 20 23 Screenlocker 20
10 Gryphon 20 24 Shade 20
11 Hermes 20 25 Tescrypt 20
12 Iron 20 26 WannaCryptor 20
13 Kangaroo 20 27 Xorist 20
14 LockerGoga 18 28 Xrat 20

CMC, 2022, vol.72, no.2 3407

3.3 Selection of Extracted Data and Extraction Method

We chose 12 metrics for the system resources, as listed in Tab. 2. They reflect the execution features
of malware quite well, and the relevant usage patterns can be easily extracted.

Table 2: Metrics for extracting usage patterns

Type Metric Description
CPU CycleTime Number of CPU clock cycles used by the threads of the
process

Memory QuotaPagedPoolUsage Current paged pool usage (in bytes)
QuotaNonPagedPoolUsage Current non-paged pool usage (in bytes)

PrivateUsage Commit charge value (the total amount of private memory
that the memory manager has committed for a running
process) for this process (in bytes)

WorkingSetSize Current working set size (in bytes)
Handle HandleCount Number of open handles that belong to the specified process
1/0 OtherOperationCount Number of I/O operations performed, other than read and
write operations.
OtherTransferCount Number of bytes transferred during operations other than
read and write operations.
ReadOperationCount Number of read operations performed
ReadTransferCount Number of bytes read
WriteOperationCount Number of write operations performed
WriteTransferCount Number of bytes written

Performance metrics that best represent the execution features of malware are metrics related
to the CPU, memory, and I/O and related to code execution for performing certain behaviors of
malware. CPU CycleTime refers to the number of CPU clock cycles allocated during the operation
of the process; it was chosen because it shows CPU resource usage characteristics related to malware
execution. Memory-related metrics were chosen because they show memory usage characteristics
based on the allocation and release of memory in the process of executing malware. We chose the
paged pool/non-paged pool used to manage memory needed by the system in the Windows operating
system, a set of private operations allocated to the program excluding the shared library, and a set
of operations corresponding to the memory usage shown in the task manager. The HandleCount is a
metric related to resource management in the Windows operating system, and it was chosen because
the number of handles reveals the characteristics of resource usage. I/O refers to metrics showing
characteristics related to inputs and outputs of the system, and we chose the number of read, write,
and other operations, and bytes.

As for the data extraction method, because we used Python and considering the time required
for metric extraction, we extracted data 2,000 times in 0.001 s intervals for 12 metrics. We could have
set the data extraction time differently, but in this study, we kept it short to determine if only the
data extracted at the beginning of malware execution can reveal unique features required for malware
classification. To extract data quickly for the selected metrics only, we called related Windows APIs
directly from Python instead of using a Python library.

3408 CMC, 2022, vol.72, no.2

3.4 Data Normalization

The extracted raw data show very large differences among each metric, as presented in Tab. 3. If
the data are visualized as they are, only the metrics with large data values will be emphasized when
they are visualized. Therefore, the data scales needed to be adjusted, and there are many methods for
doing this. In this study, we used min-max normalization, which simply adjusts only the scale for each
metric to maintain the characteristics of the data values shown in the usage patterns of the system
resources as much as possible.

Table 3: Values of the extracted raw data

Metric Value Metric Value
CycleTime 4,206,985,569 OtherOperationCount 1,135
QuotaPagedPoolUsage 227,784 OtherTransferCount 16,626
QuotaNonPagedPoolUsage 17,120 ReadOperationCount 3
PrivateUsage 3,354,624 ReadTransferCount 10,624
WorkingSetSize 17,096,704 WriteOperationCount 0
HandleCount 237 WriteTransferCount 0

3.5 Behavioral Performance Visualization

Given that malware is also a program, it uses system resources to perform certain functions.
Behavioral performance visualization is a method that visualizes the system resource usage patterns
of malware while it performs certain functions.

3.5.1 Visualization Using Time-Series Graphs

Time-series graphs are a visualization method that can help analysts to distinguish malware
intuitively because differences can be compared in detail. After normalizing the extracted time-series
data, the plot function provided by the pyplot module of the Python Matplotlib library can be used
to visualize them in time-series graphs. Five samples were collected for the Crypton ransomware, and
their time-series graphs were classified into two very similar groups, as shown in Fig. 5.

We used an open-source reverse-engineering tool called Cutter 1.12.0[17] to examine the similarity
of the time-series graphs in terms of actual code. First, when we examined the structure of the entry
point, the structure was the same in all samples, as shown in Fig. 6, and only the address of the function
called was different between the two groups. This shows that the entry point structure is the same in
all types of Crypton ransomware.

The difference between the two groups was more noticeable when they were examined after the
functions were sorted by size, as shown in Fig. 7. Furthermore, in the second group, two samples had
the same information, but one sample showed some differences in the reference-related and code size
information. However, the function-related information was all the same, and the results visualized in
the time-series graphs showed almost no difference in the samples.

When the graphs of all function calls including the entry point are compared, differences are
found between the two groups, as shown in Fig. 8. When the results visualized in time-series graphs
are compared with the static code information, it is found that if the similarity of the static code is
high, the similarity in the time-series graphs is high as well.

CMC, 2022, vol.72, no.2 3409

.(3 1.0 YA =

250 500 750 1000 1250 1500 1750 2000

i — ot bty o i ﬁ?&.‘*ﬂ
: ed ik e I -

5 10 Sk
=/ o |
a5l -~ |
>
0.0 . - - _
[1] 250 500 750 1000 1250 1500 1750 2000

__________ ;== eip: ;== eip:
328: entry@ {); 328: entrye ();
; var LPSTARTUPINFOA lpStartupInfo @ ebp-@x68 ; var LPSTARTUPINFOA lpStartupInfo [@ ebp-8x68

I

1

I

]

I

[

I ; var int32_t var_3ch @ ebp-8x3c var int32_t var_3ch @ ebp-@x3c
I ; var int32_t var_38h @ ebp-8x38 var int32_t var_38h @ ebp-@x38
I ; var int32_t var_2eh @ ebp-@x20 var int32_t var_20h @ ebp-8x20
I

I

I

I

I

I

I

I

; var Uint32_t var_1ch @ ebp-@xic ; var Uint32_t var_1ch @ ebp-8xlc
var int32 t var 4h @ ebp-8x4 3 var int32 t var 4h @ ebp-@x4
call fcn.eeds4ad21 call fcn.eede3ccc

jmp 0x402365 Jmp 0x402449

N
[=1,

nush eax ; int32_t arg Bh push eax i int32_t arg_sh
call fcn.@e4825¢7 call fcn.B8ed83cec

| |

I
[I
1 I
1 I
1 1
— . I I :
— | ,
' 1 call fcn,8@4829f3 call fcn.8a483c38 I
| mow dword [var 4h], edi mov dword [var_ah], edi I
l—! j jmp___ @x4825a9 jmp __ @xa824c5 :
1
J]
K
| i | l |
¥ | :
—— : mov eax, dword [var_28h] mov eax, dword [var_2@h] I
— I imp 9x4825c1 jmp @x4024dd 1
' |
- = - 1
I | 1 I :
I I I
I T 1 I call fcn.08483b21 call fcn.pe4e3red I
I T I 1 re ret I
I I 1 1

Figure 6: Entry point structure of Crypton ransomware

3410 CMC, 2022, vol.72, no.2

06 ®®

Analysis info _ Evmclions Analysis info . Functions
Functions: 297 Name Size Imp. Offset o 188 Name Size Imp. Offset
fcn.00406220 13936 0x00406220 cn.004053¢0 8360 0x004053c0
Afefe: e en. 00406450 12379 0x00406d50 R =128 6. 00406780 5813 0x00406760
galle: 2zl fen 00402987 2033 000402947 e il cn.00401000 2833 0x00401000
Strings: 1021 fen.0040487e 2434 0x0040487e Strings: 1051 fen. 00403637 2079 0x00403637
Symbols: 196 fcn.00401000 2360 0x00401000 Symbols: 181 cn.00406806 933 0x004068¢6
Wnpocts 106 fon.004080be 1843 0x004080be i 181 cn.00401db9 885 0x00401dbg
e ST i 0040ble 970 0x00401bfe i 1cn.004078b0 869 0x004078b0
o i :m xlss fen.004089ce 033 0x004089ce ::':::::m'm' iz;z: :;‘: fen.00405a7a 790 0x00405a7a
fcn.00409db0 869 0x00409db0 : cn 00406229 741 0x00406229
Coverage percent: 91% fcn.004070e5 790 0xD04070e5 Coverage percent: 83% . 00405648 737 0x00405648
fcn,00407894 4 0x00407894 cn.0040326d 596 0x0040326d
1cn.004075b3 737 000407563 Ana|y5is info 1cn.0040819b 550 0x0040815b
fcn.004044b4 596 0x004044b4 1cn.004070e3 539 0x004070e3
fen.0040a99b 559 0x0040a990 Functions: 168 fcn 00404eb6 485 0x00404eb6
fen. 00407400 539 0X00407d60 X-Refs: 2882 100402221 a82 0x00402221
fcn.004056e9 485 0x004056€9 Calls: 1824 1cn.00406ch0 442 0x00406ch0
fcn.00408db8 142 0x00408db8 Strings: 1051 fen. 00407165 436 0x00407165
fcn.0040a758 436 0%0040a758 Spbols 15 1cn.0040442f 432 0x00404421
fcn.00406727 432 0x00406727 e s fcn.00402a5(427 0x00402a5(
fcn.004020¢9 430 0x004020c9 cn.0040509b 410 0x0040509b
fcn.00403cad 427 0x00403cad Analysis coverage: 27198 byles 1, 404028e1 410 0x00402ee1
fen.004058ce 410 0x004058ce Code size: 30720 bytes 1 no407527 405 0x00407527
fcn.00404128 410 0x00404128 Coverage percent: 8% cn.00404c03 403 0x00404c03
fcn.00408fb4 405 0x00408fb4 cn.0040391d 397 0x0040391d
fcn.00405436 403 0x00405436 @ entry0 392 0x004025¢7

Figure 7: Crypton ransomware static code information and functions sorted by size

== = — . ~d e [IL

Figure 8: Graphs for all function calls of Crypton ransomware

3.5.2 Visualization Using Grayscale Images of Fixed Size

Although similarities can be checked through visualization using time-series graphs, we can
also use a visualization method using fixed-size images as a simpler and more intuitive method of
visualization. Extracted data can be saved in a two-dimensional (2D) array 2,000 x 12 in size, and
the 2D array data can be easily visualized as an image after normalization. In other words, a 2D
array of 2,000 x 12 can be converted into a grayscale image of 12 x 2,000 (width x height). First, the
normalized data of the 2D array are multiplied by 255 and then converted into 8-bit unsigned integers.
Then, the from array function provided by the Image module of the Python Pillow library can be used
to create a grayscale image. However, because the generated image is very long (12 x 2000 in size),
it is difficult for a human to identify it quickly. Hence, this vertically long image should be resized.
Although images can be created in various sizes, 200 x 200 was selected for easy identification and use
in the classification tasks in this study. For resizing, we used the resize function of the Image module
with the Lanczos filter, which leads to the least image breakage. The final generated image is shown in
Fig. 9.

CMC, 2022, vol.72, no.2 3411

e .

Figure 9: Crypton ransomware samples converted into fixed-size grayscale images

Two groups were classified when the results visualized with time-series graphs and the static code
information were compared, and likewise, two groups were classified when visualized as grayscale
images of a fixed size. This is a visualization method that can be effectively used in malware
classification based on image similarity comparison because the characteristics of malware are well
represented, even when visualized as a small image, owing to the characteristics of grayscale images.

3.5.3 Visualization Using Fixed Size Color Images

Another method of visualization that can better express the characteristics of malware is one
using color images. In this case, we used the imshow function provided by the pyplot module of the
Python Matplotlib library. To visualize the normalized 2D array as a grayscale image, the data must
be converted. However, if the imshow function is used, the normalized 2D array can be directly used
for the visualization, and the created image has a high resolution while representing the real values
of the data properly. Next, the size is adjusted to 200 x 200 so that it will be easy to examine visually.
Furthermore, the imshow function can use a color map to create a color image. A color map is a type
of color table that determines how to represent the color of a pixel, and various color maps can be
used, as shown in Fig. 10. Fig. 11 shows images visualized by applying the “jet” color map, which is
the most appropriate color map for representing the characteristics.

| N | | N | |
{1 [Mkl 115

jet viridis gray hot copper

Figure 10: Various color maps

©) @ 3 @ O

Figure 11: Crypton ransomware samples converted into fixed-size color images

Visualization using fixed-size color images can help analysts classify malware intuitively because
similarities and differences can be easily compared in detail since the images have a high resolution
when created and are represented in color. Furthermore, it can be used effectively in malware
classification using Al techniques such as deep learning.

3412 CMC, 2022, vol.72, no.2

3.5.4 Visualization with Small Extracted Data

In some cases, malware inspects the execution environment and terminates immediately if the
conditions are not met; alternatively, it copies itself to a different area of the system and after executing,
it terminates itself. In these cases, the amount of extracted data is small because the actual running time
is short. When the visualization is performed using the extracted data alone, the system resource usage
patterns when the malware begins to run are still reflected, as shown in Fig. 12. In other words, even
with only the system resource usage patterns at the beginning of malware execution, characteristics

that can be distinguished from those of other malware types are noticeable.

Amnesia Iron Tescrypt WannaCrypt

Figure 12: Visualized images of small amount of extracted data

4 Design and Implementation of the Classification Framework

In this section, we describe the design and implementation of a framework for data extraction,
behavioral performance visualization, and classification performance assessment.

4.1 Overview of the Framework

Fig. 13 shows the overall framework. The framework for behavioral performance visualization
consists of a data extraction system for extracting data from malware, a data visualization system
for behavioral performance visualization using the extracted data, and a classification performance
measurement system for measuring the classification performance using the visualized images. Each
system operates independently.

— Data Extracton — Data Visualization }7
éﬁ' Sandboxie-Plus Nomalization
s T
psmon.exe ' pscollectexe Malware Extracted Data X 0 I '.'1
3 (PE file) (CSV file)
psrun.exe l
Visualization
CNN 5 Labeling - .
L g | B .
L | BTCware Cryaki Crysis WannaCrypt

—§CJassiﬁcation Performance Measurement —

Figure 13: Design of a classification framework for behavioral performance visualization

CMC, 2022, vol.72, no.2 3413

4.2 Data Extraction System

In this study, a data extraction system was constructed using an actual system, as detailed in Tab. 4,
instead of a virtual machine or a professional analysis environment, such as Cuckoo Sandbox [18], in
order to extract data in an environment similar to that of common users.

Table 4: Data extraction system settings

CPU Intel Core 15-4690 CPU 3.50 GHz
RAM 16 GB
OS Microsoft Windows 10 64-Bit (OS build 19042.685)

To extract data continuously and prevent malware from affecting the data extraction program, we
built the extraction environment using Sandboxie-plus 0.8.8 [19] (an open-source sandbox program),
which allows the program to operate in an isolated environment in Windows operating systems. The
network was disabled because network-related metrics were not used when configuring the system.
Microsoft Defender was disabled because malware is directly executed, and Windows Search was also
disabled because it can have a significant impact on the I/O-related parts when data are extracted.

The programs used for data extraction were written using Python, and executable files were created
using Pyinstaller 3.6 [20]. The programs were all executed as console programs using the command
prompt (cmd.exe) with administrator privileges. There are libraries such as Psutil 5.7.2 [21] that can
be used in Python for data extraction, but they cannot specifically target only the selected metrics
when extracting system resource-related information, and the extraction takes a long time. Another
problem is that a long extraction cycle has to be set to maintain a constant extraction cycle because
there were large errors in the time required for extraction. Therefore, a method of directly calling
Windows APIs from Python programs was implemented to extract data for only the selected metrics
in a more precise cycle. In the pscollect.exe program, which extracts data from the malware process,
only the last core of the usable CPU cores was configured for use to minimize the influence of other
programs. Moreover, the priority of the process was set to ABOVE_NORMAL_PRIORITY _CLASS,
i.e., one level higher than the default state. Considering the time required for metric data extraction
using Python, we set the extraction cycle of the system resource usage patterns to run in intervals of
0.001 s and extracted data 2,000 times. The reason for separating psrun.exe, which executes malware,
and pscollect.exe, which extracts data, was that some malware forcibly terminates the parent process
that executed it, and this stops data extraction. Hence, psmon.exe was executed outside the sandbox,
and the other two programs, psrun.exe and pscollect.exe, were configured to run inside the sandbox so
that both the execution of malware and data extraction process would operate in the sandbox. After
the data extraction was completed, all processes executed in the sandbox were terminated, and the
changes made in the system by the malware were removed to return the data extraction environment
to its initial state. Fig. 14 shows the programs and their operations for data extraction.

The data extraction process consists of the following steps: (1) psmon.exe executes psrun.exe in
the sandbox and then sends the path of the executable file of the malware; (2) psrun.exe executes the
malware in the path received from psmon.exe in a suspended state; (3) psrun.exe sends the process ID
(PID) of the malware executed in a suspended state to psmon.exe; (4) psmon.exe executes pscollect.exe
in the sandbox and then sends the PID of the malware received from psrun.exe; (5) pscollect.exe uses
the received PID of the malware to resume the execution of the malware, which is in a suspended state;
(6) pscollect.exe extracts the usage information of the system resources from the malware process

3414 CMC, 2022, vol.72, no.2

at predetermined cycles; and (7) once the data extraction is completed, pscollect.exe sends all the
extracted data to psmon.exe so that it can save them in a data file.

.. Windows. 10 @ﬁ Sandboxie-Plus
N 4

(4) Malware PID Malware
ﬂ : P 5)Resume malware ~ ProcesS
[|

o —

psmon.exe 7) Extracted data pscollect.exe
= _6) Extract data 1

2 Execute malware
1) Malware PATH p (suspended state)

psrun.exe

3)Malware PID

Figure 14: Overview of programs for data extraction

4.3 Data Visualization System

The data visualization system reads a comma-separated values (CSV) file, where the raw data
extracted from malware have been saved, and performs the visualization work. Tab. 5 lists the data
visualization system settings.

Table 5: Data visualization system settings

CPU AMD Ryzen 7 5800X 8-Core Processor 3.80 GHz
RAM 64 GB

OS Microsoft Windows 10 64-Bit (OS build 19042.685)
Python 3.8

First, to adjust the scales of the data, the data are normalized to values between 0 and 1 for each
metric using min-max normalization, and the data are visualized using a time-series graph and fixed-
size images (grayscale and color). Fig. 15 shows the visualization process.

4.4 Classification Performance Measurement System

The classification performance measurement system uses a convolutional neural network (CNN)
[22], which is a deep learning technique, to classify the images visualized through the data visualization
system. Tab. 6 presents the system settings.

We implemented the classification performance measurement system using a CNN—a deep
learning technique widely used in image classification—because the visualization results produced by
the data visualization system are images. Considering that even a simple model can produce good
classification performance if the characteristics of each malware type are well represented in the
visualized image, we created a simple CNN model using Keras. For this model, 20% of the data were

CMC, 2022, vol.72, no.2 3415

used as the test dataset, and the training was performed by setting the number of epochs to a maximum
of 500 and the batch size to 64. Fig. 16 shows the CNN model that was used.

Visualization

f

|
i
o

0o 1250 15

Time series graph

R

Fixed size image (grayscale)

Fixed size image (color)

Extracted data X e o0 €8
(CSV file)

Figure 15: Data visualization process

Table 6: Classification performance measurement system settings

CPU AMD Ryzen 7 5800X 8-Core Processor 3.80 GHz
RAM 64 GB

OS Microsoft Windows 10 64-Bit (OS build 19042.685)
Python 3.8

Deep Learning Framework Keras (Tensorflow: tf-nightly-gpu)

GPU NVIDIA GeForce RTX-3080

32 64
=
H/\ER B
Input MaxPooling2D MaxPooling2D
(200 x 200) 2x2) 2 x2) B/ \W softmax
Conv2D Dropout (0.2) Conv2D Dropout (0.2)
(Relu) (Relu) Flatten Dense
2 x 2)
{5%3) ((Relu)
(1024)
Dropout (0.5)

Figure 16: Structure of the CNN model used for classification

3416 CMC, 2022, vol.72, no.2

In this study, among the visualization methods proposed in the behavioral performance visual-
ization technique, fixed-size color images, which represent well the characteristics of malware and are
small in size, were used as the inputs of the CNN model. The task of assigning labels to the images was
performed manually by grouping images with similar shapes. However, when we examined the images
to assign labels, we found shapes that required more detailed classification, even for the same type of
malware. Fig. 17 shows the fixed-size visualization results of Amnesia ransomware samples; as shown
in cases (1) and (2), some malware samples have different shapes even though they belong to the same
ransomware type.

Amnesia_4.1¢8d An-nu: 4594d83ccBO9C 048672 Befd8S ¢

Amnesia 0.056f Amnesia_1_0dbb Am rla E

I 1
| |
1 1
| 1
I 1
1 1
| |
1 I o -

8a0B6e2 7 :uCedcee‘ ade3 f0det gr,,gs 18312e137e34 I B737T205%90c37 115d0002bE9Ye
| sdca22208f36a3 33861d5265 I: do Sed3Tae 7809431a2c4p0 fO6 0937 s 29148d35ff06f.. 3dsesa3S2ath
| deidc20dcesf. 4eb339ddes53. 2fceB891d8b3d 29abSbiceasb.. 45855890362 53'-5-‘59592f- . B e i s e S
1
1 1
I 1
| 1
I 1
1 1
1 1
I 1
| Amnesla_9_315b Amnesia 11 4fc Amnesia 13 662 Amnesia 16 Tc2 Amnesia 17 713 Amnesia 19 831

Te52784306299 104402 t&l! 3 €9878fabSTEa60 e4216007481da TéaddSéSedla3 €52a0b3bLALES |
| 28200273080 4c €3938039461¢5 3346cafcaefgafy 2377a2585¢360 bac2affTTAs6e3 3538Sedblabd |
| 8babicbassfe O9csdfa2Ted®0.. 725615053503 82126fbbaTés. 22fbe0201608 3686401306 |
1

Figure 17: Fixed-size visualization images of Amnesia ransomware samples

Samples with different shapes can appear because there are variants or many versions of malware
that perform different functions in detail, even within the same malware type. However, when there was
only one sample that had the same shape, as shown in case (2), that particular sample was removed
because it could not be used in the training process. The final dataset included 62 labels and 474
samples, as detailed in Tab. 7.

Table 7: Details of the final dataset

No. Type Label Quantity No. Type Label Quantity
1 Amnesia Amnesia 17 32 Matrix Matrix 19
2 BTCware BTCware_1 6 33 Mole Mole_1 5
3 BTCware_2 2 34 Mole_2 3
4 BTCware_3 4 35 Mole_3 2
5 BTCware_3 6 36 Mole_4 3
6 Cerber Cerber_1 11 37 Mole_5 2
7 Cerber_2 5 38 Mole_6 2
8 Cryaki Crypton 9 39 MyRansom MyRansom_1 14
9 Crypton Crypton 5 40 MyRansom_2 2
10 Crysis Crysis 19 41 MyRansom_3 3
11 Filecoder Filecoder_1 10 42 Radamant Radamant 20
12 Filecoder_2 2 43 Rapid Rapid_1 17
13 GandCrab GandCrab_1 11 44 Rapid_2 2
14 GandCrab_2 9 45 RotorCrypt RotorCrypt_1 11

(Continued)

CMC, 2022, vol.72, no.2 3417

Table 7: Continued

No. Type Label Quantity No. Type Label Quantity
15 Globelmposter Globelmposter_1 15 46 RotorCrypt_2 6
16 Globelmposter_2 2 47 RotorCrypt_3 2
17 Gryphon Gryphon_1 7 48 Ryuk Ryuk 13
18 Gryphon_2 2 49 Scarab Scarab_1 11
19 Gryphon_3 2 50 Scarab_2 5
20 Gryphon_4 3 51 Scarab_3 4
21 Gryphon_5 3 52 Screenlocker Screenlocker 20
22 Gryphon_6 2 53 Shade Shade_1 3
23 Hermes Hermes_1 7 54 Shade 2 2
24 Hermes_2 2 55 Tescrypt Tescrypt 20
25 Hermes_3 2 56 WannaCryptor ~ WannaCryptor 20
26 Hermes_4 3 57 Xorist Xorist_1 10
27 Hermes_5 4 58 Xorist_2 2
28 Iron Iron_1 11 59 Xorist_3 3
29 Iron_2 9 60 Xorist_4 2
30 Kangaroo Kangaroo 19 61 Xrat Xrat_1 13
31 LockerGoga LockerGoga 17 62 Xrat_2 7

5 Performance Evaluation

This section describes the behavioral performance visualization and deep learning-based clas-
sification performance results. The images visualized with the behavioral performance visualization
method using system resource usage patterns were visually checked to determine how similar they
appear when examined by malware type.

5.1 Behavioral Performance Visualization Results

When the visualization results of the Radamant ransomware samples were examined, as shown in
Fig. 18, all samples appeared to be of a single type. Despite the fact that samples with large differences
in file size were mixed together, the patterns of the system resources used when they were running
were all the same. This was also true for the packed samples. Packing is a concealment method that
hides the original code by compressing the executable. A program that performs this function is called
a packer. When an executable file is packed using a packer, the information related to the original
code is hidden, making static analysis difficult. Given that the behavioral performance visualization
is a type of dynamic analysis, the characteristics related to the execution are reflected when the
malware is actually running, even for malware that uses concealment techniques, demonstrating that
all visualization results are the same. Fig. 19 shows the visualization results of the samples packed by
three types of packers, all of which have the same appearance.

In the case of Shade ransomware, various types appeared, although these types were similar, as
shown in Fig. 20. The code structure of the Shade ransomware was quite different in the samples, as
shownin Fig. 21, and the usage patterns of the system resources also showed differences. This indicates
that different types of variants have been produced in the case of Shade ransomware.

Malware with an avoidance function such as RotorCrypt maintains a suspended state without
performing any operation using the “sleep” function, which waits for a specified period of time after
being triggered or until a certain condition is met. Because it barely uses the system resources during
the waiting period, there is almost no change in each metric, as shown in Fig. 22,

3418

Rad: 0_Oca Rad: 1_14b Rad 2 216 Rad 3 246

e3562edc02eadc
3b0a203923c89
b1ib3d119¢0d...

Bad:

68cb9f911ce937
152ed82826f439
5{2291c0a231...

Rad

588221742db50
205e8179195518
e719af94e35b. .,

Radamant_4_275
4a48cd30Baabl
d1d56ad040226
bOb73f5c7186...

767dd0618d702
a159e4255edal
89a3eB6c1813...

Rad:

_10_49

11 4a 12 4d

_13_5¢

c841be013736e
99fff3bSefd3aec
697ceec8532c...

File size
PEID packer

F-PROT packer

Shade_1_058d1b
f3d48b5dBbd43
837b4a562a465
91f44c63cad2...

Shade_0_003639
c4356f7a8d38e2
92c41c5c3al1d
3e43baf03cel...

beecac201a55b9
9d02180594ee1
51284c8e3151...

b2b062bc2542a
124dc09681d87
57b146c6f859...

Radamant_0_Oca
©3562e4c02eadc
3b0a203923c89
b1fb3d119¢0d...

52.00 KB (53248 bytes)

UPX v0.89.6 - v1.02/v1.05 - v1.24

UPX

Radamant_14_60
d1174bd6fe3ad
6b8d81dfad2a7
d90a53da3b10...

a0d0fd4148e68f
56304e4349c91
b20116244d2e...

File size
PEID packer
F-PROT packer

CMC, 2022, vol.72, no.2

Rad, 5_28e Rad 6 2bd Rad 7 2c4 Rad; 8 358 Rad 9 459

923063502b769
f15cbed2bef5ce
¢015590d460e..

129b1414b92bab
de0e69c7111b69
4dd7b3di4clea...

c8066a1a7didr4
2c57ff4f9016f1b
a05bcb004f78b...

b72ba25c0fd3b
8104248060f2d
d322db2d58d...

23220a3ba2i7e3
0abf4az5r2dade
d4bc5596alae...

FSG v1.33 (Eng) > dulekixt

Figure 18: Fixed-size visualization images of Radamant ransomware samples

F-PROT packer

Rad. 15 68 Rad _16_6c Rad: _17_6e Rad 18 _8d Rad _19 b8

8d4d9f11a51efa fd7c05B8G6e6843e G65Mbfae52aa5a fd649ecbbBaldb cef196cBdd5iTE

dbcb795166c27 513f26c4e355f1 67c0c1e6b28f92 196¢555717b98 B73ca237efl677

5ec546224e9... 32024b4d9d2... e570c075010e.. cB92c76B3c52... dBca93d7adsg...

e

P [

1 1 I

P [

Pl [

| ! I

i | [

)1 [

p | [

Radamant_6_2bd o Radamant_11_da |

f29b14f4b92bab y becac201a55b9 I

de0e69c7i1fb69 ;i 9d021805%4ee1 |

4dd7b3df4clea.. j ! 51284cBe3151... :
P

P 1

I I

15.78 KB (16160 bytes)], 1 File size 15.43 KB (15802 bytes) |

P! [

ol |

g [

P [

P 1

Figure 19: Visualization results of samples packed by three types of packers

Shade_2_07193e
d383390630880
952a03b7eadb2
620b80c72c01...

Shade_3_0f421ef
f8b61c323ae59c
46a3eb8b67cd2
1f35581¢727d...

Shade_4_13add2
97695d64c4097
577a7455d573d
32958005750...

Shade_5_190fd1
171cb5009b1de
95670d1a86880
c4dfg21addfb...

Shade_6_2b76df
edbebdcddec2sf
c0497c3a66268
beBffc8501b8...

153

Shade_7_2fb584
ele2dd77alch2
999be1d0406a9
a8f19461314d...

Shade_9_3db2b5
9548¢6053e1d6
015016b43ad60
69c86b42582f...

Shade_8_35aad6
acB0662f6826fa
96212bf341457
83235c02053f...

Shade_10_4001¢
a3eB8923c84511
41c650f9e168e7
b343959cd18...

Shade_11_45b7e
46acOb3asbaT1
b85a9135ae3chf
3397332echde...

Shade_12_48398
c2bfd51935fcd1
4db2a15607137
2e9b0244a690...

Figure 20: Fixed-size images of Shade ransomware samples

Shade_13_598d0
3d0e161019561
b9B84df98376c2
98324887794...

Shade_14_714d5
T8a5e0834b4fct
aB0debcf1d306d
784a86445020...

Shade_15_Tb7ed
53e8f118809741
2d59eee0171f87
21271cd444c3...

Shade_16_95e8d
foc4f047741272
491e3aae738b1
1334ed0017c6...

Shade_17_995c3
b59e6521bdcde
044188feaT69dc
9ed9Bf2idd34...

Shade_18_bB6aa
be39572286479
7624901764063
377b569fclde...

Shade_19_c40f7
08dc706ab0bed
8f157e1963e98
79513080d177...

However, these malware samples use system resources when they are executed. Therefore, if only
the first 100 data records (out of a total of 2,000 records) are used for visualization, the shapes shown
in Fig. 23 appear.

CMC, 2022, vol.72, no.2

Name Virtual Address Virtual Size Raw Size
Jext 4096 184320 69120
rdata 188416 61440 32256
.data 249856 983040 890880
rsrc 1232896 897024 21504
.aspack 2129920 28672 28160
.adata 2158592 4096 0
Name Virtual Address Viriual Size Raw Size
text 4096 1656367 1656832
rdata 1662976 424776 424960
.data 2088960 72520 49664
tis 2162688 2 512
TsrC 2166784 1024 1024

text
rdata
.data

Name

rdata
.data
Isrc

Isrc

text

Name Virtual Address Virtual Size

4096
1420504
1445888
1449984

Virtual Address
4096

81920

122880

139264

3419

Raw Size

1422774 1422848
15166 15360

984 1024
676632 9216
Virtual Size Raw Size
76331 76800
37220 37376
13056 5120
1817528 924672

Figure 21: Shade ransomware consisting of various sample types

RotorCrypt_0_0b
B3887e3bcbTa2
c7719ac3aldara
4d4625b8c2at...

RotorCrypt_10_4
8e4346eefidett
7a99431d9ddd9
2a2f625a894fe...

RotorCrypt_0_0b
83887e3bcbTa2
¢771%ac3aB4a’a
4d4625b8c2al...

RotorCrypt_10_4
Bed346eefldett
7a99431d9ddd9
2a2f625a894fe...

RotorCrypt_1_0e
5232a37178123
ac946254c34bd
bf0d551fefacy...

RotorCrypt_11_4
eedb08df4d2ads
13bd935e17187
e62e13988f7d...

RotorCrypt_2_Oe
d58c615e2701e
06458e2adeacd
d698584f419...

RotorCrypt_3_11
b6a14077c32f4
1aecB49c1cclas
bE60T267862...

RotorCrypt_12_5
1e5b72e99274fa
fe5fd3a0c35356
S5e636bf310eef...

RotorCrypt_13_5
64ff6b22920c92
792edeff32e02e
582fc6eB03ea...

RotorCrypt_4_14
3503a7670bf5¢
20bc45082fcchbb
ba7862ee2cia...

RotorCrypt_14_5
841aab1bb4551
Sdaeb32fadaba
668cdchald2ffa...

RotorCrypt_5_2c
4cchBebasilede
73435b6fd740e
d3047aeT0ee. ..

RotorCrypt_15_5
ddfeab33efbira
€99991543d292
3bc4009679d...

RotorCrypt_6_2e
34c0431721fd6
acdcleb7a5e208
e7101e754d05...

RotorCrypt_16_6
816835e46a56
9f90dbfBb76f83
7bf455b991¢e...

3?c9f2?68599d
1c79a1debf4eb2
bf2795f831d4...

RotorCrypt_17_6
e12ed2bb96509
1b8f5d91b3a3b
6088e528¢77...

RotorCrypt_8_40
42562c1f60cdBa
e517150698379
11d4aB9686¢2...

RotorCrypt_18_6
e2db44578ff2fd
cab7938517973
ed9bfd3532d7...

RotorCrypt_9_42
13288a599af19
8174383286646
1d735(2b25d8....

RotorCrypt_19_6
f96d0c0f7250e
99e960668761¢
B8b09fecif0te...

Figure 22: Fixed-size visualization images of RotorCrypt ransomware samples

RotorCrypt_5_2c
4ccbBe6ab10ede
73435b6fd740e

rypt_1_0e
5232a3?1 7823
ac946254c34bd
bf0d551fefacs...

RotorCrypt_11_4
eedb08df4d2ads
13bd935e17187
€62¢1398817d...

RotorCrypt_2_0e
d58c615e2701e
06458e2a4eacsd

d6985841419...

RotorCrypt_12_5
1e5b72e99274fa
fe5fd3a0c35356
5e636bf310eef...

RotorCrypt_3_11
b6a14077c324
1aec649ciccdad

b6607T267862...

RotorCrypt_13_5
64f6b22920c92
792edeff3Ze02e
582fcEcb03ea...

RotorCrypt_4_14
3503a7670bf5c
20bc45082fccbb

ba7862ee2cta...

RotorCrypt_14_5

841aab1bb4551

5daeb32fadaba
668cdcbal2ffa...

d3047ae790ee...

RotorCrypt_15_5
ddfeab33sfbi7a
£999915434292
3bc4009679d...

RotorCrypt_6_2e
34c0431721fd6
ac4cfebTa5e208

e7101e754d05...

RotorCrypt_16_6
8116835e46a56
9f90dbiBb76183
7bf4550991ce...

otorCrypt_7_36
3?c9f2 7dB8599d
1c79a1debfdeb2
bf2795831d4...

RotorCrypt_17_6
©12ed2bb96509
1b8f5d91b3a3b
6088e528¢77...

RotorCrypt_8_40
42562¢1f60cd6a
e517150698379
11d4a89686¢c2...

RotorCrypt_18_6
e2db44578ff2d
cab7938517973
eddbfdds32d7...

RotorCrypt_9_42
13288a599af19

8174383286646
1d7352b25d8...

RotorCrypt_19_6
96d0c0f7250e
99e960668761¢c
8b09fecif0te...

Figure 23: Visualization images for the first 100 data records of RotorCrypt ransomware samples

Fig. 24 shows the visualization results of each ransomware type for all samples. In some cases,
the entire shape is similar to those of the other samples within the same ransomware type, whereas in
other cases, various detailed shapes are found.

3420

CMC, 2022, vol.72, no.2

WONIREICLD 12

Amnesia_0_05bf BTCware 0_036e BTCware_1_0c0e BTCware_3_1229 Cerber 0_050ai Cryaki_0_Oae491 Crypton_0_fabc Crypton_1_1edb Crysis_0_000c0e Filecoder_1_1df3
8a086e2114717 640895b7Tbd0dl 149e204at6afal 0d7675a076cd1 dddaled701560 f00cOeb69i9cB1 1BO54460baadé 789f4de118f009 0f2dcOale16532 d4dalef113739
5dca22208f36a3 960c9226beled 9909bc055764e 2944019777b56 2d5(0f9efaeled 25004199d3add4 c698634d611d9 261000185d4b0 e3717e712fTeald 66154a6d67c3Ba
dc1dc20dcedf... db480dd46055... 502c0cbf0315... c114adc3c653... 1ebd7e52986.. Gbbc5058fc87... 453aB126cf9d.. 3503c1c39226.. 1cafdfbebf083.. 223229f27243...

‘T

Filecoder_2 400 GandCrab_0_01c GandCrab_1_01e Globel 0 Globel 8y | Gryphon_1_0ff43 Gryphon_2_154a Hermes_0_0322 Hermes_1_0322
80f8905367a0d Tfc2cdledcabde 5bcb9f5a54531a _005071148215¢c _011d61108675 10d29642d0cd1 dbc147a79b85a c1a621716dacc 698c03f77c855 bbO3cBBSdablb
dd35648823e70 85c419d13f494 6566d4f53b874 6800c6abalad) 8c0cOeaBb12b7 acdcd58c22702 1638f34335aaa0 4902b0d3fbOee 4941bcd5c65d3 c83483aTeed0B
3bb59754665... 3c989ac079b7... d7ae6d464997.. 45f2e49b326f.. 0199a8158364.. 133058a81b6... 47aaffd8b284e.. dc537891dBe... 93ebcd0090f1.. a02d5a60740a...

-

-

——

Hermes_5_OaSc2 Iron_0_033d440f Kangarco_1 07e LockerGoga 0.2 Matrix 0 06768 Mole_0_Oa3c26a Mole_2 347046 Mole_3 458252c MyRansom_0_01 MyRansom_10_0
34a6f7031989c5 1e1a60b0c1396 7Ba331aaldfcd3 ced984a74a3bd 16eDedS0deaBS 3B8ebedeBe0Ba 4dd101dBA768 30d22c3d2acGe 49dcadd5Belffd fa90fcdc593c15f
98cTebSaBeldcf 561bf05155d8c b35185e535073 cdc3B0c435c94 1a65a0b29fd41 33ddc3claece07 2bTed0aSa7fS02 8134520105642 adB8ba215ac911 ad934a797albe
d7595dbf1fc3... B838851699a3.. b1204d9255b... 95241dbdcaTe.. T79e1999M09a2.. 9d5d6c752854.. 134e5834TbeB.. 153id520d6e6.. 4edB7b2cefdd.. 9b1864bdfaf...

i3

Radamant_0_Oca Rapid_0_01d413 Rapid_3 09b260 RotorCrypt_0_0b RotorCrypt_2 O Ryuk_0_0261aBb Scarab_0_04a19 Scarab_3 Oeeadh Screenlocker_0_0 Shade_0_003639
e3562ed4c02eadc 116d6al13d9b3f 14bebBeaeBf5Sb 83887e3bcb7a2 d58c615e2701e 5133efldfc9473 T7dbb3dB8cfalTc fIc7504acfc952 00dcalacS54cBba c435617aBd3Be2
3b0a203923cB9 99027db7ac347 029913a00686f5 c7719ac3aBdala 06458e2adeacd bded468171b13 dB450a41971cB 14c3ebdb04183 00cadcbec0afl8 92cd1c5c3alid
b1fb3d119c0d... cfc2317e435f0... f9198d2ebf2ff... 4d4625b8c2al... d6985841419... d198abef2cda... 610d87albfdc... f4d56b142155... 128508603bc3... 3ed3baf03cel...
Shade_11_45b7e Shade_12_48398 Tescrypt_0_018d WannaCryptor 0 Xorist_0_02141c Xorist_2_08cB39 Xorist_4_Odf756f Xrat_0_04d89%4 Xrat_2 Oe38cB8ba Xrat_12_6698e8
46acOb3aSba71 c2bfd5f935fcd1 c13d154bB3710 _05680756644b eO74ecba21fd35 67f32ff157fbb5 ecde03edaB393 0a47a7437f32d Oceba579b%8eac d1821c943f161
bB5a9135ae3c6f 4db2a15607137 B8086aa26caB33 dae28cBb54816 252dd40dB0491 B2ee7B2b1179fe Becf15de5aB8350 9f75afca?d9a3d 02eb33bbdecddf B85aeel57aall03
3397332echde... ae9b0244a690.. 69b74d76c36... Be2451addeab.. 537748fecTdB.. 054a501b610d.. 683278e091f7... 2bdaS3f4ffbB5.. 76b11946057... Bb41600e3ede...

Figure 24: Visualization results for each ransomware type

5.2 Classification Performance Results Using Deep Learning

In this section, the images created as fixed-size visualization results are classified using a CNN to
evaluate the classification performance. After training the CNN model using the dataset consisting of
474 samples, in which 62 labels were manually classified, the classification performance was measured.
After running the process a total of 20 times, the best result had an accuracy of 1.000000 and a loss of
0.000068. In the worst result, the accuracy was 0.989474, and the loss was 0.036920. Fig. 25 shows the
performance results for worst-case executions, Fig. 26 shows the performance results for all executions,
and Tab. § presents the results of all executions.

The quantitative results of the behavioral performance visualization method using a CNN show
that it can be used for malware classification.

CMC, 2022, vol.72, no.2 3421

epoch_accuracy epoch_loss
0.9 o
0.7 validation validation
— ftraining : — training
0.5
0.3
0.1 >
0 100 200 300 400 500 0 100 200 300 400 500
Figure 25: Performance results for the worst-case execution
epoch_accuracy - validation epoch_accuracy - fraining
09 | 0.9 e M b
0.7 07
0.5 05
03 | 0.3
0.1+ 0.1
0 100 200 300 400 500 0 100 200 300 400 500
epoch_loss - validation epoch_loss - training
30 30
20 20
10 10
0 L ® & —@ 0
0 100 200 300 400 500 0 100 200 300 400 500
Figure 26: Performance results for all executions
Table 8: Results of all executions
No. Accuracy Loss Epoch No. Accuracy Loss Epoch
1 1.000000 0.000588 332 11 1.000000 0.007644 354
2 0.989474 0.036920 500 12 1.000000 0.000872 425
3 1.000000 0.001550 416 13 1.000000 0.002266 256
4 1.000000 0.003959 270 14 1.000000 0.003199 500
5 1.000000 0.000206 486 15 1.000000 0.000772 470
6 1.000000 0.000409 498 16 1.000000 0.000503 378
7 1.000000 0.000121 422 17 1.000000 0.000068 431
8 1.000000 0.004316 229 18 1.000000 0.003162 240

(Continued)

3422 CMC, 2022, vol.72, no.2

Table 8: Continued

No. Accuracy Loss Epoch No. Accuracy Loss Epoch
9 1.000000 0.000529 401 19 1.000000 0.001976 272
10 1.000000 0.000614 500 20 1.000000 0.000452 433

6 Conclusions

Given that attacks using malware are evolving to target specific companies or social infrastructure
rather than people, changes are required in the response strategies to block them. The agent and
characteristics of the attack should be identified to respond appropriately rather than simply detecting
and removing malware. This requires the establishment of response strategies based on the method or
goal of the attacks that the attacker has performed in the past by identifying the malware through
malware classification and attacker identification. Therefore, it is very important to classify malware
for attacker identification when establishing a response strategy. However, malware creators are well
aware of this and employ various concealment and avoidance techniques, making it difficult to extract
the features required for malware classification. To overcome this difficulty, research is needed to
enhance traditional malware analysis and facilitate the extraction of features needed for classification,
even for malware that uses concealment and avoidance techniques. Moreover, it is necessary to
investigate new features and classification techniques for malware classification.

This study aimed to investigate the possibility of classifying malware using the usage patterns of
system resources, such as CPU, memory, and I/O, that are usually used in performance characteristics
analysis and the tuning of executable programs. We proposed a behavioral performance visualization
method that visualizes the unique characteristics of malware by selecting the metrics to be evaluated
and extracting the usage patterns of the system resources as a time series. Furthermore, we evaluated
the classification performance using a CNN for the visualization results of ransomware. The obtained
results were quite good, confirming its suitability for malware classification and Al techniques.
These findings are significant and demonstrate the suitability of malware classification, even when
considering the limitation of dynamic analysis—since usage patterns of the system resources are a type
of dynamic characteristic—and the limitation that the set of malware samples used in the experiment
was small and only consisted of ransomware. Furthermore, we designed and implemented a framework
that performs the entire process—f{rom data extraction to behavioral performance visualization and
classification performance measurement—that is expected to help related studies in the future.

In future work, because the malware samples were limited to ransomware in this study, we should
further evaluate the malware classification performance by expanding the samples to include benign
programs and different types of malware. Further, we plan to research data processing methods (i.e.,
various methods for analyzing and interpreting time series data) and additional visualization methods.
Finally, we plan to conduct a study to determine the optimal classification technology by applying the
results of the behavioral performance visualization method proposed in this paper to various machine
learning and deep learning techniques.

Funding Statement: This work was supported by the Institute of Information & Communications
Technology Planning & Evaluation (II'TP) (Project No. 2019-0-00426%, 10%), the ICT R&D Program
of MSIT/IITP (Project No. 2021-0-01816, A Research on Core Technology of Autonomous Twins for
Metaverse, 10%), and a National Research Foundation of Korea (NRF) grant funded by the Korean
government (Project No. NRF-2020R 1A2C4002737%, 80%).

CMC, 2022, vol.72, no.2 3423

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

(1]
(2]

(3]
(4]

(5]
(6]

[7]
(8]
]

(10]

(1]

(12]

[13]

(14]

[15]
[16]

[17]
(18]

J. R. Reeder and C. T. Hall, “Cybersecurity’s Pearl Harbor moment: Lessons learned from the Colonial
Pipeline ransomware attack,” Cyber Defense Review, vol. 6, no. 3, pp. 15-40, 2021.

S. Soltani, S. A. Hosseini Seno, M. Nezhadkamali and R. Budirato, “A survey on real world botnets and
detection mechanisms,” International Journal of Information and Network Security, vol. 3, no. 2, pp. 116—
127, 2014.

K. Sigler, “Crypto-jacking: How cyber-criminals are exploiting the crypto-currency boom,” Computer
Fraud & Security, vol. 2018, no. 9, pp. 12-14, 2018.

L. Magno, M. Erika, M. Ryan and T. Nikko, “The state of ransomware: 2020’s catch-22,” Trend
Micro, 2021. [Online]. Awvailable: https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-
digital-threats/the-state-of-ransomware-2020-s-catch-22.

R. Komatwar and M. Kokare, “A survey on malware detection and classification,” Journal of Applied
Security Research, vol. 16, no. 3, pp. 390-420, 2021.

R. Sihwail, K. Omar and K. A. Z. Ariffin, “A survey on malware analysis techniques: Static, dynamic,
hybrid and memory analysis,” International Journal on Advanced Science, Engineering and Information
Technology, vol. 8, no. 4-2, pp. 1662-1671, 2018.

J. Singh and J. Singh, “Challenge of malware analysis: Malware obfuscation techniques,” International
Journal of Information Security Science, vol. 7, no. 3, pp. 100-110, 2018.

K. Shaukat, S. Luo, V. Varadharajan, I. A. Hameed, S. Chen et al., “Performance comparison and current
challenges of using machine learning techniques in cybersecurity,” Energies, vol. 13, no. 10, pp. 2509, 2020.
D. Gibert, C. Mateu and J. Planes, “The rise of machine learning for detection and classification of malware:
Research developments, trends and challenges,” Journal of Network and Computer Applications, vol. 153,
art. no. 102526, pp. 1-21, 2020.

L. Nataraj, S. Karthikeyan, G. Jacob and B. S. Manjunath, “Malware images: Visualization and automatic
classification,” in Proc. of the 8th Int. Symposium on Visualization for Cyber Security, NY, USA, no. 4, pp.
1-7, 2011.

S. Z. M. Shaid and M. A. Maarof, “Malware behavior image for malware variant identification,” in 2014
Int. Symposium on Biometrics and Security Technologies (ISBAST), Kuala Lumpur, Malaysia, pp. 238-243,
IEEE, 2014.

P. Poornachandran, S. Praveen, A. Ashok, M. R. Krishnan and K. P. Soman, “Drive-by-download malware
detection in hosts by analyzing system resource utilization using one class support vector machines,” in
Proc. of the 5th Int. Conf. on Frontiers in Intelligent Computing: Theory and Applications, pp. 129-137,
Singapore, Springer, 2017.

K. P. Soman, R. Loganathan and V. Ajay, in Machine Learning with SVM and other Kernel Methods, New
Delhi, India: PHI Learning Pvt. Ltd., 2009.

R. Perdisci, G. Gu and W. Lee, “Using an ensemble of one-class SVM classifiers to harden payload-based
anomaly detection systems,” in Sixth Int. Conf. on Data Mining (ICDM’06), Hong Kong, China, pp. 488—
498, 2006.

A. K. Sood and S. Zeadally, “Drive-by download attacks: A comparative study,” IT Professional, vol. 18,
no. 5, pp. 18-25, 2016.

VirusTotal, “Analyze suspicious files and URLs to detect types of malware, automatically share them with
the security community,” 2022. [Online]. Available: https://www.virustotal.com.

Cutter, “Free and open source reverse engineering platform,” 2022. [Online]. Available: https:/cutter.re.
S. Jamalpur, Y. S. Navya, P. Raja, G. Tagore and G. R. K. Rao, “Dynamic malware analysis using
cuckoo sandbox,” in 2018 Second Int. Conf. on Inventive Communication and Computational Technologies
(ICICCT), Coimbatore, India, pp. 1056-1060, 2018.

https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/the-state-of-ransomware-2020-s-catch-22
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/the-state-of-ransomware-2020-s-catch-22
https://www.virustotal.com
https://cutter.re

3424 CMC, 2022, vol.72, no.2

[19] Sandboxie-Plus, “Open-source OS-level virtualization solution for Microsoft Windows,” 2022. [Online].
Available: https://en.wikipedia.org/wiki/Sandboxie_Plus.

[20] Pylnstaller, “Freeze (package) python programs into stand-alone executables,” 2022. [Online]. Available:
https://github.com/pyinstaller/pyinstaller.

[21] Psutil, “Cross-platform lib for process and system monitoring in Python,” 2022, [Online]. Available: https://
github.com/giampaolo/psutil.

[22] S. Albawi, T. A. Mohammed and S. Al-Zawi, “Understanding of a convolutional neural network,” in 2017
Int. Conf. on Engineering and Technology (ICET), Antalya, Turkey, pp. 1-6, 2017.

https://en.wikipedia.org/wiki/Sandboxie_Plus
https://github.com/pyinstaller/pyinstaller
https://github.com/giampaolo/psutil
https://github.com/giampaolo/psutil

	Ransomware Classification Framework Using the Behavioral Performance Visualization of Execution Objects
	1 Introduction
	2 Related Work
	3 Behavioral Performance Visualization Method Using the Usage Patterns of System Resources
	4 Design and Implementation of the Classification Framework
	5 Performance Evaluation
	6 Conclusions

