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Abstract: A ransomware attack that interrupted the operation of Colonial
Pipeline (a large U.S. oil pipeline company), showed that security threats
by malware have become serious enough to affect industries and social
infrastructure rather than individuals alone. The agents and characteristics of
attacks should be identified, and appropriate strategies should be established
accordingly in order to respond to such attacks. For this purpose, the first
task that must be performed is malware classification. Malware creators are
well aware of this and apply various concealment and avoidance techniques,
making it difficult to classify malware. This study focuses on new features
and classification techniques to overcome these difficulties. We propose a
behavioral performance visualization method using utilization patterns of
system resources, such as the central processing unit, memory, and input/out-
put, that are commonly used in performance analysis or tuning of programs.
We extracted the usage patterns of the system resources for ransomware to
perform behavioral performance visualization. The results of the classification
performance evaluation using the visualization results indicate an accuracy
of at least 98.94% with a 3.69% loss rate. Furthermore, we designed and
implemented a framework to perform the entire process—from data extrac-
tion to behavioral performance visualization and classification performance
measurement—that is expected to contribute to related studies in the future.

Keywords: Behavioral performance visualization; ransomware; malware clas-
sification

1 Introduction

A ransomware attack that interrupted the operation of Colonial Pipeline, a large oil pipeline
company in the United States, occurred in 2021. A hacking group called DarkSide was responsible for
the attack, and the pipeline operations were all stopped suddenly [1]. The attack demonstrated that
security threats posed by malware have now become serious enough to affect industries and social
infrastructure rather than individuals alone. In the past, attackers targeted many unspecified people;
moreover, if malware was detected and removed quickly, further damage could be prevented, and the
scale of the damage was limited. The goal of such attacks was mostly to spread massive amounts of
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malware in order to form a botnet or use it for bitcoin mining [2,3]. In recent years, attacks toward
specific companies or social infrastructure have increased, and consequently, the extent of the damage
has increased excessively. Ransomware, which causes the most serious damage, initially targeted
unspecified people; however, ransomware has recently been attacking specific targets persistently until
the attack succeeds. Furthermore, the goal of attacks is not only to demand money through data
encryption but also to leak corporate information, leading to secondary damage [4]. Since attackers’
goals, targets, and methods are changing, response strategies must also be modified in order to block
attacks. Targeted attacks cannot be blocked by standardized responses that simply detect and remove
malware. Appropriate strategies should be established by identifying the agents and characteristics of
the attacks. To this end, a classification of detected malware should be performed first to identify the
malware. If the classification result shows that the malware is already known, the attacker who has used
that particular malware can be identified. If the attacker is identified, the goal or method of the attack
that was performed in the past can be determined. Based on this, the attack in progress and future
ones can be predicted. Thus, a response strategy can be established, such as enhancing monitoring or
patching the vulnerabilities that the attacker uses. Therefore, malware classification for identifying the
attacker is an important task for the establishment of a response strategy.

To classify malware, features should be extracted from it. Traditional malware analysis tech-
niques are mostly used for feature extraction, and a static code analysis-based method or behavior
observation-based dynamic analysis method is usually used [5,6]. Attackers are well aware of this and
create malware by employing various concealment and avoidance techniques to interfere with malware
classification, making feature extraction difficult [7]. In most static analyses, code is first analyzed to
extract the necessary information, but the analysis of malware that uses concealment techniques is
not easy. Although it is possible if an experienced analyst uses a professional program, the task would
require considerable time and effort. Therefore, in this case, it is difficult in practice to extract features
from malware using concealment techniques.

Further, dynamic analysis is a method that can be applied to malware when static analysis is
difficult to perform because it monitors its actual behavior. However, it requires a monitoring program
for the behavior of malware and a limited analysis environment. Malware creators have been using
this fact to their advantage and have developed various avoidance techniques, such as not performing
malicious behavior for a long period or terminating execution immediately if the malware determines
that a monitoring program is running or it identifies the running environment. Thus, even in the case
of dynamic analysis, the features required for classification are difficult to extract from malware that
employs avoidance techniques. In recent years, as in other security fields, artificial intelligence (AI)
techniques such as machine learning and deep learning have often been used in the field of malware
classification [8]. Nevertheless, it is difficult to classify malware equipped with various concealment
and avoidance techniques because the features are extracted using a traditional malware analysis
method. To overcome the difficulties faced by traditional methods, research is required to facilitate
feature extraction from malware that uses concealment and avoidance techniques. Moreover, it is
necessary to conduct research on new features that can be used in malware classification as well as
classification techniques.

In this study, we focused on system resources such as the central processing unit (CPU), memory,
and input/output (I/O), which are commonly used in performance analysis or the tuning of programs.
The reason for focusing on system resources is the characteristics of programs that use resources such
as the CPU, memory, and I/O as the code is executed to perform certain functions. Furthermore,
programs use system resources in various forms depending on the libraries used in the software
development, the code writing method, and the flow of code for performing the function. Since
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malware is also a program, it uses system resources in various forms while running, and these can be
used as features to distinguish the malware. Indeed, using this approach makes it more challenging to
analyze the malicious behavior of malware in as much detail as it could be using method calls or other
dynamic analysis methods, but such detailed analysis is not needed to classify malware. Furthermore,
the system resource usage data can be extracted for malware equipped with various concealment
and avoidance techniques because they are basic performance metrics that can be obtained from the
system. However, even if the usage information of the system resources can be extracted, it does not
necessarily mean that the features that can classify malware will be readily available. Performance
metrics are time-series data that change in real time and are of various types. To determine unique
malware features, we investigated the metrics that should be selected, the extraction method that
should be used, and how to visualize the extracted data. In addition, we conducted experiments with
ransomware to confirm that malware can be classified using the usage patterns of the system resources.
Ransomware is suitable for measuring classification performance because it has been the most harmful
malware so far and various types exist.

The first contribution of this study is the proposed behavioral performance visualization method
using the usage patterns of system resources and a demonstration of its usability in malware clas-
sification through a classification performance evaluation. The proposed method can be utilized in
a malware classification system because the unique characteristics of malware can be represented
by the visualization results. Moreover, the proposed method can assist analysts in practice because
it enables them to visually identify the similarities and differences between malware. Furthermore,
its suitability for use with Al techniques was confirmed by assessing the classification performance
using deep learning, which is widely used in image classification. Second, a framework was designed
and implemented to perform the entire process, from data extraction to behavioral performance
visualization and classification performance measurement. The design and implementation of this
framework are expected to help related research and be useful in practice.

The structure of the remainder of this paper is as follows. Section 2 examines related studies, and
Section 3 describes the behavioral performance visualization method using usage patterns of system
resources. Section 4 explains the design and implementation of the framework for behavioral perfor-
mance visualization, and Section 5 discusses the results of the proposed method and classification.
Finally, Section 6 summarizes the conclusions and future plans.

2 Related Work

Most studies on malware classification focus on extracting features using traditional malware
analysis methods and classifying malware using machine learning or deep learning [9]. In this section,
we examine studies that have attempted to classify malware through visualizing features extracted from
the malware.

2.1 Visualization of a Malware File as an Image

Among the studies that attempted to visualize features of malware, the study presented in [10]
visualized the file itself as an image. In this method, a malware file is read as binary data (vectors of
8-bit unsigned integers) and converted into a grayscale image, as shown in Fig. 1. The converted image
has different characteristics (shape or texture) of the image depending on the type of malware, and this
method uses these differences to detect and classify malware.
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Figure 1: Reading a malware file as binary data and converting it into an image

The study showed that when malware files are visualized as images based on static features,
there are differences among the malware types. It also demonstrated that malware could be classified
without code analysis, such as decompiling (disassembling) malware, unlike conventional static
analysis methods. Given that features are visualized as images, follow-up studies have been continually
conducted to classify malware using Al techniques such as deep learning, which has shown high
performance in image classification.

2.2 Visualization of the Behavior of Malware as an Image

The study described in [1 1] visualized application programming interface (API) calls in the user
mode to classify malware. This method classifies high-risk and relatively less risky APIs in terms of
the possibility that user APIs are used maliciously and represents them using a color map, as shown
in Fig. 2a. If the API calls of malware are visualized using this method, they are expressed differently
depending on the malware type, as shown in Fig. 2b. The study demonstrated that when API call
information (the dynamic features of malware) is used and visualized, the result varies depending on
the malware type. Furthermore, it showed that the characteristics of malware can be better revealed
when API call information is visualized instead of simply listed.

Malicious API

Less malicious API

Figure 2: (a) API and color map, (b) visualization results of three malware types
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2.3 Malware Detection Using the Usage Patterns of System Resources

As shown in Fig. 3, the study in [12] used the changes in CPU and random access memory (RAM)
usage before and after running malware in a certain system environment to detect certain types of
malware. The study proposed a method that uses a one class support vector machine (OC-SVM)
[13,14], which is a machine learning algorithm, to detect changes in CPU and RAM usage before
and after running malware distributed through a drive-by download [15].
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Figure 3: Differences in CPU and RAM usage in a specific system environment

Given that the CPU and RAM usage of the entire system was used, significant differences could
occur in the measured data depending on the system condition at the time of measurement, even in
the same system environment; thus, it was difficult to determine the specific time for measuring data.
Despite these limitations, the study was important because usage patterns of system resources—CPU
and RAM—were used as features for malware detection.

3 Behavioral Performance Visualization Method Using the Usage Patterns of System Resources

In this section, we describe the behavioral performance visualization method that specifies unique
features required in malware classification using the usage patterns of system resources (such as CPU,
memory, and 1/O).

3.1 Opverview of Behavioral Performance Visualization

Features that are extracted from a specific type of malware must be distinguishable from those
of other malware types to classify the malware. In this study, we focus on the usage patterns of
systems resources (such as CPU, memory, and 1/O) because malware is also a program. A program
uses system resources depending on the libraries used in its development, the method of writing code,
and the flow of code for executing a certain function. Given that malware is a program, it uses system
resources in various forms when running. Furthermore, because system resource usage derives from
basic performance metrics that can be obtained from the system, they can be extracted even for
malware in which various concealment and avoidance techniques have been applied. Usage patterns
of system resources are time-series data of performance metrics called system resource usage metrics,
which appear as the program performs certain behaviors. If the extracted data are normalized and
visualized, unique characteristics that are distinguishable from those of other malware types appear,
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and they can be used as the features for malware classification. Fig. 4 shows an overview of behavioral
performance visualization using the usage patterns of system resources.
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Figure 4: Overview of behavioral performance visualization using the usage patterns of system

resources

3.2 Selection of the Ransomware Samples

We collected 525 samples of 28 ransomware types from ransomware that was registered between
2018 and 2020 in VirusTotal [16]. The reason for choosing ransomware instead of other types of
malware is that it has been the most harmful malware so far, and it is suitable for measuring
classification performance because there are a variety of types whereas the file encryption functions
are similar. Tab. 1 lists the types of malware samples.

Table 1: Twenty-eight types of ransomware samples

No. Type Quantity No. Type Quantity
1 Amnesia 20 15 Matrix 20
2 BTCware 20 16 Mole 20
3 Cerber 20 17 MyRansom 20
4 Cryaki 10 18 Radamant 20
5 Crypton 5 19 Rapid 20
6 Crysis 20 20 RotorCrypt 20
7 Filecoder 12 21 Ryuk 20
8 GandCrab 20 22 Scarab 20
9 Globelmposter 20 23 Screenlocker 20
10 Gryphon 20 24 Shade 20
11 Hermes 20 25 Tescrypt 20
12 Iron 20 26 WannaCryptor 20
13 Kangaroo 20 27 Xorist 20
14 LockerGoga 18 28 Xrat 20
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3.3 Selection of Extracted Data and Extraction Method

We chose 12 metrics for the system resources, as listed in Tab. 2. They reflect the execution features
of malware quite well, and the relevant usage patterns can be easily extracted.

Table 2: Metrics for extracting usage patterns

Type Metric Description
CPU CycleTime Number of CPU clock cycles used by the threads of the
process

Memory QuotaPagedPoolUsage Current paged pool usage (in bytes)
QuotaNonPagedPoolUsage Current non-paged pool usage (in bytes)

PrivateUsage Commit charge value (the total amount of private memory
that the memory manager has committed for a running
process) for this process (in bytes)

WorkingSetSize Current working set size (in bytes)
Handle HandleCount Number of open handles that belong to the specified process
1/0 OtherOperationCount Number of I/O operations performed, other than read and
write operations.
OtherTransferCount Number of bytes transferred during operations other than
read and write operations.
ReadOperationCount Number of read operations performed
ReadTransferCount Number of bytes read
WriteOperationCount Number of write operations performed
WriteTransferCount Number of bytes written

Performance metrics that best represent the execution features of malware are metrics related
to the CPU, memory, and I/O and related to code execution for performing certain behaviors of
malware. CPU CycleTime refers to the number of CPU clock cycles allocated during the operation
of the process; it was chosen because it shows CPU resource usage characteristics related to malware
execution. Memory-related metrics were chosen because they show memory usage characteristics
based on the allocation and release of memory in the process of executing malware. We chose the
paged pool/non-paged pool used to manage memory needed by the system in the Windows operating
system, a set of private operations allocated to the program excluding the shared library, and a set
of operations corresponding to the memory usage shown in the task manager. The HandleCount is a
metric related to resource management in the Windows operating system, and it was chosen because
the number of handles reveals the characteristics of resource usage. I/O refers to metrics showing
characteristics related to inputs and outputs of the system, and we chose the number of read, write,
and other operations, and bytes.

As for the data extraction method, because we used Python and considering the time required
for metric extraction, we extracted data 2,000 times in 0.001 s intervals for 12 metrics. We could have
set the data extraction time differently, but in this study, we kept it short to determine if only the
data extracted at the beginning of malware execution can reveal unique features required for malware
classification. To extract data quickly for the selected metrics only, we called related Windows APIs
directly from Python instead of using a Python library.
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3.4 Data Normalization

The extracted raw data show very large differences among each metric, as presented in Tab. 3. If
the data are visualized as they are, only the metrics with large data values will be emphasized when
they are visualized. Therefore, the data scales needed to be adjusted, and there are many methods for
doing this. In this study, we used min-max normalization, which simply adjusts only the scale for each
metric to maintain the characteristics of the data values shown in the usage patterns of the system
resources as much as possible.

Table 3: Values of the extracted raw data

Metric Value Metric Value
CycleTime 4,206,985,569 OtherOperationCount 1,135
QuotaPagedPoolUsage 227,784 OtherTransferCount 16,626
QuotaNonPagedPoolUsage 17,120 ReadOperationCount 3
PrivateUsage 3,354,624 ReadTransferCount 10,624
WorkingSetSize 17,096,704 WriteOperationCount 0
HandleCount 237 WriteTransferCount 0

3.5 Behavioral Performance Visualization

Given that malware is also a program, it uses system resources to perform certain functions.
Behavioral performance visualization is a method that visualizes the system resource usage patterns
of malware while it performs certain functions.

3.5.1 Visualization Using Time-Series Graphs

Time-series graphs are a visualization method that can help analysts to distinguish malware
intuitively because differences can be compared in detail. After normalizing the extracted time-series
data, the plot function provided by the pyplot module of the Python Matplotlib library can be used
to visualize them in time-series graphs. Five samples were collected for the Crypton ransomware, and
their time-series graphs were classified into two very similar groups, as shown in Fig. 5.

We used an open-source reverse-engineering tool called Cutter 1.12.0[17] to examine the similarity
of the time-series graphs in terms of actual code. First, when we examined the structure of the entry
point, the structure was the same in all samples, as shown in Fig. 6, and only the address of the function
called was different between the two groups. This shows that the entry point structure is the same in
all types of Crypton ransomware.

The difference between the two groups was more noticeable when they were examined after the
functions were sorted by size, as shown in Fig. 7. Furthermore, in the second group, two samples had
the same information, but one sample showed some differences in the reference-related and code size
information. However, the function-related information was all the same, and the results visualized in
the time-series graphs showed almost no difference in the samples.

When the graphs of all function calls including the entry point are compared, differences are
found between the two groups, as shown in Fig. 8. When the results visualized in time-series graphs
are compared with the static code information, it is found that if the similarity of the static code is
high, the similarity in the time-series graphs is high as well.
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3.5.2 Visualization Using Grayscale Images of Fixed Size

Although similarities can be checked through visualization using time-series graphs, we can
also use a visualization method using fixed-size images as a simpler and more intuitive method of
visualization. Extracted data can be saved in a two-dimensional (2D) array 2,000 x 12 in size, and
the 2D array data can be easily visualized as an image after normalization. In other words, a 2D
array of 2,000 x 12 can be converted into a grayscale image of 12 x 2,000 (width x height). First, the
normalized data of the 2D array are multiplied by 255 and then converted into 8-bit unsigned integers.
Then, the from array function provided by the Image module of the Python Pillow library can be used
to create a grayscale image. However, because the generated image is very long (12 x 2000 in size),
it is difficult for a human to identify it quickly. Hence, this vertically long image should be resized.
Although images can be created in various sizes, 200 x 200 was selected for easy identification and use
in the classification tasks in this study. For resizing, we used the resize function of the Image module
with the Lanczos filter, which leads to the least image breakage. The final generated image is shown in
Fig. 9.
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Figure 9: Crypton ransomware samples converted into fixed-size grayscale images

Two groups were classified when the results visualized with time-series graphs and the static code
information were compared, and likewise, two groups were classified when visualized as grayscale
images of a fixed size. This is a visualization method that can be effectively used in malware
classification based on image similarity comparison because the characteristics of malware are well
represented, even when visualized as a small image, owing to the characteristics of grayscale images.

3.5.3 Visualization Using Fixed Size Color Images

Another method of visualization that can better express the characteristics of malware is one
using color images. In this case, we used the imshow function provided by the pyplot module of the
Python Matplotlib library. To visualize the normalized 2D array as a grayscale image, the data must
be converted. However, if the imshow function is used, the normalized 2D array can be directly used
for the visualization, and the created image has a high resolution while representing the real values
of the data properly. Next, the size is adjusted to 200 x 200 so that it will be easy to examine visually.
Furthermore, the imshow function can use a color map to create a color image. A color map is a type
of color table that determines how to represent the color of a pixel, and various color maps can be
used, as shown in Fig. 10. Fig. 11 shows images visualized by applying the “jet” color map, which is
the most appropriate color map for representing the characteristics.

| N | | N | |
{1 [ Mkl 115

jet viridis gray hot copper

Figure 10: Various color maps

©) @ 3 @ O

Figure 11: Crypton ransomware samples converted into fixed-size color images

Visualization using fixed-size color images can help analysts classify malware intuitively because
similarities and differences can be easily compared in detail since the images have a high resolution
when created and are represented in color. Furthermore, it can be used effectively in malware
classification using Al techniques such as deep learning.
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3.5.4 Visualization with Small Extracted Data

In some cases, malware inspects the execution environment and terminates immediately if the
conditions are not met; alternatively, it copies itself to a different area of the system and after executing,
it terminates itself. In these cases, the amount of extracted data is small because the actual running time
is short. When the visualization is performed using the extracted data alone, the system resource usage
patterns when the malware begins to run are still reflected, as shown in Fig. 12. In other words, even
with only the system resource usage patterns at the beginning of malware execution, characteristics

that can be distinguished from those of other malware types are noticeable.

Amnesia Iron Tescrypt WannaCrypt

Figure 12: Visualized images of small amount of extracted data

4 Design and Implementation of the Classification Framework

In this section, we describe the design and implementation of a framework for data extraction,
behavioral performance visualization, and classification performance assessment.

4.1 Overview of the Framework

Fig. 13 shows the overall framework. The framework for behavioral performance visualization
consists of a data extraction system for extracting data from malware, a data visualization system
for behavioral performance visualization using the extracted data, and a classification performance
measurement system for measuring the classification performance using the visualized images. Each
system operates independently.
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Figure 13: Design of a classification framework for behavioral performance visualization
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4.2 Data Extraction System

In this study, a data extraction system was constructed using an actual system, as detailed in Tab. 4,
instead of a virtual machine or a professional analysis environment, such as Cuckoo Sandbox [18], in
order to extract data in an environment similar to that of common users.

Table 4: Data extraction system settings

CPU Intel Core 15-4690 CPU 3.50 GHz
RAM 16 GB
OS Microsoft Windows 10 64-Bit (OS build 19042.685)

To extract data continuously and prevent malware from affecting the data extraction program, we
built the extraction environment using Sandboxie-plus 0.8.8 [19] (an open-source sandbox program),
which allows the program to operate in an isolated environment in Windows operating systems. The
network was disabled because network-related metrics were not used when configuring the system.
Microsoft Defender was disabled because malware is directly executed, and Windows Search was also
disabled because it can have a significant impact on the I/O-related parts when data are extracted.

The programs used for data extraction were written using Python, and executable files were created
using Pyinstaller 3.6 [20]. The programs were all executed as console programs using the command
prompt (cmd.exe) with administrator privileges. There are libraries such as Psutil 5.7.2 [21] that can
be used in Python for data extraction, but they cannot specifically target only the selected metrics
when extracting system resource-related information, and the extraction takes a long time. Another
problem is that a long extraction cycle has to be set to maintain a constant extraction cycle because
there were large errors in the time required for extraction. Therefore, a method of directly calling
Windows APIs from Python programs was implemented to extract data for only the selected metrics
in a more precise cycle. In the pscollect.exe program, which extracts data from the malware process,
only the last core of the usable CPU cores was configured for use to minimize the influence of other
programs. Moreover, the priority of the process was set to ABOVE_NORMAL_PRIORITY _CLASS,
i.e., one level higher than the default state. Considering the time required for metric data extraction
using Python, we set the extraction cycle of the system resource usage patterns to run in intervals of
0.001 s and extracted data 2,000 times. The reason for separating psrun.exe, which executes malware,
and pscollect.exe, which extracts data, was that some malware forcibly terminates the parent process
that executed it, and this stops data extraction. Hence, psmon.exe was executed outside the sandbox,
and the other two programs, psrun.exe and pscollect.exe, were configured to run inside the sandbox so
that both the execution of malware and data extraction process would operate in the sandbox. After
the data extraction was completed, all processes executed in the sandbox were terminated, and the
changes made in the system by the malware were removed to return the data extraction environment
to its initial state. Fig. 14 shows the programs and their operations for data extraction.

The data extraction process consists of the following steps: (1) psmon.exe executes psrun.exe in
the sandbox and then sends the path of the executable file of the malware; (2) psrun.exe executes the
malware in the path received from psmon.exe in a suspended state; (3) psrun.exe sends the process ID
(PID) of the malware executed in a suspended state to psmon.exe; (4) psmon.exe executes pscollect.exe
in the sandbox and then sends the PID of the malware received from psrun.exe; (5) pscollect.exe uses
the received PID of the malware to resume the execution of the malware, which is in a suspended state;
(6) pscollect.exe extracts the usage information of the system resources from the malware process
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at predetermined cycles; and (7) once the data extraction is completed, pscollect.exe sends all the
extracted data to psmon.exe so that it can save them in a data file.
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Figure 14: Overview of programs for data extraction

4.3 Data Visualization System

The data visualization system reads a comma-separated values (CSV) file, where the raw data
extracted from malware have been saved, and performs the visualization work. Tab. 5 lists the data
visualization system settings.

Table 5: Data visualization system settings

CPU AMD Ryzen 7 5800X 8-Core Processor 3.80 GHz
RAM 64 GB

OS Microsoft Windows 10 64-Bit (OS build 19042.685)
Python 3.8

First, to adjust the scales of the data, the data are normalized to values between 0 and 1 for each
metric using min-max normalization, and the data are visualized using a time-series graph and fixed-
size images (grayscale and color). Fig. 15 shows the visualization process.

4.4 Classification Performance Measurement System

The classification performance measurement system uses a convolutional neural network (CNN)
[22], which is a deep learning technique, to classify the images visualized through the data visualization
system. Tab. 6 presents the system settings.

We implemented the classification performance measurement system using a CNN—a deep
learning technique widely used in image classification—because the visualization results produced by
the data visualization system are images. Considering that even a simple model can produce good
classification performance if the characteristics of each malware type are well represented in the
visualized image, we created a simple CNN model using Keras. For this model, 20% of the data were
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used as the test dataset, and the training was performed by setting the number of epochs to a maximum
of 500 and the batch size to 64. Fig. 16 shows the CNN model that was used.
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Figure 15: Data visualization process

Table 6: Classification performance measurement system settings

CPU AMD Ryzen 7 5800X 8-Core Processor 3.80 GHz
RAM 64 GB

OS Microsoft Windows 10 64-Bit (OS build 19042.685)
Python 3.8

Deep Learning Framework Keras (Tensorflow: tf-nightly-gpu)

GPU NVIDIA GeForce RTX-3080

32 64
=
H/\ER B
Input MaxPooling2D MaxPooling2D
(200 x 200) 2x2) 2 x2) B/ \W softmax
Conv2D Dropout (0.2) Conv2D Dropout (0.2)
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(1024)
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Figure 16: Structure of the CNN model used for classification



3416 CMC, 2022, vol.72, no.2

In this study, among the visualization methods proposed in the behavioral performance visual-
ization technique, fixed-size color images, which represent well the characteristics of malware and are
small in size, were used as the inputs of the CNN model. The task of assigning labels to the images was
performed manually by grouping images with similar shapes. However, when we examined the images
to assign labels, we found shapes that required more detailed classification, even for the same type of
malware. Fig. 17 shows the fixed-size visualization results of Amnesia ransomware samples; as shown
in cases (1) and (2), some malware samples have different shapes even though they belong to the same
ransomware type.
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Figure 17: Fixed-size visualization images of Amnesia ransomware samples

Samples with different shapes can appear because there are variants or many versions of malware
that perform different functions in detail, even within the same malware type. However, when there was
only one sample that had the same shape, as shown in case (2), that particular sample was removed
because it could not be used in the training process. The final dataset included 62 labels and 474
samples, as detailed in Tab. 7.

Table 7: Details of the final dataset

No. Type Label Quantity  No. Type Label Quantity
1 Amnesia Amnesia 17 32 Matrix Matrix 19
2 BTCware BTCware_1 6 33 Mole Mole_1 5
3 BTCware_2 2 34 Mole_2 3
4 BTCware_3 4 35 Mole_3 2
5 BTCware_3 6 36 Mole_4 3
6 Cerber Cerber_1 11 37 Mole_5 2
7 Cerber_2 5 38 Mole_6 2
8 Cryaki Crypton 9 39 MyRansom MyRansom_1 14
9 Crypton Crypton 5 40 MyRansom_2 2
10 Crysis Crysis 19 41 MyRansom_3 3
11 Filecoder Filecoder_1 10 42 Radamant Radamant 20
12 Filecoder_2 2 43 Rapid Rapid_1 17
13 GandCrab GandCrab_1 11 44 Rapid_2 2
14 GandCrab_2 9 45 RotorCrypt RotorCrypt_1 11

(Continued)
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Table 7: Continued

No. Type Label Quantity  No. Type Label Quantity
15 Globelmposter Globelmposter_1 15 46 RotorCrypt_2 6
16 Globelmposter_2 2 47 RotorCrypt_3 2
17 Gryphon Gryphon_1 7 48 Ryuk Ryuk 13
18 Gryphon_2 2 49 Scarab Scarab_1 11
19 Gryphon_3 2 50 Scarab_2 5
20 Gryphon_4 3 51 Scarab_3 4
21 Gryphon_5 3 52 Screenlocker Screenlocker 20
22 Gryphon_6 2 53 Shade Shade_1 3
23 Hermes Hermes_1 7 54 Shade 2 2
24 Hermes_2 2 55 Tescrypt Tescrypt 20
25 Hermes_3 2 56 WannaCryptor ~ WannaCryptor 20
26 Hermes_4 3 57 Xorist Xorist_1 10
27 Hermes_5 4 58 Xorist_2 2
28 Iron Iron_1 11 59 Xorist_3 3
29 Iron_2 9 60 Xorist_4 2
30 Kangaroo Kangaroo 19 61 Xrat Xrat_1 13
31 LockerGoga LockerGoga 17 62 Xrat_2 7

5 Performance Evaluation

This section describes the behavioral performance visualization and deep learning-based clas-
sification performance results. The images visualized with the behavioral performance visualization
method using system resource usage patterns were visually checked to determine how similar they
appear when examined by malware type.

5.1 Behavioral Performance Visualization Results

When the visualization results of the Radamant ransomware samples were examined, as shown in
Fig. 18, all samples appeared to be of a single type. Despite the fact that samples with large differences
in file size were mixed together, the patterns of the system resources used when they were running
were all the same. This was also true for the packed samples. Packing is a concealment method that
hides the original code by compressing the executable. A program that performs this function is called
a packer. When an executable file is packed using a packer, the information related to the original
code is hidden, making static analysis difficult. Given that the behavioral performance visualization
is a type of dynamic analysis, the characteristics related to the execution are reflected when the
malware is actually running, even for malware that uses concealment techniques, demonstrating that
all visualization results are the same. Fig. 19 shows the visualization results of the samples packed by
three types of packers, all of which have the same appearance.

In the case of Shade ransomware, various types appeared, although these types were similar, as
shown in Fig. 20. The code structure of the Shade ransomware was quite different in the samples, as
shownin Fig. 21, and the usage patterns of the system resources also showed differences. This indicates
that different types of variants have been produced in the case of Shade ransomware.

Malware with an avoidance function such as RotorCrypt maintains a suspended state without
performing any operation using the “sleep” function, which waits for a specified period of time after
being triggered or until a certain condition is met. Because it barely uses the system resources during
the waiting period, there is almost no change in each metric, as shown in Fig. 22,
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Figure 18: Fixed-size visualization images of Radamant ransomware samples
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Figure 19: Visualization results of samples packed by three types of packers
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Figure 20: Fixed-size images of Shade ransomware samples
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However, these malware samples use system resources when they are executed. Therefore, if only
the first 100 data records (out of a total of 2,000 records) are used for visualization, the shapes shown
in Fig. 23 appear.
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Name Virtual Address Virtual Size Raw Size
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Figure 21: Shade ransomware consisting of various sample types
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Figure 22: Fixed-size visualization images of RotorCrypt ransomware samples
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Figure 23: Visualization images for the first 100 data records of RotorCrypt ransomware samples

Fig. 24 shows the visualization results of each ransomware type for all samples. In some cases,
the entire shape is similar to those of the other samples within the same ransomware type, whereas in
other cases, various detailed shapes are found.
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Figure 24: Visualization results for each ransomware type

5.2 Classification Performance Results Using Deep Learning

In this section, the images created as fixed-size visualization results are classified using a CNN to
evaluate the classification performance. After training the CNN model using the dataset consisting of
474 samples, in which 62 labels were manually classified, the classification performance was measured.
After running the process a total of 20 times, the best result had an accuracy of 1.000000 and a loss of
0.000068. In the worst result, the accuracy was 0.989474, and the loss was 0.036920. Fig. 25 shows the
performance results for worst-case executions, Fig. 26 shows the performance results for all executions,
and Tab. § presents the results of all executions.

The quantitative results of the behavioral performance visualization method using a CNN show
that it can be used for malware classification.
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Figure 25: Performance results for the worst-case execution
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Figure 26: Performance results for all executions
Table 8: Results of all executions
No. Accuracy Loss Epoch No. Accuracy Loss Epoch
1 1.000000  0.000588 332 11 1.000000  0.007644 354
2 0.989474  0.036920 500 12 1.000000  0.000872 425
3 1.000000  0.001550 416 13 1.000000  0.002266 256
4 1.000000  0.003959 270 14 1.000000  0.003199 500
5 1.000000  0.000206 486 15 1.000000  0.000772 470
6 1.000000  0.000409 498 16 1.000000  0.000503 378
7 1.000000  0.000121 422 17 1.000000  0.000068 431
8 1.000000  0.004316 229 18 1.000000  0.003162 240

(Continued)
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Table 8: Continued

No. Accuracy Loss Epoch No. Accuracy Loss Epoch
9 1.000000  0.000529 401 19 1.000000  0.001976 272
10 1.000000  0.000614 500 20 1.000000  0.000452 433

6 Conclusions

Given that attacks using malware are evolving to target specific companies or social infrastructure
rather than people, changes are required in the response strategies to block them. The agent and
characteristics of the attack should be identified to respond appropriately rather than simply detecting
and removing malware. This requires the establishment of response strategies based on the method or
goal of the attacks that the attacker has performed in the past by identifying the malware through
malware classification and attacker identification. Therefore, it is very important to classify malware
for attacker identification when establishing a response strategy. However, malware creators are well
aware of this and employ various concealment and avoidance techniques, making it difficult to extract
the features required for malware classification. To overcome this difficulty, research is needed to
enhance traditional malware analysis and facilitate the extraction of features needed for classification,
even for malware that uses concealment and avoidance techniques. Moreover, it is necessary to
investigate new features and classification techniques for malware classification.

This study aimed to investigate the possibility of classifying malware using the usage patterns of
system resources, such as CPU, memory, and I/O, that are usually used in performance characteristics
analysis and the tuning of executable programs. We proposed a behavioral performance visualization
method that visualizes the unique characteristics of malware by selecting the metrics to be evaluated
and extracting the usage patterns of the system resources as a time series. Furthermore, we evaluated
the classification performance using a CNN for the visualization results of ransomware. The obtained
results were quite good, confirming its suitability for malware classification and Al techniques.
These findings are significant and demonstrate the suitability of malware classification, even when
considering the limitation of dynamic analysis—since usage patterns of the system resources are a type
of dynamic characteristic—and the limitation that the set of malware samples used in the experiment
was small and only consisted of ransomware. Furthermore, we designed and implemented a framework
that performs the entire process—f{rom data extraction to behavioral performance visualization and
classification performance measurement—that is expected to help related studies in the future.

In future work, because the malware samples were limited to ransomware in this study, we should
further evaluate the malware classification performance by expanding the samples to include benign
programs and different types of malware. Further, we plan to research data processing methods (i.e.,
various methods for analyzing and interpreting time series data) and additional visualization methods.
Finally, we plan to conduct a study to determine the optimal classification technology by applying the
results of the behavioral performance visualization method proposed in this paper to various machine
learning and deep learning techniques.
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