
Future Generation Computer Systems 137 (2022) 219–233

a

b

(

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Cloud-BlackBox: Toward practical recording and tracking of VM
swarms formultifaceted cloud inspection
Sang-Hoon Choi a, Ki-Woong Park b,∗

SysCore Lab, Sejong University, Seoul 05006, South Korea
Department of Information Security, and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, South Korea

a r t i c l e i n f o

Article history:
Received 31 December 2021
Received in revised form 20 May 2022
Accepted 10 July 2022
Available online 14 July 2022

Keywords:
Cloud computing
Hypervisor
Virtual machine
VM swarms
System inspection
Memory snapshot

a b s t r a c t

Given the widening scope of the utilization and application of cloud computing services from general
to mission-critical systems such as strategic military, financial, and the information systems of
governmental agencies, the need for the development of improved methods to ensure the stability and
security of cloud data and services is being increasingly emphasized. Various approaches have been
developed to improve the security and stability of cloud infrastructure. In particular, the continuous
inspection of the memory of Virtual Machine (VM) instances in the cloud platform has been an
important factor in identifying the causes of security incidents related to zero-day vulnerabilities
and critical system faults in cloud infrastructure. However, despite numerous studies in the field
of continuous memory inspection, it is difficult to find a practical solution that is deployable in
commercial-off-the-shelf cloud platforms. For instance, continuous memory snapshots generally cause
various problems such as increased VM downtime occurrences, user-obstructive latency for memory
snapshots, VM performance degradation, and massive data generation. To alleviate these limitations,
we propose Cloud-BlackBox, which enables the recording of the memory of VM swarms running on
cloud platforms that require a very high level of stability and security, and facilitates the flexible
analysis of the recorded memory on a large-scale. A VM swarm refers to an environment in which
multiple VMs are run in parallel. The proposed Cloud-BlackBox method provides the following benefits.
First, by clustering VM swarm kernel memory, the amount of computation required to capture memory
snapshots and the size of the generated snapshot images are minimized. Further, we propose a
mechanism to merge kernel memory by rapidly identifying the homogeneity of the memory layout
through analysis of the underlying base image and introspection of the running VM. The application
of the proposed mechanism led to a storage reduction by a factor of 12.85. Second, a cognitive-scale
bitmap was designed to track changes in the memory of VM swarms. The cognitive-scale bitmap is a
mechanism that can dynamically manage the tracking of memory change information by recognizing
the memory usage patterns of component VMs. With the designed cognitive-scale bitmap, the time
required for the collection of a memory snapshot was reduced by more than 14.85 times, and the
VM input/output (I/O) performance degradation was reduced by 50%. Third, a synchronized accessible
memory interchange (SAMI) mechanism is proposed to facilitate the agile in-depth analysis of large-
scale memory resources. Cloud-BlackBox tracks and records memory change information. Therefore,
a procedure for restoring the recorded memory to a raw-memory analyzable form is required to
analyze the recorded memory. The SAMI mechanism assists the analyst in ensuring consistent memory
restoration performance when arbitrarily selecting recorded memory. Furthermore, SAMI is useful for
reducing the scope of analysis without memory restoration simply by analyzing recorded metadata.
Consequently, the revised schemes inside Cloud-BlackBox have several applications in various fields,
such as advanced detection of malicious activities, service error recovery, malware analysis, and
antivirus functions. In addition, the proposed approach has been implemented on a campus-wide cloud
computing service called SysCore-Cloud.

© 2022 Published by Elsevier B.V.
∗ Corresponding author.
E-mail addresses: csh0052@gmail.com (S.-H. Choi), woongbak@sejong.ac.kr

K.-W. Park).
ttps://doi.org/10.1016/j.future.2022.07.002
167-739X/© 2022 Published by Elsevier B.V.
1. Introduction

In recent years, cloud computing infrastructure has devel-
oped through a growth phase into a mature implementation

https://doi.org/10.1016/j.future.2022.07.002
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.07.002&domain=pdf
mailto:csh0052@gmail.com
mailto:woongbak@sejong.ac.kr
https://doi.org/10.1016/j.future.2022.07.002


S.-H. Choi and K.-W. Park Future Generation Computer Systems 137 (2022) 219–233

p
c
t
i
f
6
n
t
a
s

s
a
u
a
c
t
s
a
i
h
O
i
m
I
t
R
m
a
c
f
t
t
s
a
c
m
k
i
b
a
t
i
a
t
r

t
a
s
t
s
a
s
s
s
o
h
a
m
d
f
O
s
r
c

hase [1–3]. The evidence for such development and use of cloud
omputing can be found in the Joint Enterprise Defense Infras-
ructure of the United States Department of Defense, as well as
n other mission-critical infrastructure such as financial and in-
ormation technology systems used by government agencies [4–
]. These types of mission-critical infrastructure are highly vul-
erable to loss or theft of data and associated aftereffects in
he event of cyber incidents such as service errors or malicious
ttacks, Thus, preparation of adequate countermeasures against
uch cyber incidents is imperative [7–9].
Various approaches are under development to improve the

tability and security of cloud services. Specifically, considerable
ttention has been focused on the investigation of methods to
tilize the system memory of VMs as a means to identify and
ddress the causes of security accidents and service errors in
loud platforms. VM introspection provides a deep dive view of
he Operating System (OS) that monitors transparently factors
uch as process, kernel driver, active network, registry, and user
ctivities [10,11]. In the case of cloud infrastructure, memory
ntrospection of all running services can be conducted at the
ost OS level without having to install an agent in each system.
wing to this benefit, memory inspection technology in virtual-
zation environments has been applied in the field of forensics,
alware analysis, antivirus, and service error recovery [12–15].

n particular, advanced persistent threats (APTs) such as Opera-
ion Cobalt Kitty, Ammyy Admin, and advanced attacks such as
amnit, Emotet, and Ursnif are difficult to detect unless system
emory is monitored [16–20]. To defend against such advanced
ttacks, there has been attempts to utilize memory analysis on
loud platforms as well. For instance, Microsoft Azure supports
ileless attack detection on Windows systems; this feature scans
he memory of all processes for evidence of fileless toolkits,
echniques, and behaviors [21]. Memory forensics, to enable re-
ponses to the latest malicious code injections and advanced
ttacks, is gaining attention from both academia and commer-
ial users, and steadily evolving [22–24]. However, short-term
emory analysis based solutions have a limitation in that only
nown attacks can be detected. Responding to various security
ssues is with short-term memory analysis alone is challenging
ecause system memory has the characteristics of being volatile
nd constantly changing [25,26]. Therefore, it is difficult to have
he timing of the memory analysis coincide with security threat
ncidents and find meaningful data with only short-term memory
nalysis [27,28]. Consequently, it is necessary to respond to po-
ential threats through long-term memory archives and analysis,
ather than at the level of real-time memory scans.

Unfortunately, long-term memory snapshots incur computa-
ional overheads that lead to deterioration of VM performance
nd occurrence of VM downtime from the standpoint of the
ervice user. To adopt continuous memory acquisition/analysis
echniques in a cloud computing infrastructure running a large-
cale of VMs, the following three problems must be addressed
nd resolved. First, the storage space required for memory acqui-
ition must be efficiently managed. Although system memory is a
maller than non-volatile memory, in the case of the cumulative
torage of memory over an extended period, a massive amount
f storage space is required. For example, when 4 GB of memory
as been cumulatively acquired for 1 h at 1-second intervals,
pproximately 14 TB of data is generated. This means long-term
emory collection in VM swarms generates massive amounts of
ata. Second, VM downtime and compromised VM system per-
ormance due to memory acquisition overhead must be reduced.
n cloud computing platforms, VM memory snapshots incur sub-
tantial computational overhead. According to the experimental
esults obtained in this study, a time of 9.3 s was required to

ollect 4 GB of memory snapshot in a VM swarm. VM downtime

220
ensued for approximately 9 s as well. Thus, when memory is ac-
quired from VM swarms concurrently using extant methods, the
computational overhead causes system operation inability. Third,
an explosive increase in the number of analysis targets presents
further issues. Even if snapshots of the cumulatively acquired
memory of VM swarms are successfully taken, it is difficult to
directly use the acquired memory for identifying the cause of
security incidents. This is because meaningful information can
only be identified through memory analysis. Accordingly, archiv-
ing methods specialized for large-scale memory-set analysis are
required.

In this study, we propose an approach called Cloud-BlackBox
that enables computationally efficient recording, cognitive mem-
ory tracking, and analysis of the memory of VMs in large-scale
cloud computing environments. A conceptual diagram of the
proposed method is shown in Fig. 1. This study presents the
following solutions upon an analysis of the three problems de-
scribed above that may occur for memory recording on a cloud
platform.

• Minimization of wasted storage space in VM swarms:
First, the kernel memory regions are grouped into shared
memory regions by using the image information of run-
ning VMs. Collection data are minimized by exploiting the
fact that similar base images are used in a cloud environ-
ment [29]. With this characteristic of cloud platforms, we
propose a shared memory merging mechanism for VMs that
reduces the target memory size by grouping VMs using the
same OS images and managing redundant memory regions
as shared pages. In addition, the proposed shared mem-
ory merging mechanism has a feature that quickly scans
the memory of VM swarms based on the similarity of the
memory layout for each OS. Our evaluation results show
that the memory merging mechanism reduces the storage
space generated during memory recording by a factor of
over 12.85.
• Minimization of memory acquisition overhead through a

cognitive-scale bitmap: Second, cognitive memory tracking
enables efficient tracking of the memory information of VM
swarms running on cloud platforms. We found that memory
acquisition at 1000 ms intervals for a single native VM
with 4 GB RAM allocated results in approximately 96.7%
redundant data. This means only a part of the memory
region is changing on running VMs. Based on these charac-
teristics, we introduce a memory delta tracking mechanism
for VMs, which tracks the changing page information in all
memory regions used by VMs. Only the changing memory
is tracked and cached in the proposed approach, and the
cached data are copied to disk, thereby minimizing disk
I/O. Our evaluation results show that memory acquisition
time caused by blocking is reduced by 14.85 times, and the
VM downtime problem during memory acquisition occurs
only initially when the service starts, ensuring seamless
operation thereafter.
• Maximizing large-scale memory inspection efficiency via

a SAMI mechanism: Third, the target memory is encoded
for efficient analysis and stored on relatively durable media
using the tracked memory information and shared mem-
ory merger information. In a cloud environment, because
many VM memory images are recorded to improve secu-
rity and stability, the amount of memory to be analyzed
increases exponentially. In our research, we propose a mem-
ory archival mechanism called the synchronized accessible
memory interchange (SAMI), which is able to efficiently
analyze large-scale VM memory in consideration of the in-

tended goals, purpose, and characteristics of the memory



S.-H. Choi and K.-W. Park Future Generation Computer Systems 137 (2022) 219–233

c

t
p
p
I
a
o

Fig. 1. Concept overview of Cloud-BlackBox.
analyzer. The SAMI mechanism utilizes data created through
memory tracking for memory-affecting information such as
processes, libraries, and networks, for correlation analysis
of the target VM swarm. SAMI metadata provides a mem-
ory analyst with a macroscopic view of memory changes.
The memory analyst can narrow the scope of the memory
analysis subject by analyzing metadata without a mem-
ory restoration procedure. The mechanism uses checkpoints
and quickly restores the recorded partial memory data to
a complete memory state suitable for analysis. In addition,
memory recorded through the SAMI mechanism provides
scalability that can be analyzed using the existing memory
forensic frameworks [30].

Contributions. In summary, this study makes the following
ontributions:

• A shared memory merging mechanism is proposed through
analysis of the memory layout similarity of target VM swam.
• VM memory delta-tracking via a cognitive-scale bitmap is

presented.
• A specialized memory archival and encoding design is also

presented.

The remainder of this paper is organized as follows. Sec-
ion 2 discusses the motivation for proposing Cloud-BlackBox and
resents related works. Section 3 describes the three mechanisms
roposed for VM memory recording in a cloud environment.
n Section 4, the performance of the proposed Cloud-BlackBox
pproach is evaluated. Finally, Section 5 presents the conclusions

f the present work and its implications for future research.

221
2. Related works

This section describes the research motivation for focusing on
memory recording and analysis as a means to improve the level of
security and safety of cloud services and overcome the limitations
of related prior research.

2.1. Improving system security with memory introspection

System memory is a space dedicated to storage of the active
data used in an OS. It is well-known that information systems
security researchers have long been interested in OS memory.
There are two main reasons for their interest.

First, memory is the most important factor in detecting ma-
licious activities because most attack techniques target memory
corruption as an attack point. That is, the mechanism for most
malicious user system-attacks is a process of corrupting or load-
ing malicious code into memory. Thus, if system memory can
be monitored well, most of attack techniques can be blocked
or detected. In particular, in virtual environments such as the
cloud, there are no restrictions on access to memory, and ac-
tive researches on improving security using memory have been
conducted. The following prior studies exemplify this. VM in-
trospection (VMI), as transparent introspection of VM memory
in a virtual environment, was first proposed by Garfinkel and
Rosenblum in 2003 [31]. With VMI, transparent introspection
of the state, events, and memory of a VM is possible without
having to install an agent inside the VM. Methods proposed

in research utilizing the concept of VMI include Libvmi [32],



S.-H. Choi and K.-W. Park Future Generation Computer Systems 137 (2022) 219–233

E
w
v
W
p
o
s
p
s
h
i
m
e
c
b
a
m
a
r
s
f
p
h
V
p
i
w
s
s
l
c
v
t
t
p
i
e
r
h
s

a
a
f
c
t
o
c
r
f
e
s
a
m
t
T
b
V
V
p
b
p
p
o
V
f

ther [12], DRAKVUF [15], and Modchecker [33]. Libvmi is a tool
ith a library for monitoring the states of VMs in hypervisor en-
ironments such as Xen and kernel-based virtual machine (KVM).
ith Libvmi, transparent introspection is possible on the files,
rocess lists, system call tables, DLL lists, and memory buffers
f running VMs. LiveWire is a VMI-based intrusion detection
ystem, that detects malicious activities inside a VM based on this
olicy. LiveWire detects malicious activities by using signature
canning or integrity scanning of executable files. Ether uses a
ardware-assisted virtualization method in the field of memory
nspection, and methods have been proposed for the transparent
onitoring of VMs in a host OS. In particular, it is specialized in
xtracting runtime activity information of obfuscated malicious
ode in a virtual environment. DRAKVUF is a product of Ether-
ased research that can extract the function call information of
n OS. With DRAKVUF, parallel VM introspection is possible by
inimizing the resource requirements for performing VMI. In
ddition, through kernel function tracing, it can be used to detect
ootkits hiding malicious payloads, as well as the conventional
ystem call tracking Modchecker, which is a VMI-based solution
or malicious activity detection designed for use on actual cloud
latforms, It can detect code modification attacks such as inline
ooking and DLL hooking by comparing the kernel modules of
M swarms. Mishra et al. proposed VMshiled as a method to
rotect virtual domains on cloud platforms. VMshiled uses VM
ntrospection as a means to detect covert activities taking place
ith malicious code [24]. Furthermore, in recent years, several
tudies have been conducted with the objective of improving the
ecurity of a virtual environment by combining VMI with machine
earning. Win et al. [34]. reported in their research that malicious
odes and rootkits can be identified in Linux VMs via support
ector machines. VMGuard [35]. uses random forest to perform
raining on known malicious code and proposed a solution able
o detect known malicious codes loaded into VMs. Bozkir et al.
roposed a method to convert dumped memory into visualized
mages to detect the latest malware that applied obfuscation or
ncryption [23]. As can be seen from these examples of previous
esearch, owing to the versatile applicability of memory, research
as been continuously conducted to enhance the security and
tability of computational systems by exploiting memory.
Second, important evidence remains in the memory of any

bnormal event. Traditional system forensics have focused on the
nalysis of nonvolatile data, such as system-logging and storage
orensics [36,37]. This is because non-volatile data are easier to
ollect than volatile data. However, the important evidence in
he investigation of the causes of cyber accidents or incidents is
ften stored in volatile memory storage. Nevertheless, memory
an be easily corrupted by a malicious user or cleared through a
eboot, rendering the data challenging to obtain useful evidence
rom. Despite these challenges, because memory acquisition is
asier in virtual environments than in general systems, various
tudies on memory forensics have been conducted [10,38,39]. As
representative tool for collecting memory in cloud environ-
ents, LIME is a module that is loaded into the Linux kernel

o enable the acquisition of full memory locally or remotely via
CP. In hypervisor environments where the host OS is Linux-
ased, such as QEMU and KVM, LIME can be used to acquire
M memory. Representative studies on memory forensics include
olatility and Rekall. Volatility is a memory forensic framework
resented at the 2007 BlackHat DC Convention. Volatility can
e used in Linux, Windows, and OS X, and provides various
lug-ins. In addition, it allows the capturing of snapshots of the
rocess memory through its own plugin. Rekall is another type
f memory forensic framework developed by Google based on
olatility. Rekall is characterized by providing various memory

orensics functions, such as collection, analysis, and reporting.

222
Various studies on security using the above memory forensic
tools are still being published [22,40]. Furthermore, studies that
incorporate artificial intelligence (AI) technology into memory
analysis research are also being published. Recently, research on
DeepMem was also published; it allows quick and efficient anal-
ysis of the kernel structure of dumped memory through graph
neural network model training [41].

2.2. Approach to accelerate memory snapshots

The acceleration and optimization of memory snapshot oper-
ations are imperative for efficient memory recording. The most
relevant research on memory snapshot acceleration concerns VM
snapshot. In the VM snapshot process, the states of the VM at a
specific point in time are copied and saved in storage. The internal
components of a VM snapshot include disk, memory, CPU, and
devices. Various approaches have been used to accelerate VM
snapshots in the area of service migration. Methods of recording
VM snapshots can be broadly divided into stop-copy and pre-
copy mechanisms [42,43]. Stop-copy mechanisms save the state
of VMs while the operation of the VM is suspended and resumed
thereafter. This method is easier to implement, but VM downtime
occurs during the process, and it thus cannot be used in a real
cloud service.

The pre-copy mechanism is used in live migrations, and is
designed to minimize the downtime that occurs in the stop-copy
mechanism [44,45]. In the process of the pre-copy mechanism,
the changed page information, called dirty pages, is repeatedly
transmitted while maintaining the operational state of the VM.
When the memory falls below a certain threshold, the operation
of the VM is temporarily suspended, and the remaining mem-
ory information is transmitted. That is, large memory resources
are divided for transmission, and only part of the memory is
finally transmitted, minimizing the VM downtime. However, de-
pending on the workload, downtime can be prolonged, and in
the worst case, migration can fail. There have been various ap-
proaches to address this challenge, such as memory compression,
memory redundancy removal, and zero-page removal [46,47]. In
addition, studies have been recently conducted on continuous
snapshots [48]. Klemperer used a shared memory snapshot driver
and page tracking mechanism to accelerate the memory snapshot
process, enabling concurrent memory snapshots. In iConsnap, a
memory snapshot operation is accelerated using a page tracking
method, and an asynchronous buffer was used to minimize the
I/O overhead generated during the memory snapshot process.

2.3. Limitations of memory introspection in cloud environment

The above-mentioned results have been obtained through the
dedication and interest of several researchers in various fields to
improve information security using memory access trace analysis.
However, in commercial cloud environments, these various tools
have not been utilized. This may be attributed to three key
factors.

First, there are possibilities of system performance compro-
mising problems owing to memory acquisition overhead. A mem-
ory acquisition operation requires iterative memory read/write
operations, which inevitably affect VM performance. However,
for in-depth memory inspection, memory acquisition must be
performed. The experimental results of this study showed that
it takes approximately 9.3 s to acquire 4 GB of memory using
Libvirt (open-source platform virtualization management tool) in
a KVM-based virtual environment. In addition, the memory snap-
shot operation suspends the VM’s operations until the memory
snapshot process is completed to maintain the consistency of the

memory; thus, for each memory acquisition, a running VM must



S.-H. Choi and K.-W. Park Future Generation Computer Systems 137 (2022) 219–233

b
o
a
m
T
m
t
o
d
w

u
a
m
o
o
a
w
d
c
o
r
r
d
c
i
l
i
p
f
t
r
i
c
m
a
T
r
b
s
o
w
d
a
c
t
a

g
m
a
a
a
a
T
t
t
t
i
m
p
u
i
t
f

c
m

m
V
k
d
c

m
m
t
s
s
i
l
b
f
m
m
r

s
d
m
a
b

a

e suspended for over 9 s. That is, the use of memory acquisition
perations potentially entails the violation of users’ service-level
greements, making it practically challenging to apply in com-
ercially available commercial-off-the-shelf product platforms.
o resolve this limitation, Klemperer’s iConsnap research mini-
ized VM downtime and memory snapshot duration by using

he dirty-page tracking technique. However, the write permission
f all the memory regions of the VM is forcibly disabled for the
irty-page tracking process, resulting in compromised memory
rite operation performance.
The second reason involves the problem of storage space taken

p by memory acquisition. A single memory acquisition takes up
relatively small storage space. However, in terms of cumulative
emory recording over a prolonged period, a massive amount
f storage space is required. For instance, approximately 14 TB
f data is generated when 4 GB of memory is acquired for 1 h
t 1-s intervals. That is, memory recording in a cloud platform
ith running VM swarms implies the generation of considerable
ata. The management of these data is challenging, and storage
osts increase exponentially over time. However, the acquisition
f meaningful data from memory analysis in a cloud platform
equires recording memory over long periods. In the iConsnap
esearch, storage costs were minimized by using compression and
eleting past data. Paradoxically, minimizing storage cost through
ompression actually increases the time required for memory
nspection, while deleting past data carries the risk of potentially
osing useful data. Avoidance of data loss is considered crucial
n recording and managing memory. Memory acquired over a
rolonged period without loss can be used as decisive evidence
or detecting advanced attack techniques such as APTs or inves-
igating the cause after the occurrence of an abnormal event. By
ecording information on the activities of malicious users exploit-
ng cloud services for malicious purposes, memory recordings
an be used as legal evidence when violations occur. In addition,
emory recording can be used as a generic technology in various
reas, such as malicious code analysis and antivirus functions.
he delta snapshot technique is used in various virtualization-
elated products as a means of minimizing storage space wasted
y snapshots [49–51]. However, in order to perform the delta
napshot, operations on a virtual machine need to be stopped,
r the performance of the virtual machine is severely degraded
hile the snapshot is performed. These problems occur because
elta snapshots are designed for efficient snapshot management
nd data integrity. In other words, the delta snapshot technique
an minimize the storage wasted by snapshots but is limited in
hat, while the operation is performed, it is difficult to ensure the
vailability of VMs on cloud platforms.
The third reason is the sharp increase in the analysis tar-

et owing to the continuous memory snapshots. Widely used
emory inspection frameworks such as Volatility and Rekall
re designed with a focus on analyzing a single memory im-
ge. However, to use memory inspection to improve stability
nd security in a cloud computing environment, the memory of
ll running VMs must be collectively and periodically acquired.
hat is, recording the memory of VM swarms indicates that
he memory to be analyzed increases exponentially. Therefore,
he use of current memory frameworks remains inefficient for
he analysis of large amounts of recorded memory. Moreover,
t is challenging to derive meaningful analytical results when
emory is repeatedly acquired without considering the intention,
urpose, and characteristics of memory inspection. Therefore, to
tilize memory as an element for improving security and stability
n an environment with an operational VM swarm, it is necessary
o implement an archiving and analysis mechanism specialized
or large-scale memory inspection.
 m

223
Fig. 2. Structure and flow of operations in Cloud-BlackBox.

3. Cloud-BlackBox internals

This section describes Cloud-BlackBox, which enables com-
putationally efficient recording and analysis of memory in a
cloud computing environment. Cloud-BlackBox is capable of time-
efficient recording of VM swarms’ memory and minimizes the
storage costs generated by memory acquisition. In addition, it
is characterized by an efficient in-depth analysis of acquired
large-scale memory datasets.

3.1. Overview

As shown in Fig. 2, Cloud-BlackBox consists of four major
omponents: group memory manager, page tracking manager,
emory I/O scheduler, and Memory Dump (MD) manager.
The group memory manager performs cross-validation of the

emory layout of VMs running on a physical machine, groups
Ms using the same or similar kernels, and merges duplicate
ernel memory regions. The group memory manager module is
esigned to regroup and merge kernel memory when a VM is
reated or removed from a physical machine.
The page tracking manager is a mechanism for tracking and

anaging the changing memory of VMs. This module tracks the
emory change information of the shared page merged through

he group memory manager and private page, which is an un-
hared, personal memory region of a VM. We propose a cognitive-
cale bitmap as a means to efficiently track memory change
nformation in VMs by actively utilizing the temporal/spatial
ocality properties of memory organization. The cognitive-scale
itmap consists of a micro bitmap, which tracks VM memory
rom a micro perspective, and a macro bitmap, which tracks VM
emory from a macro perspective. In addition, the page tracking
anager is executed at a specific interval specified by a user or

equest event.
The memory I/O scheduler is a mechanism for the efficient

torage of volatile memory in a non-volatile region. The actual
ata of the memory page tracked through the page tracking
anager are copied to the asynchronous access memory buffer,
nd the copied memory data are flushed to the storage by a
ackground thread.
The MD manager is a mechanism for efficient management

nd analysis of the acquired memory. In this study, an acquired

emory file is referred to as an MD. Because Cloud-BlackBox



S.-H. Choi and K.-W. Park Future Generation Computer Systems 137 (2022) 219–233

t
f
a
M
l
b
a
s
r

3

s
c
t
i
r
t
m

m
s
b
o
s
f
f
t

(
C
i
m
s
a
c
b
b
u
T
i
i
a
b
m
i
t
c
m
a
m
f
d
f
c
m
r
c
a
m
t

a
k
s

racks and records only memory that changes, rather than the
ull memory, a memory restoration procedure is necessary to
cquire meaningful data through a memory inspection tool. The
D manager ensures random access memory restoration by uti-

izing checkpoints, and tracked memory information is utilized
y the reach frame to create metadata, enabling the efficient
nalysis of large-scale memory. In addition, it provides compres-
ion of frames before checkpoints without loss according to user
equirements for storage cost reduction.

.2. Shared memory merge for efficient memory collection

The factor incurring the largest overhead in VM memory snap-
hots is the operation of repeatedly cloning the memory. The
omputational complexity of cloned memory is proportional to
he allocated memory size. In general, VM memory of a given size
n GB units is allocated, which requires numerous memory explo-
ation and recursive cloning operations in memory snapshots. In
he case of a large-scale cloud platform running VM swarms, the
emory snapshot operation generates even more overhead.
The key feature of the proposed Cloud-BlackBox is memory

erging of VM swarms to minimize the range of memory for
napshots and optimize the computational overhead generated
y memory snapshots. Our experimental results indicate that
ver 30% of memory is redundant with VM swarms using the
ame kernel. This feature can be best exploited in a cloud plat-
orm environment with a VM swarm running. Most cloud plat-
orms provide base images to users, therefore the types of kernels
hat can run in cloud platform environments are limited.

According to the data published by Amazon Web Services
AWS), it was observed that 80% of Amazon Elastic Compute
loud (EC2) users primarily run Linux-based OSs [29]. This means
f the memory of VMs using the same kernel is grouped and
erged to share memory, the memory range for exploration and
napshot can be reduced. However, when a user’s private data
re uploaded to the shared memory region to be merged, it may
ause a security problem in that the memory of other VMs can
e accessed. Therefore, the memory dedicated to merging must
e in the kernel memory region that cannot be accessed at the
ser level and a space where private data cannot be uploaded.
his type of safe memory region can be specified through memory
nspection and repeated workload processing for each kernel that
s run in a cloud environment. The kernel/user memory regions
re not distinguished during the process of merging the memory,
ut the kernel memory region can be predicted by analyzing the
erged memory. Thus, because immediate detection is possible

n the kernel memory region in the case of significant changes,
his approach has the advantage of being able to detect kernel
orruption attacks. In summary, the group memory manager is a
echanism designed to minimize redundant memory exploration
nd cloning operations through memory merging. We perform
emory merging on a page-by-page basis to increase the ef-

ectiveness of memory merging of VMs. Various studies have
emonstrated that merging memory at the page level is very ef-
ective [52,53]. However, as a downside, a page-level redundancy
heck requires a significant amount of time. The global memory
anager provides two methods that may shorten the page-level

edundancy check time. We reduced the scope of redundancy
heck through the method of grouping VMs with similar kernels
nd shortened the page-level redundancy check time through the
ethod of hashing adjacent pages with high merge rates to verify

hem all at once.
The group memory manager follows four procedural steps,

s shown in Fig. 3. The first step is VM kernel checking. The
ernel version used by the VM can be identified by checking the
pecific kernel memory of the VM. In addition, the base image
224
Fig. 3. Process of classifying a virtual machine’s memory into shared and private
pages.

of the VM can be checked using the virtual machine manager
(VMM). The second step is VM grouping. VMs using the same
kernel have the same kernel memory specifications. Therefore,
when such VMs are grouped together, stability is improved when
memory is merged, and exploration time is minimized. The third
step consists of shared memory exploration. The initial page
redundancy check is performed on a page-by-page basis within
the group. The redundancy check also includes pages filled with
zeros. The reason we include zero-pages is that only a few areas
of the memory are used in a VM due to the temporal/spatial
locality characteristics of memory organization. In the case of
VMs performing memory-intensive workloads, zero-pages may
not exist. We separately select pages that are more likely to be
merged as the memory merge process progresses. In this study,
rather than considering the method of efficiently selecting pages
with a high probability of being merged, we assume that pages
that are cloned more than five times in different VMs are likely
to be merged. We hash two or more adjacent pages among
the selected pages and manage them as a table. The reason for
grouping and hashing only adjacent pages is that these pages
are deemed to be correlated. Subsequently, a VM with no page
redundancy check performed within the group or a hash table
created with a new VM is inspected preferentially. We use the
Rabin–Karp algorithm as a method to verify the redundancy of
the hashed pages. Since the Rabin–Karp algorithm is specialized
in the hash multi-pattern search, it is very effective when ver-
ifying the hash value of memory that reflects spatial locality
characteristics [54,55]. When pages with a high merge rate are
verified in hash units, the merge rate is higher relative to the
verification computation, and the effect of verifying large-scale
pages at once can be achieved. Memory merging is the final
step. Shared memory merging utilizes some of the features of
the Kernel Samepage Merging (KSM) function provided by Linux
kernel 2.6.32 [52]. Specifically, we implement Group Samepage
Merging (GSM) by modifying KSM. The GSM function merges
memory by pointing the pages selected in the page redundancy
check to a single page, similar to KSM. Subsequently, the merged
page is managed through copy-on-write (COW) to map the VM
page of an event subject to a new physical page as soon as the



S.-H. Choi and K.-W. Park Future Generation Computer Systems 137 (2022) 219–233

w
t
t
m
s
t
i
f
c
f

3

e
B

Fig. 4. Workflow of conventional continuous memory dump and memory recording.
n
p
i
s
V
m
⃝

Q
s
i

f
t
t
t
t
r
d
t
f
d
m

rite operation occurs. Additionally, among various functions of
he KSM function, GSM utilizes a system function that can specify
he range of memory merging and the red–black tree used for
emory redundancy checks. The GSM we have designed captures
napshots of the shared page by calling the memory recorder and
he memory I/O scheduler when memory corruption is detected
n a user-specified period or a shared memory region. The reason
or this design is to shorten the memory restoration time when
onverting partially recorded memory into the memory required
or analysis.

.3. Memory tracking mechanism for memory recording

VM memory recording requires that memory snapshot op-
rations are performed iteratively. As described above, Cloud-
lackBox performs the first optimization by merging the memory

to be explored during the memory snapshot operation through
the MD manager. However, VM memory snapshots still generate
a large computational overhead. The most pronounced limitation
of the VM memory snapshot operation is that the running of
the VM is temporarily suspended during the snapshot process,
and the duration of the memory snapshot is substantial. From
Fig. 4, it is clear that the operation of the VM is suspended for the
memory snapshot, and it resumes after the memory snapshots
are recorded. That is, the VM suspension time is proportional to
the memory snapshot duration. According to our experimental
results, it takes approximately 9.3 s to acquire 4 GB of VM mem-
ory by QEMU. Thus, cloud service for users is disrupted for 9.3 s
by a single memory snapshot. This situation is even worse when

performing continuous iterative memory snapshot operations. I

225
Moreover, because the memory snapshot operations share the
resources of the host OS with the VM, competition occurs in the
use of resources. This compromises the performance of other VMs
running on the same host machine. In other words, memory snap-
shot operations are considered inapplicable to cloud platforms
because they require the violation of service-level agreements.

Cloud-BlackBox performs an in-depth analysis of the bottle-
eck points that cause delays in the existing memory snapshot
rocess to address the above limitation. The process of perform-
ng a memory snapshot is shown in Fig. 4(a). 1⃝ When a VM
napshot request is received, the VM is stopped. 2⃝ When the
M is stopped, it calls the memory snapshot module. 3⃝ The
emory snapshot module calls pmemsave of QEMU-Protocol.

4 – 5⃝ The memory snapshot module then calls pmemsave of
EMU-Protocol to copy the VM’s memory to the host non-volatile
torage by referring to the mapping table. When the copy process
s complete, the virtual machine is resumed.

The memory acquisition operation is delayed owing to the
ollowing three factors. The process of exploring the VM page is
he first reason. To create the VM memory in the storage as a file,
he physical memory region mapped to the allocated page needs
o be explored. Cloud-BlackBox reduces the size of the memory
hat needs to be explored through the MD manager. The second
eason for the delay is the page-read operation. To write the
ata stored in the memory to the storage, a read operation for
he memory offset is required. However, because data are copied
rom memory to memory, there is no substantial performance
elay. The third reason for the delay is the process of copying
emory to storage. According to our experimental results, the file
/O operation accounts for more than 93% of the entire memory



S.-H. Choi and K.-W. Park Future Generation Computer Systems 137 (2022) 219–233

a
n
a
a
o
r
i
c
i
a
b
p
t
t

a
m

W

Fig. 5. Proposed process to efficiently track and record the VM memory.
cquisition process. Cloud-BlackBox resolves the file I/O bottle-
eck points through page tracking using a cognitive-scale bitmap
nd an in-memory-based asynchronous buffer. Additionally, the
synchronous buffer is designed to address the potential issue
f concurrent memory operations in the process of tracking and
ecording VM memory. We designed the asynchronous buffer
n the circular queue method to sequentially record memory
hange information, event processing time, and memory offset
nformation to resolve the memory integrity problems that can
rise from memory concurrency. Such a design can minimize
ottlenecks by asynchronously handling dirty-page events taking
lace in parallel while addressing memory integrity problems
hat may occur during memory restoration by recording the event
ime/offset information together.

The memory recording process of Cloud-BlackBox is illustrated
t point (b) in Fig. 4. In contrast to existing memory snapshot
ethods, the snapshot process is as follows.
When a VM snapshot request is received, the VM is stopped.
hen the VM is stopped, it calls the Cloud-BlackBox Snapshot

module. The Cloud-BlackBox Snapshot module then calls the VM
Write Protector. 1⃝ When a VM snapshot request is received,
the VM is stopped. 2⃝ When the VM is stopped, it calls the
Cloud-BlackBox snapshot module. 3⃝ The Cloud-BlackBox Snapshot
module then calls the VM Write Protector. 4⃝ The VM Write
Protector protects the write operation of the VM memory. 5⃝
Referring to the mapping table, memcpy copies the VM’s memory
to the Asynchronous Buffer. 6⃝ The VM is then resumed. 7⃝ - 8⃝ In
the background, the asynchronous buffer is flushed to the host’s
non-volatile and the contents of the page written in the storage.
9⃝– 10⃝ If a memory write operation is performed in the VM after
the first snapshot, a Page Fault is triggered. 11⃝When a Page Fault
occurs, the Dirty-Page Tracker marks the Cognitive Bitmap and
memcpy the changed memory information in the Asynchronous
Buffer. 12⃝ According to user definition, the asynchronous buffer
is flushed to the host’s non-volatile storage in the background. A
detailed look at the process follows below.

Cloud-BlackBox causes the VM suspension operation to run
on the first occasion the VM operation starts. This is called an
init dump. The init dump process includes a memory exploration
process and a read memory process, as in the existing snapshot
methods. However, it adds the target memory to be cloned for
storage in an in-memory-based asynchronous buffer. This process

serves as a means to resolve storage and memory bandwidth

226
issues. In init dump, a VM suspend time only occurs during
the memcpy operation. This design may reduce the VM suspend
time but additionally requires a free memory space identical to
the target VM memory size. Various live-migration techniques
such as pre-copy can be considered as an alternative to address
the problem of securing additional memory space for init dump
and minimizing the VM suspend time. However, because these
techniques are designed for a complete migration, snapshots can
be delayed indefinitely or fail depending on the VM workload.
Since Cloud-BlackBox cannot track memory until the snapshot
of the frozen memory of the VM is complete, it is important
to perform the snapshot of the frozen memory accurately and
quickly without failure.

A macro bitmap filled with zeros is created once the init
dump is complete. The macro bitmap manages VM pages in
large groups and performs writing when a specific memory is
altered. When the macro bitmap is created, operation of the
VM is resumed. In the background thread, the memory inserted
into the asynchronous buffer is created as a file during stor-
age. We subsequently refer to the first memory snapshot file as
MDr . Cloud-BlackBox can produce the same result as perform-
ing continuous snapshots simply by tracking and recording only
the memory that has changed since the init dump. The VM
suspension does not occur from the second memory snapshot,
and the memory snapshot operation is simplified. The page-fault
handler we use to track the dirty-page of a VM is problematic in
that it indirectly degrades the performance of the VM. We have
conducted VM memory forensics studies over the past few years
and found that the VM memory region exhibits strong spatial lo-
cality characteristics. Based on these characteristics, we designed
a cognitive-scale bitmap that can efficiently deploy the page-
fault handler according to the memory usage pattern of VMs. The
cognitive-scale bitmap consists of a micro bitmap, which tracks
VMmemory from a microscopic perspective, and a macro bitmap,
which tracks VM memory from a macroscopic perspective. The
micro bitmap provides write protection at the page level to track
memory change information of VMs in detail. The macro bitmap
provides write protection by grouping more than N pages for
regions with few memory changes. The macro bitmap does not
exist at the initial time of tracking the memory of a VM, but
is dynamically created as the memory usage pattern of the VM
is reflected over time. As a result, the macro bitmap reflects

the memory usage pattern of VMs, allowing the frequency of



S.-H. Choi and K.-W. Park Future Generation Computer Systems 137 (2022) 219–233

p
t
b
m
i

c
m
r
g
s
f
m
r
b
s
a
a
t
a
i
i
i
T
T
c
u
o
o
p
o
l
b

T

M
f

t
I
a
s
i
h
T
u
t
p
i
r
o
m
t
o
s
b
a
a

2

3
3
3
3
O

age-fault events to be standardized and effectively reducing
he number of page-fault handlers. The performance comparison
etween the bitmap generally used for dirty-page tracking in live
igration and our proposed cognitive-scale bitmap can be found

n Section 4.2.
The process of simplifying the snapshot operation using the

ognitive-scale bitmap is as follows. Through the local alteration
onitoring of the macro bitmap, a micro bitmap is created for

egions with frequent changes, and regions with little change are
rouped into macro bitmaps that can be managed on a large-
cale. When a memory snapshot operation request is received
rom the user or another module, the write permission of the
acro/micro bitmap region is removed. When a memory write

equest is received in the VM, a page fault occurs, and a dirty
it is marked on the macro/micro bitmap. After the duration
pecified by the user, the write protect permission is restored,
nd the contents of the page written in the macro/micro bitmap
re inserted into the asynchronous buffer. In the background,
he memory inserted into the asynchronous buffer is created
s a file in the storage, along with metadata containing offset
nformation. The reason why we store tracking time and offset
nformation together when recording the memory is to ensure the
ntegrity of memory data in the process of memory restoration.
he file created through the macro/micro bitmap is called MDp.
he macro bitmap has the disadvantage that all pages of the
orresponding region are stored even when only one page is
pdated. However, this disadvantage of large-scale page storage
f the micro bitmap can be offset since it is optimized based
n the memory usage pattern of the VM. Then, through iterative
rocesses, the micro bitmap performs increasingly more detailed
perations, whereas the macro bitmap performs operations for
arge areas, which leads to a gradual decrease in the number of
itmaps, thereby optimizing performance.
The detailed process for generating MDps is shown in Fig. 5.

heMDps process is as follows. 1⃝– 5⃝ Protects the write-protection
operation of the virtual machine while performing Init Snapshot.
6⃝ During the init snapshot process, MDr is created by the Mem-
ory I/O Scheduler. 7⃝– 8⃝ Whenever a Page-Fault is triggered,
it is marked on the Cognitive Bitmap, and data and location
information are updated in the asynchronous buffer. 9⃝When the
Dps generation condition is satisfied, the asynchronous buffer is

lushed to the host non-volatile by the memory I/O scheduler.
The detailed process is as follows. In the init dump process,

he entire memory region of the VM is collected using a memory
/O scheduler. Then, the memory snapshot uses a macro bitmap
nd a micro bitmap to generate MDps. The macro bitmap is a
pace for simple writing by introspection of the memory change
nformation in a large range, and VM snapshot performance is
ardly compromised owing to the write protection in this case.
he micro bitmap writes one bitmap by dividing it into page
nits. With a micro bitmap, write protection is required for de-
ailed memory tracking, which may result in some degradation of
erformance. However, this type of bitmap has a clear advantage
n that the precise memory state at the time of the snapshot
equest can be preserved. The generation of MDp is possible by
verlaying the micro bitmap onto the macro bitmap. When the
acro bitmap tracks pages on a large-scale and the micro bitmap

hrough which fine tracking of memory is possible in the unit
f pages are overlaid, the state of the VM at the time of the
napshot request can be written as a complete bitmap. The final
itmap created through the overlay process is processed by the
synchronous buffer using a memory I/O scheduler to create
file in the storage. The advantages of Cloud-BlackBox are as

follows. (1) Almost no suspension in the running of VMs occurs
apart from the first generation of MDr and (2) storage costs are

minimized. Write-Protect events that are generated repeatedly

227
during memory snapshots cause compromised VM performance,
The Cloud-BlackBox proposed in this study minimizes the call of
the write-protect event by using a cognitive-scale bitmap. The
process of generating MDr and MDp is outlined in Algorithm 1.

Algorithm 1 Memory tracking mechanism for memory recording
Algorithm
Input: Request to Memory Snapshot
1: VM Suspend← False
2: Init_Flag ← False
3: if Init_Flag = False then
4: VM Suspend← True
5: Create a Init Dump (MDr )
6: VM Suspend← False
7: Macro Bitmap← Clear
8: Init_Flag ← True
9: Create a Macro Bitmap

10: end if
11: while Macro BitmapMonitoring do
12: Create a Micro Bitmap
13: end while
14: for iteration = 1, 2, . . . do
15: if Snapshot then
16: Micro Bitmap← Clear
17: Macro Bitmap , Micro Bitmap ← PageWrite Protect :

Enable
18: end if
19: if ∆Page then
20: Macro Bitmap , Micro Bitmap← Dirty bit Mark
21: end if
22: if Process Time > Duration Time then
23: for MacroBitmap . . . , L do
4: Asynchronous Buffer ← Page[L],Metadata[L]

25: end for
26: for MicroBitmap . . . , T do
27: Asynchronous Buffer ← Page[T ],Metadata[T ]
28: end for
29: Macro Bitmap , Micro Bitmap ← PageWrite Protect :

Disable
0: Macro,Micro Bitmap← Clear
1: Create a MDp
2: end if
3: end for
utput: MDr∥MDp

Algorithm 2 Snapshot Recovery using Checkpoint Algorithm

Input: Select N
1: MDc ← Nearest Completed Snapshot Before N
2: MDr ← Snapshot in Complete State
3: MDp ← Snapshot in Incomplete Stat
4: Metadata← Offset of Snapshot Data
5: S ← N After MDc
6: for MDp = 1, 2, . . . ,N do
7: if N = S then
8: MDr ← MDc
9: end if

10: if S < N then
11: for all Metadata in Offset do
12: MDr ← MDc[Offset] δ MDp[Offset]
13: end for
14: end if
15: end for
Output: New MDr



S.-H. Choi and K.-W. Park Future Generation Computer Systems 137 (2022) 219–233

3
r

M

m

Fig. 6. Checkpoints to ensure memory resiliency.

.4. Memory management mechanism to optimize random access
estoration performance and storage cost

The memory recorded using Cloud-BlackBox consists of one
Dr and multiple MDps. For this type of structure, a memory

restoration process is required for the analysis of the VM memory
at a specific point in time. The memory restoration process is
illustrated in Fig. 6. The memory restoration process is performed
through the XOR operation of the initially created MDr and cu-
ulative MDp. However, with the accumulation of MDps, more

time is required for memory restoration. That is, the performance
of random access restore operations cannot be ensured. To ad-
dress the problem of ensuring random access memory restoration
performance, Cloud-BlackBox is designed to create a checkpoint
file called MDc , which is created when the cumulative size of
the accumulated MDps exceeds the size designated by the user.
The checkpoint file MDc is generated by the XOR operation of
the previous MDr or MDps created after MDc . With MDc , random
access performance can be ensured during memory restoration.
MDc generation is controlled by the MD manager. Because the
MD manager is allocated independent resources through cgroups
and runs in the background, it does not lead to compromised VM
and memory snapshot performance. The details of an experiment
conducted on memory restoration performance according to the
MDc generation rule are described in the performance evaluation
section. The process of generating MDr and MDc is outlined in
Algorithm 2.

3.5. Memory structure specialized for large-scale memory inspection

Cloud-BlackBox creates a metadata called synchronized ac-
cessible memory interchange, as shown in Fig. 7, for the effi-
cient analysis of large-scale memory. The offset information we
record when tracking memory provides analysts with a macro-
scopic perspective. The memory analyst may narrow the scope
of the memory analysis subject by analyzing metadata without a

memory restoration procedure. Simple application examples of

228
Fig. 7. SAMI metadata for efficient large-scale memory inspection.

SAMI are as follows. SAMI can be used in memory inspection
frameworks such as Volatility and Rekall, and in generating VM
memory change information as a timeline. For the analysis of a
large memory sets in parallel, the first offset capture needs to be
performed once. The offset capture for plug-ins was performed
using MDr data analysis. For memory inspection plug-ins, pslists,
dlllists, and sockets supported by Volatility and Rekall can be
used, or customized plug-ins can be created for use. Based on
the plug-in information entered in the memory inspection plugin
table, the memory offset for each VM is captured. The captured
offset information can be mapped by checking the synchronized
accessible memory interchange data generated when the MDp
is created. For example, for fast analysis of the pslist change
information, the offset information recorded in the SAMI can
be used to analyze the MDp that has accessed or modified the
first offset. Cloud-BlackBox provides MD analysis results through
a dashboard.

4. Evaluation

In this section, the memory acquisition performance of the
proposed approach is evaluated. The evaluation of Cloud-BlackBox
was conducted through five experiments using different types of
workloads. The workload types are presented in Table 1.

Table 1
Workload types utilized in the experiments.
Workload Description

Native State of no activity
Apache Web process-related workload
Flexible I/O I/O-focused workload
Weka Machine learning of data through Random Forest; iris

The first performance evaluation comparatively measured the
dump time for memory recording through the conventional mem-
ory snapshot method and using Cloud-BlackBox. In the second
experiment, the VM performance degradation caused by the



S.-H. Choi and K.-W. Park Future Generation Computer Systems 137 (2022) 219–233
Fig. 8. Comparison of dump time by workload and VM memory size.
memory snapshot was measured and compared in terms of
throughput. The third performance evaluation compared the event
calls made through Cloud-BlackBox with calls by the conventional
memory snapshot method. The fourth performance evaluation
compared the size of the memory snapshot file generated through
Cloud-BlackBox with that generated by the conventional memory
snapshot method. The final performance evaluation measured
the memory random access restoration time through memory
checkpoints.

The experimental environment of this study was as follows.
A system with an Intel(R) Xeon(R) Silver 4114 CPU @ 2.20 GHz
– 20 Core processor was used, with 384 MB of DDR RAM. One
TB of SSD was used for storage. The Ubuntu 18.04 OS with
kernel version 5.3.0–59 was used as the host, and Ver. 4.2.0 of
QEMU-KVM was used.

4.1. Memory snapshot performance comparison by workload

The use of Cloud-BlackBox reduced the computational over-
head and storage overhead generated during memory snapshots
through the GSM and cognitive-scale bitmap. In this section, the
dump time of the general memory snapshot operation according
to the QEMU machine protocol and dump time of the mem-
ory snapshot operation using the proposed Cloud-BlackBox are
comparatively evaluated. When the VM memory size increased
from 1 GB to 8 GB, the time required from the point of re-
questing the memory snapshot to the completion of the snapshot
while processing a workload was measured. The experimental
results are shown in Fig. 8. The Cloud-BlackBox method proposed
in this study requires an init dump operation, so the memory
snapshot dump time for the initial operation is the same as
the time taken with the conventional method. However, from
the subsequent snapshot operation, the memory snapshot dump
229
time decreased sharply. For example, when performing a Weka
workload in a VM environment with a memory size of 2 GB,
a memory snapshot with a conventional method took about
5.3 s on average, whereas approximately 0.61 s was required by
Cloud-BlackBox. As a result, Cloud-BlackBox showed a snapshot
performance improvement with a factor of approximately 8.83
compared to the time required by the conventional memory
snapshot method in a 2 GB VM environment. According to the ex-
perimental results, as the size of the memory allocated to the VM
increased, the memory snapshot performance of Cloud-BlackBox
was maximized. According to the experimental results, the aver-
age snapshot performance was improved by approximately 14.85
times in terms of dump time in the 4 GB environment.

4.2. Measurement of VM performance overhead due to memory
recording

In this section, we describe the experiment conducted re-
garding the performance degradation caused by VM memory
snapshots. Cloud-BlackBox minimizes performance degradation
during the memory snapshot process using the Cognitive-Scale
Bitmap. This experiment compares the performance of the con-
ventional bitmap used in the live-migration mechanism to that of
the cognitive-scale bitmap of Cloud-BlackBox. Sysbench was used
to the performance degradation in terms of CPU, memory, and
storage. The experimental results are shown in Fig. 9. First, the
performance in terms of the number of events that the CPU could
process per second showed a throughput decrease of 19.82%
when the bitmap method proposed by the conventional memory
snapshot acceleration studies was used; when the cognitive-
scale bitmap proposed in this study was used, the throughput
decreased by 12.79%. With regard to performance degradation in
terms of memory, with the conventional bitmap, the performance



S.-H. Choi and K.-W. Park Future Generation Computer Systems 137 (2022) 219–233

s
s
m
s

4

j

Fig. 9. Measuring VM performance degradation according to page fault handling
method.

decreased by approximately 14.42%, and with the cognitive-scale
bitmap, the decrease was 8.76%. Finally, for performance degrada-
tion in terms of storage, memory snapshots with the conventional
bitmap showed a decrease of approximately 68.46%, and with the
proposed Cloud-BlackBox, a decrease of 31.19% was measured. In
ummary, by using the Cloud-BlackBox method proposed in this
tudy, it was confirmed that the decrease in VM performance was
arkedly reduced compared to the method proposed by previous
tudies on memory snapshot acceleration.

.3. Measurement of VM event calls due to memory recording

In this section, information on the number of calls of ma-
or events accompanying a VM memory snapshot is presented.
230
Fig. 10. Comparison of host operating system event calls according to memory
snapshot method.

This experiment proves that the proposed Cloud-BlackBox ap-
proach is able to minimize major event calls with associated
processing overhead. This evaluation compares the event call
count information of the snapshot method using a conventional
bitmap and the method of dumping after memory merge through
the GSM. In this experiment, perf was used to measure the
number of event calls [56]. In our previous research results,
we identified disk I/O-related functions as the main cause of
performance overhead. Therefore, we selected block:block_re
map,syscalls:sys_enter_write, and page_faults which
are most related to I/O, as trace point events. In the experiment, a
virtual machine performing no specific action was operated and
measured. The experimental results are presented in Fig. 10.

First, the block:block_remap event calls were reduced by
approximately a factor of six. The block:block_remap event is
a technique designed to prevent redundant data writing and was
called when metadata changes occurred. First, when a snapshot is
taken using a conventional bitmap while a single virtual machine
is running, the block_remap event is called an average of 114
times. On the other hand, when the memory is merged through
the GSM, the block_remap event is called an average of 18.1
times. In other words, the experimental results show that the
proposed GSM is able to reduce the number of block_remap
event calls by six times.

Second, syscalls: sys_enter_write event calls were re-
duced by approximately a factor of 59. The syscalls: sys_enter
_write event fires when a file write operation is performed. In
this experimental environment, the syscalls: sys_enter_write
event is called once, and a 4kB file is created. First, for a regular
snapshot, it is called 524k times because it creates the VMs total
allocated memory of 2 GB to a file. In our proposed system, it is
called 8.7k times on average. This is a reduction if approximately
147 times. The reason for this significant reduction is that mem-
ory consolidation reduces the amount of memory that needs to be
taken from the snapshot, and the amount of change in memory
that changes as the snapshot was created for the underlying VM
is small. Therefore, in an operating environment where memory
changes frequently, events of 8.7k and above are called.

Third, the page fault event calls are reduced by approximately
two times. A page fault occurs when a program attempts to access
a block of memory that is not stored in the physical memory
or RAM. First, the average of 96 page fault events was called
for each snapshot in the usual way. An average of 47 event
calls occurred when memory was recorded using Cloud-BlackBox.
The frequency of occurrence of page_faults events may vary
depending on the memory technique of the host operating sys-
tem. In our experimental environment, event calls were made
up to 278 times in the case of a typical memory snapshot, but
reduced to 35 times owing to the host operating system memory



S.-H. Choi and K.-W. Park Future Generation Computer Systems 137 (2022) 219–233

t
e
d
t

m
1
a
r
a
V
f
s
s
s
V
s
1

4

c
T
o
t
t
c
i
A
g
w
m
t
i
f
f
c
a

c
c
B
f
t
m
C
o
g
I
i
c
i
p
t
t
m
m
t
p
c

c
r
i
s
p
v
C
i
s
v
m

C

s
r
i
d
n

Fig. 11. Memory dump file size according to the number of parallel VM
operations.

technique. In the case of Cloud-BlackBox, event calls occurred up
o 146 times, but there were cases where the page_faults
vent was never called. As a result, the experimental results
emonstrate that the proposed Cloud-BlackBox is able to reduce
he page_faults events occurring in the host operating system
owing to the memory snapshot.

4.4. Measurement of cost of storage consumed by memory recording

In this experiment, comparative measurements were taken of
the storage space saved through the MD manager and memory
tracking method of the proposed Cloud-BlackBox. In the experi-
ent, 2 GB of memory was allocated to the native VM, Ubuntu
8.04 was installed in parallel, and the size of storage used when
memory snapshot was taken was measured. The experimental
esults are shown in Fig. 11. As can be seen, when memory was
cquired in parallel in a cloud platform environment where 16
Ms were running, a memory snapshot file of 32 GB was created
or a conventional memory snapshot, whereas a snapshot file of
ize 2.49 GB was created using Cloud-BlackBox. When compres-
ion was further activated, a file of approximately 1.75 GB in
ize was created. That is, we experimentally verified that when
M memory snapshots are taken using Cloud-BlackBox, a storage-
aving effect over 12.85 times is achieved in an environment with
6 VMs running in parallel.

.5. Memory restore random access performance evaluation

For the proposed Cloud-BlackBox, a memory restoration pro-
ess is required for the acquisition of complete memory states.
he memory restoration process is performed through the XOR
peration of the MDr and MDp. In this process, the restoration
ime gradually increases with cumulative memory, and to ensure
he restoration performance of memory of random selection, a
heckpoint called MDc was designed. Fig. 12 shows the exper-
mental results in terms of memory restoration performance.
s shown in the first figure, without MDc , the restoration time
radually increased according to the accumulated memory size;
hen the MDp was accumulated to 4000 MB, it took approxi-
ately 4500 s to perform memory restoration. However, with

he creation of MDc , when MDp was accumulated over 128 MB,
t took up to 2.0 s to perform the memory restoration, 9.59 s
or a cumulative MDp size over 512 MB, and 19.86 s maximum
or 1024 MB. These results demonstrate experimentally that the
heckpoint designed in this study ensures the minimum random
ccess performance for memory restoration.
 P

231
Fig. 12. Comparison of memory restore times based on MDc generation
conditions.

5. Conclusion

This study proposed Cloud-BlackBox, which enables the effi-
ient recording of active memory without loss in a real-world
loud operating service environment. The proposed Cloud- Black-
ox method has the following features. First, Cloud-BlackBox ef-
ectively reduces the storage space by more than a factor of 12.85
hrough kernel memory merging as shared memory by analyzing
emory similarities of component VMs in a VM swarm. Second,
loud-BlackBox reduces the memory acquisition time by a factor
f up to 14.85 compared to existing memory snapshot technolo-
ies by using a cognitive-scale bitmap and memory I/O scheduler.
n addition, the problem of ensuring random access performance
n the delta dump method, which was designed to reduce storage
osts, is addressed by introducing an MD manager. The exper-
mental results demonstrated that a minimized random access
erformance is achieved by using the MDc memory restoration
echnique. The last feature proposed is the SAMI mechanism
hat analyzes large-scale recorded memory in parallel. The SAMI
echanism utilizes data created through memory tracking for
emory change information on processes, libraries, and network

raffic according to temporal characteristics, and is designed to
erform a correlation analysis on VM swarms using to spatial
haracteristics.
Finally, the proposed approach was implemented on a real

loud computing service called SysCore-Cloud. The experimental
esults show that Cloud-BlackBox has wide applicability not only
n advanced malware analysis, but also in various fields of system
ecurity, such as antivirus and forensic analysis. The mechanisms
roposed in this study are limited to cloud environments using
irtualization technology. Our future research goal is to enable
loud-BlackBox application in multi-cloud environments, includ-
ng edge clouds and federated clouds. Also, we plan to investigate
elf-recovery measures to address the case of intrusion and ser-
ice errors in cloud environments based on the memory recording
ethod proposed in this study.

RediT authorship contribution statement

Sang-Hoon Choi: Conceptualization, Methodology/Study de-
ign, Software, Validation, Formal analysis, Investigation, Data cu-
ation, Writing – original draft, Writing – review & editing, Visual-
zation. Ki-Woong Park: Conceptualization, Methodology/Study
esign, Validation, Formal analysis, Resources, Writing – origi-
al draft, Writing – review & editing, Visualization, Supervision,

roject administration, Funding acquisition.



S.-H. Choi and K.-W. Park Future Generation Computer Systems 137 (2022) 219–233

D

c
t

A

C
N
C
R
t
R
v
g
N

R

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This work was supported by the Institute of Information &
ommunications Technology Planning & Evaluation (IITP) (Project
o. RS-2022-00165794, Development of a Multi-Faceted
ollection-Analysis-Response Platform for Proactive Response to
ansomware Incidents, 30%, and Project No. 2019-0-00426, 10%),
he ICT R&D Program of MSIT/IITP (Project No. 2021-0-01816, A
esearch on Core Technology of Autonomous Twins for Meta-
erse, 10%), and a National Research Foundation of Korea (NRF)
rant funded by the Korean government (Project No.
RF-2020R1A2C4002737, 50%).

eferences

[1] N. Gruschka, M. Jensen, Attack surfaces: A taxonomy for attacks on cloud
services, in: 2010 IEEE 3rd International Conference on Cloud Computing,
IEEE, 2010, pp. 276–279.

[2] A. Singh, M. Shrivastava, Overview of attacks on cloud computing, Int. J.
Eng. Innov. Technol. 1 (4) (2012) 321–323.

[3] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, R.B. Lee, Cata-
lyst: Defeating last-level cache side channel attacks in cloud computing,
in: 2016 IEEE International Symposium on High Performance Computer
Architecture, HPCA, IEEE, 2016, pp. 406–418.

[4] Q. Yan, F.R. Yu, Q. Gong, J. Li, Software-defined networking (SDN) and
distributed denial of service (DDoS) attacks in cloud computing environ-
ments: A survey, some research issues, and challenges, IEEE Commun. Surv.
Tutor. 18 (1) (2015) 602–622.

[5] B. Joshi, A.S. Vijayan, B.K. Joshi, Securing cloud computing environment
against DDoS attacks, in: 2012 International Conference on Computer
Communication and Informatics, IEEE, 2012, pp. 1–5.

[6] M.A. Bamiah, S.N. Brohi, Seven deadly threats and vulnerabilities in cloud
computing, Int. J. Adv. Eng. Sci. Technol. 9 (1) (2011) 87–90.

[7] S. Zawoad, R. Hasan, Cloud forensics: A meta-study of challenges,
approaches, and open problems, 2013, arXiv preprint arXiv:1302.6312.

[8] S. Simou, C. Kalloniatis, E. Kavakli, S. Gritzalis, Cloud forensics: Identifying
the major issues and challenges, in: International Conference on Advanced
Information Systems Engineering, Springer, 2014, pp. 271–284.

[9] D. Birk, C. Wegener, Technical issues of forensic investigations in cloud
computing environments, in: 2011 Sixth IEEE International Workshop on
Systematic Approaches to Digital Forensic Engineering, IEEE, 2011, pp.
1–10.

[10] Y. Cheng, X. Fu, X. Du, B. Luo, M. Guizani, A lightweight live memory
forensic approach based on hardware virtualization, Inform. Sci. 379 (2017)
23–41.

[11] S.T. Jones, A.C. Arpaci-Dusseau, R.H. Arpaci-Dusseau, VMM-based hidden
process detection and identification using Lycosid, in: Proceedings of the
Fourth ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, 2008, pp. 91–100.

[12] A. Dinaburg, P. Royal, M. Sharif, W. Lee, Ether: Malware analysis via
hardware virtualization extensions, in: Proceedings of the 15th ACM
Conference on Computer and Communications Security, 2008, pp. 51–62.

[13] M.I. Sharif, W. Lee, W. Cui, A. Lanzi, Secure in-vm monitoring using
hardware virtualization, in: Proceedings of the 16th ACM Conference on
Computer and Communications Security, 2009, pp. 477–487.

[14] M. Graziano, A. Lanzi, D. Balzarotti, Hypervisor memory forensics, in: In-
ternational Workshop on Recent Advances in Intrusion Detection, Springer,
2013, pp. 21–40.

[15] T.K. Lengyel, S. Maresca, B.D. Payne, G.D. Webster, S. Vogl, A. Kiayias,
Scalability, fidelity and stealth in the DRAKVUF dynamic malware analysis
system, in: Proceedings of the 30th Annual Computer Security Applications
Conference, 2014, pp. 386–395.

[16] A. Dahan, Operation Cobalt Kitty: A Large-Scale APT in Asia Carried Out
by the Oceanlotus Group, Cyber Reason, 2017.

[17] T.P. Setia, N. Widiyasono, A.P. Aldya, Analysis malware flawed ammyy RAT
dengan metode reverse engineering, J. Inform. 3 (03) (2018).

[18] C. Albanesius, Ramnit computer worm compromises 45K Facebook lo-
gins, PC Mag. 2817 (2398432) (2012) 00, Source: http://www.pcmag.com/
article2/0.
232
[19] C. Patsakis, A. Chrysanthou, Analysing the fall 2020 Emotet campaign,
2020, arXiv preprint arXiv:2011.06479.

[20] E. Ramos, Analysis: Ursnif-spying on your data since 2007, 2016.
[21] C. Kaufman, R. Venkatapathy, Windows azure™ security overview, 2010,

Published Aug 24.
[22] N.R. Mistry, M.S. Dahiya, Signature based volatile memory forensics: A

detection based approach for analyzing sophisticated cyber attacks, Int.
J. Inf. Technol. 11 (3) (2019) 583–589.

[23] A.S. Bozkir, E. Tahillioglu, M. Aydos, I. Kara, Catch them alive: A malware
detection approach through memory forensics, manifold learning and
computer vision, Comput. Secur. 103 (2021) 102166.

[24] P. Mishra, P. Aggarwal, A. Vidyarthi, P. Singh, B. Khan, H.H. Alhelou, P.
Siano, VMShield: Memory introspection-based malware detection to secure
cloud-based services against stealthy attacks, IEEE Trans. Ind. Inf. 17 (10)
(2021) 6754–6764.

[25] S. Gaur, R. Chhikara, Memory forensics: Tools and techniques, Indian J. Sci.
Technol. 9 (48) (2016) 1–12.

[26] A. Case, G.G. Richard III, Memory forensics: The path forward, Digit.
Investig. 20 (2017) 23–33.

[27] F. Pagani, D. Balzarotti, Back to the whiteboard: A principled approach
for the assessment and design of memory forensic techniques, in: 28th
USENIX Security Symposium, USENIX Security 19, 2019, pp. 1751–1768.

[28] F. Pagani, O. Fedorov, D. Balzarotti, Introducing the temporal dimension to
memory forensics, ACM Trans. Priv. Secur. 22 (2) (2019) 1–21.

[29] Cloud market, http://thecloudmarket.com/stats/.
[30] A. Walters, Volatility, 2006, https://www.volatilityfoundation.org/.
[31] T. Garfinkel, M. Rosenblum, et al., A virtual machine introspection based

architecture for intrusion detection, in: Ndss, vol. 3, Citeseer, 2003, pp.
191–206.

[32] H. Xiong, Z. Liu, W. Xu, S. Jiao, Libvmi: A library for bridging the
semantic gap between guest OS and VMM, in: 2012 IEEE 12th International
Conference on Computer and Information Technology, IEEE, 2012, pp.
549–556.

[33] I. Ahmed, A. Zoranic, S. Javaid, G.G. Richard III, Modchecker: Kernel module
integrity checking in the cloud environment, in: 2012 41st International
Conference on Parallel Processing Workshops, IEEE, 2012, pp. 306–313.

[34] T.Y. Win, H. Tianfield, Q. Mair, Detection of malware and kernel-level
rootkits in cloud computing environments, in: 2015 IEEE 2nd International
Conference on Cyber Security and Cloud Computing, IEEE, 2015, pp.
295–300.

[35] P. Mishra, V. Varadharajan, E.S. Pilli, U. Tupakula, VMGuard: A VMI-based
security architecture for intrusion detection in cloud environment, IEEE
Trans. Cloud Comput. 8 (3) (2018) 957–971.

[36] B. Martini, K.-K.R. Choo, Cloud storage forensics: OwnCloud as a case study,
Digit. Investig. 10 (4) (2013) 287–299.

[37] S. Khan, A. Gani, A.W.A. Wahab, M.A. Bagiwa, M. Shiraz, S.U. Khan, R.
Buyya, A.Y. Zomaya, Cloud log forensics: Foundations, state of the art, and
future directions, ACM Comput. Surv. 49 (1) (2016) 1–42.

[38] A. Cohen, N. Nissim, Trusted detection of ransomware in a private cloud
using machine learning methods leveraging meta-features from volatile
memory, Expert Syst. Appl. 102 (2018) 158–178.

[39] S.A. Ali, S. Memon, F. Sahito, Challenges and solutions in cloud forensics,
in: Proceedings of the 2018 2nd International Conference on Cloud and
Big Data Computing, 2018, pp. 6–10.

[40] D. Paul Joseph, J. Norman, A review and analysis of ransomware us-
ing memory forensics and its tools, Smart Intell. Comput. Appl. (2020)
505–514.

[41] W. Song, H. Yin, C. Liu, D. Song, DeepMem: Learning graph neural network
models for fast and robust memory forensic analysis, in: Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security,
2018, pp. 606–618.

[42] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt,
A. Warfield, Live migration of virtual machines, in: Proceedings of
the 2nd Conference on Symposium on Networked Systems Design &
Implementation, vol. 2, 2005, pp. 273–286.

[43] M.R. Hines, U. Deshpande, K. Gopalan, Post-copy live migration of virtual
machines, Oper. Syst. Rev. 43 (3) (2009) 14–26.

[44] E. Park, B. Egger, J. Lee, Fast and space-efficient virtual machine
checkpointing, ACM SIGPLAN Not. 46 (7) (2011) 75–86.

[45] S. Akiyama, T. Hirofuchi, R. Takano, S. Honiden, Fast wide area live
migration with a low overhead through page cache teleportation, in:
2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, IEEE, 2013, pp. 78–82.

[46] L. Wang, Z. Kalbarczyk, R.K. Iyer, A. Iyengar, VM-µcheckpoint: Design,
modeling, and assessment of lightweight in-memory VM checkpointing,
IEEE Trans. Dependable Secure Comput. 12 (2) (2014) 243–255.

[47] P.F. Klemperer, H.Y. Jeon, B.D. Payne, J.C. Hoe, High-performance memory
snapshotting for real-time, consistent, hypervisor-based monitors, IEEE
Trans. Dependable Secure Comput. 17 (3) (2018) 518–535.

http://refhub.elsevier.com/S0167-739X(22)00232-1/sb1
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb1
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb1
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb1
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb1
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb2
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb2
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb2
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb3
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb3
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb3
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb3
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb3
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb3
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb3
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb4
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb4
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb4
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb4
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb4
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb4
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb4
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb5
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb5
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb5
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb5
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb5
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb6
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb6
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb6
http://arxiv.org/abs/1302.6312
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb8
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb8
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb8
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb8
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb8
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb9
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb9
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb9
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb9
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb9
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb9
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb9
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb10
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb10
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb10
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb10
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb10
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb14
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb14
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb14
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb14
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb14
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb16
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb16
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb16
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb17
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb17
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb17
http://www.pcmag.com/article2/0
http://www.pcmag.com/article2/0
http://www.pcmag.com/article2/0
http://arxiv.org/abs/2011.06479
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb20
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb21
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb21
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb21
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb22
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb22
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb22
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb22
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb22
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb23
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb23
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb23
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb23
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb23
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb24
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb24
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb24
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb24
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb24
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb24
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb24
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb25
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb25
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb25
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb26
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb26
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb26
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb28
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb28
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb28
http://thecloudmarket.com/stats/
https://www.volatilityfoundation.org/
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb31
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb31
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb31
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb31
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb31
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb32
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb32
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb32
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb32
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb32
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb32
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb32
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb33
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb33
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb33
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb33
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb33
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb34
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb34
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb34
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb34
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb34
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb34
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb34
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb35
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb35
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb35
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb35
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb35
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb36
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb36
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb36
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb37
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb37
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb37
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb37
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb37
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb38
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb38
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb38
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb38
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb38
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb40
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb40
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb40
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb40
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb40
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb42
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb42
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb42
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb42
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb42
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb42
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb42
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb43
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb43
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb43
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb44
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb44
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb44
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb45
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb45
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb45
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb45
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb45
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb45
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb45
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb46
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb46
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb46
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb46
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb46
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb47
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb47
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb47
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb47
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb47


S.-H. Choi and K.-W. Park Future Generation Computer Systems 137 (2022) 219–233

s
i

[48] Z. Hao, W. Wang, L. Cui, X. Yun, Z. Ding, iConSnap: An incremental con-
tinuous snapshots system for virtual machines, IEEE Trans. Serv. Comput.
(2019).

[49] J. Watson, Virtualbox: Bits and bytes masquerading as machines, Linux J.
2008 (166) (2008) 1.

[50] E. VMware, Timekeeping in VMware virtual machines, 2008.
[51] A.J. Mashtizadeh, E. Celebi, T. Garfinkel, M. Cai, et al., The design and

evolution of live storage migration in VMware ESX, in: USENIX Annual
Technical Conference, 2011, pp. 187–200.

[52] A. Arcangeli, I. Eidus, C. Wright, Increasing memory density by using KSM,
in: Proceedings of the Linux Symposium, Citeseer, 2009, pp. 19–28.

[53] S. Rachamalla, D. Mishra, P. Kulkarni, Share-o-meter: An empirical analysis
of KSM based memory sharing in virtualized systems, in: 20th Annual
International Conference on High Performance Computing, IEEE, 2013, pp.
59–68.

[54] C.-R. Chang, J.-J. Wu, P. Liu, An empirical study on memory sharing of
virtual machines for server consolidation, in: 2011 IEEE Ninth International
Symposium on Parallel and Distributed Processing with Applications, IEEE,
2011, pp. 244–249.

[55] S. Barker, T. Wood, P. Shenoy, R. Sitaraman, An empirical study of memory
sharing in virtual machines, in: 2012 USENIX Annual Technical Conference,
USENIX ATC 12, 2012, pp. 273–284.

[56] A.C. De Melo, The new linux ’perf’ tools, in: Slides from Linux Kongress,
vol. 18, 2010, pp. 1–42.
233
Sang-Hoon Choi received the B.S. and M.S degree
in computer and information security from Daejeon
University, South Korea, in 2016. He is currently work-
ing toward the Ph.D. degree in the Department of
Computer and Information Security, University of Se-
jong, South Korea. His research interests include cloud
computing, virtualization, system memory and machine
learning.

Ki-Woong Park received the B.S. degree in computer
science from Yonsei University, South Korea, in 2005,
the M.S. degree in electrical engineering from the Korea
Advanced Institute of Science and Technology (KAIST)
in 2007, and the Ph.D. degree in electrical engineer-
ing from KAIST in 2012. He received a 2009–2010
Microsoft Graduate Research Fellowship. He worked
for National Security Research Institute as a senior
researcher. He has been a professor in the depart-
ment of computer and information security at Sejong
University. His research interests include security is-

ues for cloud and mobile computing systems as well as the actual system
mplementation and subsequent evaluation in a real computing system.

http://refhub.elsevier.com/S0167-739X(22)00232-1/sb48
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb48
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb48
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb48
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb48
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb49
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb49
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb49
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb50
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb52
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb52
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb52
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb53
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb53
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb53
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb53
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb53
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb53
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb53
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb54
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb54
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb54
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb54
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb54
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb54
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb54
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb56
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb56
http://refhub.elsevier.com/S0167-739X(22)00232-1/sb56

	Cloud-BlackBox: Toward practical recording and tracking of VM swarms for multifaceted cloud inspection
	Introduction
	Related works
	Improving system security with memory introspection
	Approach to accelerate memory snapshots
	Limitations of memory introspection in cloud environment

	Cloud-BlackBox Internals
	Overview
	Shared memory merge for efficient memory collection
	Memory tracking mechanism for memory recording
	Memory management mechanism to optimize random access restoration performance and storage cost
	Memory structure specialized for large-scale memory inspection

	Evaluation
	Memory snapshot performance comparison by workload
	Measurement of VM performance overhead due to memory recording
	Measurement of VM event calls due to memory recording
	Measurement of cost of storage consumed by memory recording
	Memory restore random access performance evaluation

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


