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A B S T R A C T

Container-based cloud services that can achieve scalability at a low cost by dividing a complex system into
instances, functions, or applications are essential for the operation of mission-critical industrial systems. Mission
assurance and survivability are required as core elements and unique functions for these services to be the
basic environment of major systems. In particular, a mission-critical system operating environment must
guarantee service resilience that can provide stable services even in a situation where it is impossible because
of cyberattacks or service failures. To solve this problem, we propose iContainer, which stands for Immortal
Container. It provides stable services by quickly returning to the point desired by a user when a failure
occurs by continuously recording container services. If efficient checkpoints are available, the lifecycles of
containers are recorded and services are rolled back to a previous point desired by a user when a critical event
occurs. iContainer has three contributions. First, it minimizes checkpointing operations through checkpoint
zoning. We remove unnecessary checkpointing operations through a semantic-aware hot/cold container
classification scheme for zones where data changes rarely occur. Second, rapid checkpointing is achieved
through dirty-page tracking. We minimize checkpoint data (read/write) operations by efficiently tracking the
memory area. Consequently, iContainer reduces the checkpoint execution time by 3.27 times compared to the
conventional checkpointing scheme, and the size of the data generated by repetitive checkpointing is reduced
by 69.2%. Third, iContainer includes rapid checkpoint restoration and flexible restore points. We designed the
software-defined checkpoint/restore (SDCR) tool, which enables the rapid restoration and flexible selection of
checkpoints and restore points. Experimental results show that it takes 337 ms on average from the detection
of a service failure until stable service operation. Thus, the rollback time of SDCR is approximately 1.93 times
faster than the conventional checkpointing tool, checkpoint/restore in userspace (CRIU). The experiment was
conducted in an environment where a web service was operated. Moreover, iContainer can be utilized for
service error restoration and as data for identifying the causes of accidents in the event of an attack or security
accident because it records the lifecycle of containers through checkpoints.
1. Introduction

Various mission-critical systems used in autonomous vehicles, air-
crafts, and industrial fields require cloud computing services (Dutta
and Dutta, 2019; Hyseni and Ibrahimi, 2017; Pierleoni et al., 2019;
Rajan, 2018; Elazhary, 2019). Furthermore, movement to the cloud
is accelerating in areas such as administration, public agencies, and
national defense (Khan, 2016; Sun, 2020; Yan et al., 2015; Joshi
et al., 2012; Bamiah and Brohi, 2011). In particular, container-based
services have attracted attention because they have advantages in cost,
maintenance, and operations (Kavis, 2014; Pahl, 2015; Van Eyk et al.,
2017). Container technology is widely used in cloud computing because
it allows the operation of instances with fewer resources compared to
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hypervisor-based services (Bernstein, 2014; Chung et al., 2016; Ruan
et al., 2016; Desai et al., 2013; Jiang et al., 2019). The advantages
of containers are demonstrated by various services, used by several
leading vendors such as AWS, MS, IBM, and Google, as business mod-
els (Cloud, 2011; Copeland et al., 2015; Zhu et al., 2009; Garraghan
et al., 2013). However, the potential threats in cloud computing pose
concerns about the introduction of the cloud in major industries (Singh
and Chatterjee, 2017). Cloud security alliance has identified various
security threats about cloud that prevent the use of common cloud
to store sensitive data by such organizations as financial agencies,
medical institutions, federal and state governments, and national de-
fense agencies (Alliance, 2021; Kumar and Goyal, 2021). Therefore,
vailable online 24 September 2022
084-8045/© 2022 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.jnca.2022.103494
Received 5 February 2022; Received in revised form 6 June 2022; Accepted 7 Aug
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ust 2022

http://www.elsevier.com/locate/jnca
http://www.elsevier.com/locate/jnca
mailto:csh0052@gmail.com
mailto:woongbak@sejong.ac.kr
https://doi.org/10.1016/j.jnca.2022.103494
https://doi.org/10.1016/j.jnca.2022.103494
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2022.103494&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Network and Computer Applications 208 (2022) 103494S.-H. Choi and K.-W. Park
Fig. 1. Overview of cloud service failure recovery with iContainer.
the utilization of container-based cloud services in industrial systems
require countermeasures against cyber security threats, service failure,
and damage. Particularly, mission-critical systems must guarantee rapid
system recovery and resilience because they must operate without
interruption because one trouble inside a mission-critical system can
lead to a mission failure or disaster. An example is the recent oil supply
interruption accident in the eastern US due to an attack on the colonial
pipeline (Analytica, 2021b,a). The unexpected oil supply interruption
made citizens panic. It took six days for the oil pipeline to be restored to
stable condition. A fast response could have been possible if a solution
for recovery from service failure such as cyberattack were prepared.
Fig. 1(a) shows that resilience for service failure must be guaranteed in
a situation where the operations of industries, including mission-critical
systems, should be migrated to the cloud in the future.

Various methods have been proposed for detecting and restoring
service failures (Matos et al., 2018, 2021; Venkatesh et al., 2019a;
Amoon et al., 2019). However, in most of them, the recoverable ser-
vices are limited or user intervention is required. Furthermore, because
service restoration is time-intensive, it is difficult to apply these meth-
ods to mission-critical systems that require immediate service restora-
tion. To achieve resilience to cloud service failure, this study proposes
iContainer, which continuously records containers and quickly returns
to a point desired by the user, to provide stable services (Pickartz
et al., 2016; Widjajarto et al., 2021; Stoyanov and Kollingbaum, 2018;
Mirkin et al., 2008). The proposed framework checkpoints the state
of container services in operation using only a few operations and
quickly restores the stable state when a container service failure oc-
curs. Moreover, as iContainer secures various rollback points through
consecutive checkpoints, it can quickly respond to unexpected service
failures. Fig. 1(b) shows the design of iContainer. This study makes three
major contributions.

First, unnecessary operations are removed through checkpoint zon-
ing. Methods to checkpoint containers have been studiedFirst, unnec-
essary operations are removed through checkpoint zoning. Although
various methods for checkpointing containers have been proposed,
they do not consider the design of repetitive checkpoints because their
2

checkpoints are designed for live migration (Ahmed et al., 2020; Chen,
2015; Laadan and Hallyn, 2010). iContainer quickly secures various
rollback points through consecutive container checkpoints. Therefore,
it is crucial to optimize checkpoint operations. The data produced
when creating consecutive checkpoints contains duplicate data, for
which scanning and saving in storage constitute unnecessary opera-
tions. By efficiently removing duplicate data, the operations caused
by the checkpoints can be minimized. For example, as set or installed
environmental variables or libraries do not change frequently, they are
not needed at every checkpoint. This study proposes a hot/cold classi-
fication scheme that is friendly to container-repetitive checkpoints. The
proposed scheme minimizes unnecessary checkpoint operations and
duplicate data, classifying checkpoint zones as hot or cold by scanning
containers in operation. Cold zones contain data such as library alloca-
tion, environmental variables, and network information, which are not
easily changed once they are set. By contrast, hot zones contain data
such as file system and memory information, which are continuously
changed. iContainer performs checkpointing predominantly in the hot
zone; checkpointing is performed in the cold zone only when a file
system event occurs. This method effectively removes unnecessary
search operations and duplicate data from the cold zone. Nevertheless,
iContainer has a limitation in that it can only be used in the Docker
Engine environment. This is because the information required to sepa-
rate the checkpoint zones of the container is collected through Docker’s
inspection function and union filesystem analysis (Dua et al., 2016).

Second, rapid checkpointing can be implemented using dirty-page
tracking. We divided the checkpoint zones into hot and cold zones
to remove unnecessary search and duplication operations that occur
in checkpoints. The hot zone is characterized by frequent updates.
In particular, in the memory corresponding to the hot zone, data
modulations continuously occur. The memory is characterized by lo-
cality in which only specific areas are repeatedly changed instead of
uniform changes over the entire area. We selected Ubuntu as the base
image of the container, activated the Apache2 service, and dumped
the memory 100 times with a 2 s cycle. Subsequently, we compared
the memories and discovered that approximately 78% or more of the



Journal of Network and Computer Applications 208 (2022) 103494S.-H. Choi and K.-W. Park

t
r
t
i
i
p
t
B
z
n
a
b
t
m
t
f
t
i
d
b
r
c
r
p
w
p

memory areas were duplicated. Therefore, we concluded that partial
checkpointing by tracking only the changed areas is more effective
than checkpointing the entire area of the hot zone. This is because the
memory has spatiotemporal locality, a characteristic that is actively
utilized in the live migration field (Pagani et al., 2019; Mao et al.,
2015; Hu et al., 2011; Zheng et al., 2011). This method involves
tracking and transmitting memory change information, thereby mini-
mizing service downtime that may occur during migration. iContainer
uses dirty-page tracking to track the memory changes without the
duplication removal operation of the memory. If the allocated memory
area is processed by dirty bits and managed as a bitmap, a page
fault is caused whenever a memory write operation occurs. Therefore,
the changed memory data can be stored without duplication removal
operation if the memory area in which a page fault occurred is tracked
and checkpointed. Additionally, we discovered that most performance
delays in the checkpointing operation process occur in write. Hence,
we used some space of the host DRAM for checkpointing to minimize
any performance overhead due to the data write operation caused by
checkpointing. It took 290 ms on average to generate the checkpoint of
container with a 128 MB memory. This performance is approximately
3.27 times faster than the conventional checkpoint/restore in userspace
(CRIU) tool (Virtuozzo, 2011). Furthermore, when checkpoints were
consecutively generated 100 times, the cumulative data size decreased
by 69.2%. We compared iContainer with CRIU because the latter will
be used for the checkpointing function of Docker Engine in the future.
CRIU can currently be used in the experimental mode of Docker Engine.

Third, random-access performance for checkpoint restoration is
guaranteed and user-defined checkpoint/restore is supported. iCon-
ainer restores the state to facilitate the provision of stable services by
olling back to the optimal point that was checkpointed when the con-
ainer service could not work normally. The phenomenon that services
n a container are stopped can occur suddenly at any time; hence, it
s critical to efficiently checkpoint and quickly restore the services. We
roposed a scheme to classify the checkpoint zones into hot/cold and
o record changes by tracking them to quickly perform checkpoints.
ecause our scheme partially performs checkpointing for hot and cold
ones, a post-processing operation called ‘‘checkpoint reprocessing’’ is
eeded for the checkpoints that are necessary in the rollback. To gener-
te a complete checkpoint that can be rolled back to, ⊕ operations must
e repeatedly performed from the first checkpoint to the checkpoint
o which the user wishes to roll back. Although iContainer secures
any restore points by optimizing the checkpointing operations, as

he size of the partial checkpoints accumulates, the operations required
or restoration increase proportionally, thereby increasing the rollback
ime. Therefore, the time required for checkpoint restoration increases
n proportion to the checkpoint accumulated. To solve this problem, we
esigned the concept of save point. SDCR inserts a complete checkpoint
etween incomplete checkpoints through background threads sepa-
ated into control groups (cgroups), which helps to maintain a constant
heckpoint restoration time. SDCR predicts the time required for the
estoration operation based on the size of the data and generates a save
oint that reflects the partial checkpoints up to the current point at
hich the checkpoints accumulated over a certain size. Creating a save
oint can solve the problem of having to perform ⊕ operations from

the first checkpoint to the rollback point, and because the resources this
uses are separate from the checkpoint operations, it does not produce
noise in the target service and checkpoint performance. Furthermore,
it provides a performance advantage when restoring the container by
storing the last save point and checkpoint used for restoration in the
dram space of the host zone. It took 337 ms on average to restore a
stable container state from a service unavailable state. This implies
that it became approximately 1.93 times faster than restoring the
container using CRIU. Furthermore, we designed the SDCR to enable
users to freely select checkpoints and restore points. Checkpointing and
restore point selection are critical because, in the case of checkpoints,
3

the information lost is different depending on the creation criteria,
and creating unnecessary checkpoints causes computational and spatial
overheads. SDCR freely designs the checkpoint and restore point. For
example, when a service error occurs, users can freely move to a
desired point through the timeline. However, incorrect restore point
selection causes an infinite loop and delays service error restoration
time. iContainer allows the flexible definition of checkpoint creation
and restore points. The checkpoint creation criteria and utility of the
restore point selection are explained through usage scenarios.

The remainder of this paper is organized as follows. Section 2
introduces related works. Section 3 describes the design of iContainer
in detail. Section 4 evaluates the performance of iContainer. Section 5
explains various scenarios for using iContainer. Finally, Section 6 sum-
marizes the findings of this study and suggests future study topics.

2. Related work

Cloud service availability attracted the interest of many researchers
even before the activation of cloud services. Consequently, several
studies have proposed methods to quickly respond to service interrup-
tions due to malicious attacks or defects of the service. These studies
are traditionally classified into log-based or checkpoint-based restora-
tion (Treaster, 2005). In this section, the limitations of conventional
service restoration methods are discussed.

2.1. Studies on log-based service restoration

The log-based service restoration technology has been used for a
long time in the database field. The log-based restoration technology
analyzes collected log information and enables return to stable service
state by performing rollback for abnormal work behaviors (Passerini
et al., 2009; Pecchia et al., 2011). Taser is a system that performs
restoration based on logs when a system is infected with malware (Goel
et al., 2005). Because the system is restored based on logs, all the
behaviors of files, processes, and networks stored in the system are
recorded and analyzed. However, users must decide in a situation
where the system is infected with malware and service is unavailable.
Moreover, once the file system is damaged, it cannot be restored. The
back to the future is also a study on log-based system restoration. This
study secures data required for restoration by distinguishing unreliable
and reliable software and recording logs only for reliable software.
Therefore, restoration is impossible if the reliable software is locked
and user intervention is necessary to collect the log data required for
restoration. In 2018, Matos et al. proposed RockFS as a method to
strengthen storage security in the cloud environment (Matos et al.,
2018). RockFS logs file system activities and uses them for recovery
in the event of an attack. However, because storage recovery takes
approximately 40 s, it is difficult to apply RockFS to real-time ser-
vice environments. Consequently, Matos et al. also recently proposed
Sanare, a system that can effectively recover when a web application
is attacked (Matos et al., 2021). Sanare has the advantage of being
able to self-recover from a service failure within 4 s of a web service
attack. However, the services that Sanare can recover are limited to
those that perform HTTP requests. Most log-based service recovery
solutions require user intervention or have long recovery times because
a log analysis process is necessary. Moreover, if the error occurs in a
log category that cannot be collected or is not specified by the user,
recovery becomes impossible. Therefore, this method has limitations
in a cloud service that must ensure availability through immediate
restoration.

2.2. Studies on snapshot-based service restoration

Recently, hypervisor/container technologies have been widely used
with the increasing scope of use and interest in cloud platforms (Khan
et al., 2020). In the virtualization-based service environment the entire

area of target services is snapshot more easily without contamination
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compared to the traditional system structure. Owing to such an ad-
vantage, snapshot-based service restoration has been actively studied
in recent years. TimeVM stores data by snapshotting the same VM as
the VM in which a service is operated and generates a slight delay in
the processing of traffic requested to the service VM (Elbadawi and Al-
Shaer, 2009). Subsequently, it delivers the snapshot to the cloned VM
by migration. When the VM running the service becomes inoperable
because of malicious traffic, TimeVM restores stable service by mov-
ing malicious traffic to the cloned VM and replaying and migrating
the remaining traffic. However, this method only responds to known
threatening traffic and takes more than 30 s for service restoration.
In a hypervisor environment, the scope of targets to be snapshot
becomes large because each service uses fully independent kernel and
memory area. Therefore, it is difficult to use hypervisor-based snapshot
restoration methods in a distributed service environment that requires
immediate restoration because it requires many operations and time
for snapshot and restoration. The current trend is to use container
engine, which is a relatively light virtualization technology, as an
alternative to hypervisor. Consequently, several research results about
checkpoint/restore for container instance have been reported. One
project output that is widely used in the checkpoint/restore operation
for processes such as instance/container is CRIU (Virtuozzo, 2011).
CRIU can save the current state of a running process as an image file
through checkpoints, and it can use the saved image to recover the pro-
cess. Currently, the checkpoint function of CRIU is officially provided in
Docker Engine’s experimental mode. As containers operate as processes,
if efficient container checkpoints are possible, then they can be used in
the security and service recovery fields. Considering this fact, numerous
studies have been conducted with the aim of strengthening the fault
tolerance of services using CRIU and improving the performance of
CRIU. Araujo et al. used CRIU as the base technology for the honey-
patches of services in operation. A bait service is created through the
honey-patch, which solves the availability problem that may occur from
a service attack. In 2010, Goiri et al. proposed a checkpoint-based fault-
tolerant infrastructure for cloud service providers (CSPs). However, the
infrastructure has the limitation of only being applicable to a service
environment using Another Union File System (AUFS) (Goiri et al.,
2010). Karhula et al. utilized checkpoints to solve the fault tolerance
and service availability problems that may arise when the Function as
a Service (FaaS) model is applied in an Internet of Things (IoT) net-
work (Karhula et al., 2019). In 2022, Mudassar et al. proposed a method
that uses CRIU to ensure the fault tolerance of nodes in edge computing
environments and improve availability (Mudassar et al., 2022). Specif-
ically, their method uses CRIU as a strategy for the distributed backup
of nodes in resource-limited edge computing environments. In 2018,
Ashton Webster proposed a method for restoring a system infected with
malware, using checkpoints (Webster et al., 2018). In that study, it took
2.8 s on average to restore to the stable state through checkpoints.
This is more than ten times higher performance compared to that of
the hypervisor-based restoration technology. However, restoration is
impossible when attacks such as ransomware are launched because
checkpointing is performed after the system is infected with malware
and when the process is already damaged by malware. Furthermore,
when it is applied to a distributed application environment, one service
container is locked down for 2.8 s or more. Hence, if a response
code awaiting processing is not prepared by different services that are
organically interconnected, the total service may be locked down for
approximately 2.8 s or more. This is because CRIU was mainly designed
for complete checkpointing rather than for performance. Consequently,
various methods for minimizing the checkpoint/restore time required
by CRIU have been proposed (Venkatesh et al., 2019a; Webster et al.,
2018). In 2019, Amoon et al. proposed a method that ensures the fault
tolerance of services by flexibly controlling the checkpoint performance
intervals (Amoon et al., 2019). Their proposed method dynamically
controls the checkpoint interval according to the service failure rate.
4

However, failure rate-based post-processing methods cannot respond
when a sudden service failure arises, and because checkpointing is
performed according to the failure rate, important checkpoint data may
be lost. Awalia et al. proposed a method that improves service resilience
via checkpoints in a parallel computing environment. Their proposed
method creates periodic checkpoints to secure restoration points for
the service. However, the method does not consider the checkpoint
performance cycle, checkpoint operation optimization, and data simi-
larity (Putri et al., 2020). Venkatesh et al. proposed a method to rapidly
checkpoint/restore containers through the CRIU running on the Docker
Engine (Venkatesh et al., 2019a). This study optimized the read/write
operations that occur during checkpointing using in-memory and copy-
on-write (COW) techniques. This reduced the checkpointing time by
10%–200% and restoration time up to 42.3% compared to the CRIU.
Because that study optimized operations for CRIU from the simple
checkpointing perspective, it did not consider the homogeneity of
containers, checkpoint cycle, and management and restoration points.
Therefore, appropriate requirements and factors for a specific environ-
ment should be reflected in the design for these research results to be
used for special purposes in cloud services.

3. Design of iContainer

We propose iContainer, which stands for Immortal Container. It
provides stable services by quickly returning to the point desired by
a user when a failure occurs, by continuously recording container
services. In this section, the overview and design of the iContainer are
discussed.

3.1. iContainer overview

iContainer quickly restores the stable state using a checkpoint when
a service failure occurs. Consecutive checkpoints are required for
restoration from service failure. Therefore, we devised methods to
efficiently perform consecutive checkpointing. To use iContainer for
restoration from container service failures, the following requirements
are considered. First, the time required for generating the checkpoints
of container must be minimized. Second, the size of the checkpoint data
must be minimized. Finally, it must be possible to restore the system
from service errors within a short time. A few assumptions are required
to achieve this goal. First, it is assumed that the service running in the
container is not specialized for memory changes. In a database service
that causes continuous memory changes, a performance delay can occur
during checkpoint creation and the generated checkpoint data may
increase exponentially. Second, it is assumed that the container does
not provide teletypewriter (TTY). The connection of TTY cannot be
maintained because the transmission control protocol (TCP) connection
is temporarily lost in the process of restoring the service from the
checkpoint. We established these requirements and designed iContainer
as shown in Fig. 2.

iContainer has three contributions. First, checkpoint operations are
minimized through checkpoint zoning. We divide the checkpoint target
zones into hot and cold zones to minimize the data write operations
that are duplicated in the repetitive checkpoint operations. The cold
zone is a checkpoint target with duplicate data because data changes
rarely occur. The hot zone is a checkpoint target in which data changes
frequently occur. An example is the memory area. We extract libraries,
environmental variables, and network information by analyzing the
containers in operation and manage the containers by a cold mapping
table. The iContainer performs checkpointing only when a file system
event occurs for the zones registered in the cold mapping table and
mainly for the hot zone. The reason for this design is to remove
unnecessary checkpoints because data changes occur in the cold zone
only when a file system event occurs. Second, checkpoint operations
are accelerated through dirty-page tracking. In the cold zone, check-
pointing is performed for changed data when a file system event occurs.

However, the hot zone, where data changes occur frequently, requires
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Fig. 2. Overview of the Immortal Container Framework.

an efficient checkpointing method. Therefore, we devised a method to
efficiently track data changes by managing the container memory area
corresponding to the hot zone by write-protect. When write-protect
is specified for the memory area, the write performance may become
low; however, the changes of the memory can be tracked by detecting
page-fault events. Third, checkpoint random-access performance can be
guaranteed for service failure recovery. iContainer restores the stable
state using a checkpoint when a service failure occurs. In this pro-
cess, it backs up the stable container environment through repetitive
checkpoint creations. We divide the checkpoint targets into hot and
cold zones and create partial checkpoints by tracking changed data
for efficient checkpoint creation. However, an additional operation to
convert to a complete checkpoint is required to use partial check-
points for service failure recovery. The transformation to a complete
checkpoint is achieved through repetitive ⊕ operations from the first
checkpoint to a specific checkpoint. Thus, the time required for check-
point transformation increases proportionally with the accumulation
of incomplete checkpoints. To solve this problem, we actualized the
concept of save point. A save point is a complete checkpoint that is
inserted between incomplete checkpoints to accelerate the checkpoint
restoration speed. A thread in the background generates and inserts a
save point between incomplete checkpoints based on the user rules,
thus, keeping the restoration time constant. The proposed framework
is loaded in the container environment where Docker Engine is running.
5

Table 1
Frequency of syscalls called at checkpoint.

Symbol Calls Percentage

memcpy_orig

iter_file_splice_write

86%

vfs_iter_write
do_iter_write
do_iter_readv_writev
ext4_file_write_iter
__generic_file_write_iter
iov_iter_copy_from_user_atomic

__lock_text_start

arch_ptrace

6.5%
ptrace_request
ptrace_resume
wake_up_state
try_to_wake_up

SYSC_kill
kill_pid_info

6.5%group_send_sig_info
do_send_sig_info

Etc. – 1%

3.2. Semantic-aware hot/cold container classification scheme

iContainer is a solution that generates checkpoints for previous
points by repeatedly taking snapshots of container states and returns to
a stable checkpoint when an abnormal behavior is detected. However,
service recovery methods based on snapshots or checkpoints are limited
by service downtime and low availability. This is because a large
overhead is generated by checkpoint operations. In particular, most
checkpointing overhead occurs in the write operation (Venkatesh et al.,
2019b).

Table 1 shows the ratio of syscalls called when checkpointing is per-
formed. The read-to-write operations must be performed repeatedly to
store the container memory and file system data as one file. In the pro-
cess, the number of write operation calls increases in proportion to the
size of the resource to be copied to the storage. To reduce the number
of write operation calls, we devise a scheme to minimize unnecessary
checkpoint operations and duplicate data by classifying the checkpoint
zones into hot/cold through container scanning. A container instance
is composed of core internal elements of the host operating system
kernel required for operation and external elements such as libraries,
environmental variables, and software sets. Therefore, the service-type
containers that are operated in one physical environment use the same
internal elements and are operated by the unique individual external
elements of each container. The internal and external elements can be
separated into the cold and hot zones, respectively. In the cold zone,
libraries are core resources that are commonly used by several contain-
ers. Several libraries are used in a duplicated manner in an environment
where multiple containers are operated simultaneously. Therefore, in
a large-scale container operation environment, it is advantageous to
exclude duplicate areas from checkpointing by efficiently managing the
library area. We scan containers using the same library and simply
point to the corresponding area during checkpointing to effectively
manage relatively large libraries.

Fig. 3 shows the process of combining and managing checkpoint
libraries. 1⃝ Because containers are managed by a process in the oper-
ating system (OS), the library information used in the containers can
be quickly obtained by scanning a partial area of the process. When the
lib scanning engine is called, the library information that is being used
by the containers in operation is extracted. 2⃝ All libraries are created
as a library checkpoint file by overlaying the library information of all
containers in operation as an image; the library information for each
container is created and managed as a cold pointing table. 3⃝ When a
checkpoint event occurs in a specific container, the resource registered
in the cold pointing table is excluded from the checkpoint target.
Because checkpoint operations for the library area registered in the
table do not occur any more, the duplicate track and write operations
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Fig. 3. Minimization of container checkpoint operations through container image
analysis.

from repetitive checkpoints is removed. Therefore, we focus only on
the change information of the hot zone and allocated memory to track
and record the container states, excluding unnecessary duplicate areas.
4⃝ Once the checkpointing operation for the hot zone is completed,

the cold pointing table information is combined with the hot zone and
stored. Additionally, iContainer provides a file system tracking feature
to track cold zone. For efficient detection of file system event, it was
implemented using fcntl-inotify. Inotify is a linux kernel subsystem that
efficiently notifies events specified by user through file system monitor-
ing. We designed it to monitor only creation, removal, and modification
operations among the various file system events. The file system event
detection is used to efficiently track the change information of the cold
zone. As Inotify, which we implemented in iContainer, is an event-
driven mechanism, it is possible to track the change information of
the file system only by detecting events without duplication removal
operations. Thus, file system event detection can be used to efficiently
extract duplicate cold zone data. Furthermore, the file system event
detection feature is used in the user-defined checkpoint creation rules.
Examples of utilization are provided in the case study.

3.3. Dirty-page tracking-based checkpoint acceleration

The tracking and recording of the memory area require the most
operations when performing checkpointing for the hot zone area. The
memory is classified as a hot zone because it continuously changes. To
minimize memory recording operations, the scope of the memory to
track must be minimized. Existing container checkpointing mechanisms
do not consider consecutive checkpoints; consequently, each time a
checkpoint is created, the entire memory area of the container’s process
is saved to storage. Experimental results show that more than 78%
of the memory area was duplicate, when the memory of multiple
containers, in which the same services are operated was dumped 100
6

Fig. 4. Tracking container memory change information for checkpoint acceleration.

times with 2 s cycle. As the purpose of iContainer is to continuously
record checkpoints, storing duplicate memory is unnecessary. We de-
vised a method to track and record the change information of the
memory without duplication removal operations. We seek to track and
record the change information of the memory because the memory
has spatiotemporal locality. By focusing exclusively on the memory
area that changes rather than the entire memory area, we solve the
problem of checkpoint performance delay caused by duplicate mem-
ory storage. Moreover, by simplifying the checkpointing operation, it
becomes possible to minimize the memory potentially lost during the
checkpointing process. Fig. 4 shows the detailed process of tracking and
recording the memory change information of the container. 1⃝ iCon-
tainer generates the container memory table by analyzing the container
memory allocation information to map the container memory, which
is the checkpoint target, to the host memory. 2⃝ To effectively track
changes in the memory of the process, the write permission for the
memory area is protected. The first checkpointing operation freezes
the container and stores the entire memory area of the container.
The data generated here is 𝐶𝑓 . A process to generate 𝐶𝑓 is necessary
because it is used as seed data to process the partially saved checkpoints
into complete checkpoints. When 𝐶𝑓 creation is completed, it disables
the write operation of the container with reference to the container
memory table. 3⃝ When the write permission is removed from the
memory area that is allocated to and used by a container, a page fault
occurs with force whenever a memory change occurs. The page fault is
tracked and the data and position information that were used as write
arguments are intercepted and stored in a temporary checkpoint buffer.
Subsequently, changes in the information corresponding to the page
fault are updated in the container memory. Saving only the memory
area where the write operation occurred through page fault tracking
has the same effect as removing duplication between the previous mem-
ory and current point. The proposed framework is used as a checkpoint
buffer area by allocating part of the host memory. A performance delay
in checkpoint operations in a hot zone is caused by the bandwidth of
the memory and file system. Therefore, if the in-memory area is used as
a dedicated area for checkpointing, the read/write throughput increases
and this is advantageous for performance in container checkpoint and
restoration operations. 4⃝ If the temporary checkpoint buffer becomes
full or the condition specified by the user is satisfied, the changed
memory information is generated in the storage as one checkpoint. The
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Fig. 5. Save point for creating partial and complete checkpoints for checkpoint
acceleration.

data generated here is 𝐶𝑝. This process is the same as tracking only
the changed memory between the previous and current memory and
saving it to storage. However, because the 𝐶𝑝 created here contains only
the memory offset and raw data where the write operation occurred,
it cannot be used for rollback. The solution to this is discussed in the
next section.

3.4. Software-defined checkpoint/restore

Our goal is to return to a state where stable services can be provided
by rolling back to the checkpointed optimal point when the container
service cannot be operated normally. Therefore, when a situation in
which a container cannot provide stable services is detected, it must
be quickly restored to the optimal point. In this section, we present
the design of the software-defined checkpoint/restore (SDCR) scheme
that efficiently manages and utilizes checkpoints. The SDCR Scheme
has the following two features. The first feature is management of the
collected checkpoints. Rollback through checkpoint generates a large
amount data over time because it stores and manages the checkpoint
file in the file system. Hence, effective management of checkpoints is
a problem that must be solved in terms of storage cost. We combined
libraries, tracked changed memories, and partially recorded them to
remove duplicate checkpoint data. The proposed method provides a
considerable advantage in terms of storage cost because most dupli-
cate data can be removed. However, complete checkpoint data are
required to rollback through checkpoints when a service error occurs.
Fig. 5 shows the process of generating checkpoints through SDCR. In
our proposed framework, partial checkpoints are created only for the
changed container data. The data created here cannot be immediately
used for rollback. As such, a post-processing operation is needed to
recreate the complete checkpoint required for rollback. To generate
the checkpoint used for rollback, ⊕ is sequentially calculated from
point 𝐶𝑓 , which has the form of a complete checkpoint, to the user-
specified point 𝐶𝑝. This design quickly converts the previous checkpoint
to a complete checkpoint when stable service recovery through the
checkpoint is created immediately before the service error. The second
feature is the guarantee of random-access performance for checkpoint
7

restoration. iContainer must perform the ⊕ operation to create a com-
plete checkpoint that can be rolled back. If the point where the service
error is detected is far from the point of the stable checkpoint, then
many ⊕ operations must be performed. The restoration time linearly
increases in proportion to the number and size of checkpoints for which
the ⊕ operation must be performed. Furthermore, the time it takes
to create a complete checkpoint significantly varies when the user
randomly selects a restoration checkpoint. We introduce the save point
concept to solve this problem. Fig. 5 shows the process of creating
a save point through SDCR. SDCR can freely specify the save point
creation condition by user rules. For example, when the user sets
the maximum time required for restoration, the restoration time is
inferred by calculating the sizes of the checkpoint and save points are
generated between checkpoints that exceed the time specified by the
user. Another example is the generation of save points at the time a
file system event occurs. Most of the situations where stable services
cannot operate normally occur when the file system is changed by code
generation, removal, or modification by an administrator or infection
by malware; these are highly likely to be a restore point. Because save
points are complete checkpoint data of specific points, the ⊕ operation
must be performed only for the checkpoints after the generation of a
save point. Therefore, the time required for checkpoint restoration is
reduced.

3.5. Seamless recovery

Availability is a prerequisite that must be guaranteed by every com-
puting system and service. Specifically, availability must be ensured
more in a distributed service environment in which many contain-
ers operate organically. For example, if one container does not work
normally, it can have an adverse effect on all the other containers.
Therefore, availability must be guaranteed even if a service failure
occurs. We devised a method of buffering the packets generated after a
checkpoint in a queue to respond to requests that entered in a situation
where a service failure has occurred after self-recovery. Service requests
from clients can occur during a service failure or self-recovery. To
prevent loss of the packets requested in a situation where stable service
is impossible, it is designed to buffer the packets of incoming traffic in
the queue through the netfilter-NFQUEUE library. When the NFQUEUE
is used, the traffic entering the host can be stored in the packet queue
by the packet filter and requested again. The scope of network packets
stored in the queue comprises all incoming packets to the service
port after the last checkpoint. In this process, packets for which the
user or service requests were processed are excluded from the queue.
Thus, the only packets remaining in the queue are those for which a
service processing request was received but the user or service was
not responded to when the checkpoint was created. This design is used
because a service error may occur while the service requested by the
user is being processed. It is also used to process service requests after
service recovery for all packets requested when stable service could not
be provided. However, all methods that do not require a response are
stored in the queue. To solve this problem, the user must manage the
methods that do not require a response using a whitelist. However,
for methods recorded in the whitelist, only packets requested when
stable service was unavailable can be processed. We filter packets based
on checkpoints because we cannot predict the point of service fail-
ure. iContainer ensures seamless service by retransmitting the packets
buffered in the queue to the target container service after the container
service is restored through rollback. However, one structural limitation
is that normal processing cannot be performed if the service rollback
time exceeds the user-specified timeout period. This limitation can be
addressed by configuring the save point creation condition of SDCR to
be less than the timeout period.



Journal of Network and Computer Applications 208 (2022) 103494S.-H. Choi and K.-W. Park

1

t
e
a

1
1
1
1
1
1
1
1
O

1
1
1
1
1
1
1
O

Algorithm 1 Performing a tracing-based checkpoint
Input: Request for container checkpoint
1: 𝐶𝑓 ← 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝐹 𝑖𝑙𝑒
2: 𝐶𝑝 ← 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝐹 𝑖𝑙𝑒
3: 𝑀 ← 𝐴𝑓𝑖𝑙𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑎𝑐𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛
4: 𝐼𝑛𝑖𝑡_𝐹 𝑙𝑎𝑔 ← 𝐹𝑎𝑙𝑠𝑒
5: if 𝐼𝑛𝑖𝑡_𝐹 𝑙𝑎𝑔 = 𝐹𝑎𝑙𝑠𝑒 then
6: Create a 𝐶𝑓
7: 𝐼𝑛𝑖𝑡_𝐹 𝑙𝑎𝑔 ← 𝑇 𝑟𝑢𝑒
8: end if
9: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1, 2,… do
0: if 𝛥𝑃𝑎𝑔𝑒 ‖𝛥𝐹 𝑖𝑙𝑒𝑠𝑦𝑠𝑡𝑒𝑚 then

11: Create a 𝐶𝑝
𝑛 = 1, 2,… , 𝑁

12: Create a 𝑀𝑛 = 1, 2,… , 𝑁
13: end if
14: end for
Output: 𝐶𝑓‖𝐶𝑝

𝑛,𝑀𝑛

3.6. Algorithms of iContainer

To accelerate checkpoints, the proposed iContainer creates incom-
plete checkpoints through hot/cold classification. Additionally, we
propose a method to restore incomplete checkpoints to complete check-
points. This section explains the checkpoint and rapid checkpoint
restoration algorithm used by iContainer.

∙ Event trigger-based checkpoint: iContainer creates partial check-
points by separating hot and cold zones and tracking the memory,
which is a hot zone. Algorithm 1 shows the checkpointing process.
iContainer performs checkpointing for all zones, be it hot or cold, when
the first checkpoint creation request by a user or an event is received.
𝐶𝑓 is generated through this process. Subsequently, the background
hread monitors the hot and cold zones of the container. If a file system
vent is detected in a cold zone, the event entity and offset information
re recorded in 𝑀 and the 𝐶𝑝 is generated by inserting data into it. At

this point, 𝐶𝑝 is not a complete checkpoint; however, it stores partial
data. If a dirty page is detected by the memory tracker in a hot zone,
the event entity and offset information is recorded in metadata and
data are input to 𝐶𝑝. If 𝐶𝑝 is generated whenever a dirty page occurs,
numerous metadata and 𝐶𝑝 are generated. This causes file I/O overhead
and difficulty in checkpoint management. Therefore, 𝐶𝑝 is generated
only according to a user-specified cycle or when a user-defined trigger
occurs.

∙ Rapid checkpoint restoration algorithm: iContainer creates incom-
plete checkpoints to accelerate the checkpointing speed. Because the
proposed method performs partial checkpoints, it is impossible to per-
form rollback using one checkpoint. Therefore, a process for creating a
new checkpoint using complete and incomplete checkpoints is required.
Algorithm 2 shows the basic checkpoint restoration method. When the
user selects a random 𝑁 , a complete checkpoint is created through the
init checkpoint and ⊕ processes. At this point, 𝑀 is used for the offset
information for which ⊕ must be performed and 𝐶𝑝 is used for the data.
𝐶𝑓 is created through this process. Subsequently, the 𝐶𝑓 at the random
point 𝑁 selected by a user is obtained by repeatedly performing the
𝐶𝑓 ⊕ 𝐶𝑝 operations. However, such checkpoint restoration operations
increase in proportion to the ⊕ operation as the 𝑁 point becomes
farther from the init point; this exponentially increases the time re-
quired for checkpoint restoration. The checkpoint restoration time issue
is explained through an experiment in Section 4.4. The problem is that
the service error rollback time increases with the checkpoint restoration
time. We propose save point to solve this problem.

A save point is a complete checkpoint that is inserted between
incomplete checkpoints to accelerate the recovery speed of checkpoint-
ing. The save points are generated adaptively through user-defined
8

Algorithm 2 Process for restoring an incomplete checkpoint
Input: Select 𝐶𝑝𝑁
1: 𝐶𝑓 ← 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝐹 𝑖𝑙𝑒
2: 𝐶𝑖 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 𝐹 𝑖𝑙𝑒
3: 𝐶𝑝 ← 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝐹 𝑖𝑙𝑒
4: 𝑀 ← 𝐴𝑓𝑖𝑙𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑎𝑐𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛
5: 𝑂𝑓𝑓𝑠𝑒𝑡 ← 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡𝑟𝑎𝑐𝑒 𝑑𝑎𝑡𝑎
6: for 𝐶𝑝

𝑛 = 1, 2,… , 𝑁 do
7: if 𝑁 = 1 then
8: for all 𝑀𝑛 do
9: 𝐶𝑓 ← 𝐶𝑖[𝑂𝑓𝑓𝑠𝑒𝑡] 𝛿 𝐶𝑝

1[𝑂𝑓𝑓𝑠𝑒𝑡]
0: end for
1: end if
2: if 𝑁 then
3: for all 𝑀𝑛 do
4: 𝐶𝑓 ← 𝐶𝑓 [𝑂𝑓𝑓𝑠𝑒𝑡] 𝛿 𝐶𝑝

𝑛[𝑂𝑓𝑓𝑠𝑒𝑡]
5: end for
6: end if
7: end for
utput: 𝐶𝑓

Algorithm 3 Using save point to restore an incomplete checkpoint
Input: Select 𝐶𝑝𝑁
1: 𝐶𝑠 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 𝐵𝑒𝑓𝑜𝑟𝑒𝑁 (𝑆𝑎𝑣𝑒𝑝𝑜𝑖𝑛𝑡)
2: 𝐶𝑓 ← 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝐹 𝑖𝑙𝑒
3: 𝐶𝑝 ← 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝐹 𝑖𝑙𝑒
4: 𝑆 ← 𝑁 𝐴𝑓𝑡𝑒𝑟𝐶𝑠
5: 𝑀 ← 𝐴𝑓𝑖𝑙𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑎𝑐𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛
6: 𝑂𝑓𝑓𝑠𝑒𝑡 ← 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡𝑟𝑎𝑐𝑒 𝑑𝑎𝑡𝑎
7: for 𝐶𝑝

𝑛 = 1, 2,… , 𝑁 do
8: if 𝑁 = 𝑆 then
9: 𝐶𝑓 ← 𝐶𝑠
0: end if
1: if 𝑆 < 𝑁 then
2: for all 𝑀𝑛 do
3: 𝐶𝑓 ← 𝐶𝑓 [𝑂𝑓𝑓𝑠𝑒𝑡] 𝛿 𝐶𝑝

𝑛[𝑂𝑓𝑓𝑠𝑒𝑡]
4: end for
5: end if
6: end for
utput: 𝐶𝑓

rules. Algorithm 3 shows the process for restoring a checkpoint using a
save point. When the user requests the creation of a random 𝐶𝑓

𝑛, SDCR
selects a save point that is closest before 𝑁 among the generated save
points. The last 𝐶𝑝 of 𝐶𝑠 is indicated as 𝑆. If a random 𝑁 is at the same
position as 𝑆, the restoration process is unnecessary. However, if 𝑁 is
larger than S, the 𝐶𝑓 at point 𝑁 is acquired by repeatedly performing
the 𝐶𝑓 ⊕ 𝐶𝑝 operation until the point 𝑁 . This design solves the problem
of exponentially increasing the checkpoint execution time. However,
the indiscriminate save point generation condition wastes the storage
space and intermittent save point generation increases the container
service error restoration time. In this study, an experiment is conducted
for a case study that uses the maximum checkpoint restoration time for
the save point creation condition. The experiment on the save point
creation is explained in Section 4.4.

4. Evaluation

The three most important elements of the proposed system are
the time required for checkpointing, data size, and time it takes to
restore the stable state from a service unavailable state. We evaluated
the usability of iContainer through three experiments, in which we
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Fig. 6. Comparison measurement of checkpoint execution time (CRIU vs. iContainer).

compared it with CRIU. We compared iContainer with CRIU because the
latter will be integrated into the checkpoint function of Docker Engine.
Furthermore, iContainer also runs in the Docker Engine environment.
First, we measured the time it takes for checkpoint. To measure the
potential downtime and performance overhead caused by checkpoints,
an apache2, caddy, django, rails, nginx web service environment was
built through an Ubuntu image uploaded to Docker Hub (apache, 1995;
ZeroSSL, 2014; Hansson, 2004; Sysoev, 2004). An Ubuntu image was
used in order to consistently build all web services in the form of
packages. As the checkpointing operation processes the container at
the process level, all container images can be used. We performed a
stress test using the apache2 benchmark installed on the web server.
For comparison of CRIU and iContainer, we generated 1000 checkpoints
in 1 s cycles during the stress test. We measured the average check-
pointing time during the generation of 1000 checkpoints. Second, we
compared the size of the data generated by the container checkpoints.
CRIU checkpoints the entire container, whereas iContainer checkpoints
only the area that has changed after the first checkpoint was created.
For comparison of CRIU and iContainer, we generated 1000 checkpoints
in 5 s cycles during the stress test. Subsequently, we measured the
storage space consumed by the generation of 1000 checkpoints. Third,
we measured the time required for service recovery. The proposed
framework creates partial checkpoints to reduce the checkpointing time
and the size of the generated data. However, checkpoint restoration
is required for rollback because partial checkpoints are not complete
checkpoints. In this experiment, the restoration times for checkpoints
created through CRIU and SDCR were measured and compared.

4.1. Experimental environments

The experimental setup for this study was as follows. Intel(R)
Xeon(R) Silver 4114 CPU @ 2.20 GHz with 20 Cores, 384 MB DDR
RAM, and 1 TB SSD storage were used. Ubuntu 16.04 (kernel 5.3.0-59)
was the host OS, and Docker Engine version 18.09.7 was used. Ubuntu
was used as the base image for the containers. The maximum memory
size used by the containers was limited to 128 MB.

4.2. Comparison of checkpoint execution time

In this experiment, the time it takes for checkpoint creation was
measured. We performed checkpointing in 1000 ms cycles for the
web service container that was built using iContainer. A memory of
128 MB was allocated to the web service container. To demonstrate
the execution time reduced by the proposed service recovery-friendly
checkpoints, the result was compared with that of CRIU. Fig. 6 shows
the experimental results. The 𝑥-axis represents the checkpoint scheme
and workload and the 𝑦-axis represents the checkpoint execution time.
For CRIU, it took 950 ms on average for checkpoint creation. For
iContainer, the first checkpoint took 712 ms on average; however, it
9

Fig. 7. Comparison of data size generated by checkpoints (CRIU vs. iContainer).

ecreased gradually from the next checkpoint and converged to 290 ms
n average. This indicates that the checkpoint execution time was
educed by more than 3.27 times compared to CRIU. Two reasons
ccount for the reduction in the checkpoint execution time. The first
s the change in the checkpoint structure. CRIU was designed for single
heckpointing. Therefore, when a checkpoint is requested, the entire
rea of the target process is checkpointed. Thus, duplicate operations
ata are included because the entire area of the process is checkpointed
epeatedly whenever a checkpoint is requested for the same target
rocess. By contrast, the proposed framework was designed with con-
ideration for repetitive checkpoints. Therefore, the first checkpoint is
erformed for the entire area, excluding the library area of the process;
owever, the ensuing checkpoints are created only with the changed
ata, thereby minimizing duplicate operations and data. The second
eason is the in-memory checkpoint buffer. Most checkpointing opera-
ions consist of read–write repetitions. Therefore, when checkpoints are
enerated in a file system such as HDD and SSD, the checkpointing time
ncreases owing to the difference in bandwidth between the memory
nd file system. To minimize such a bandwidth difference, we used
ome memory from the host as a buffer area for checkpoints.

.3. Comparison of data size generated by checkpoints

In this experiment, we measured the size of the data generated in
torage for container checkpoints created by CRIU and iContainer. CRIU

checkpoints and stores the entire container, whereas iContainer stores
only the area that has changed after the first complete checkpoint. We
built five web-server environments (Apache2, Caddy, Django, Redis,
Nginx) to reproduce the environment in which services are executed.
The maximum size of memory that could be used by a web-server
container was limited to 128 MB. For the workload of the server, the
Apache2 benchmark was used. In this experiment, 1000 checkpoints
were generated in 5000 ms cycles. Fig. 7 shows the experimental
results. The iContainer saved the cumulative data size of the generated
checkpoints by 69.2% on average compared to CRIU. Nginx showed a
storage reduction effect of up to 87%. This proved that the separation
of hot and cold zones and tracking-based checkpoints designed in
iContainer have a storage reduction effect. In this experiment, only
one web server was operated for checkpoints; however, the storage
reduction effect will increase if multiple containers are operated. The
difference in checkpoint capacity is caused by the removal of duplicate
data. CRIU was designed for a single checkpoint, but iContainer was
designed to remove duplication from repetitive checkpoints.

4.4. Comparison of time taken to restore checkpoint

In this experiment, the time taken to restore the stable service when
the service stopped owing to an error was measured. The iContainer
uses part of the memory of the host OS as a checkpoint buffer for fast
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Fig. 8. Comparison of checkpoint rollback times.

Fig. 9. Measurement of time taken to restore checkpoints according to capacity.

rollback in the event of a container recovery request. First, the rollback
time is compared with CRIU in Fig. 8. This experiment used one
container that has a memory of 128 MB and runs the apache2 server.
CRIU took 653 ms on average to perform rollback, whereas the SDCR
took 337 ms on average. The experimental results showed that the
rollback performance of the proposed framework was approximately
1.93 times faster than that of CRIU. The rollback time was reduced
because most of the containers in operation have duplicate cold zones
and the data and operations to be rolled back decreased.

To minimize storage costs and improve checkpointing speed, iCon-
tainer creates partial checkpoints by tracking and saving only the
change information of the container area. This structure requires an
additional process called checkpoint restoration to use checkpoints for
rollback. We measured the time taken to restore checkpoints. The ⊕
operation must be performed to create complete checkpoints using
partial checkpoints. Thus, the problem of increasing ⊕ operations with
the accumulation of checkpoints may occur. Fig. 9 shows the measure-
ment of the time taken for checkpoint restoration as the ⊕ operations
increase. The 𝑥-axis represents the capacity required for operation and
𝑦-axis represents the time required for checkpoint restoration. The
experimental results show that, as the checkpoints accumulated, the
time required for restoration increased in proportion. Therefore, when
checkpoints are accumulated, immediate rollback becomes impossible
in the event of a service error.

To solve the problem above, we introduced the save point concept.
Save point reduces the rollback time by inserting complete checkpoints
at specific points defined by the user. The criteria for generating
save points is freely defined by the user. In this experiment, when
the user sets the maximum time required for checkpoint restoration,
SDCR calculates the cumulative size of checkpoints, infers the required
restoration time, and generates save points in the background. Fig. 10
shows the experimental results. The 𝑥-axis represents the number of
10
Fig. 10. Measurement of checkpoint restoration time through save points.

imes and 𝑦-axis represents the maximum restoration time and actual
ime taken for restoration. We verified if the maximum restoration time
ould be guaranteed through save points when it was set to a random
alue between 0.1 s and 10 s. The experimental results proved that
he save points guaranteed the maximum restoration time by 99% or
ore. The checkpoint execution time was not increased by the save
oints because they are separately generated in the background from
heckpoint operations.

. Usage scenario

In this section, the usage scenarios of the proposed iContainer are
iscussed.

.1. Scenario 1: Checkpoint creation based on file system event

The criteria for creating checkpoints are crucial. Because the lost
nformation varies by the checkpoint creation criteria, it is ideal to
erform checkpoints in a fast cycle to minimize the information lost in
he event of a service error. However, efficient criteria for checkpoint
reation are important because unnecessary checkpoint creation can
ause computational/spatial overheads. Most of the situations where
table services cannot operate normally are caused by a change in the
ile system such as code generation, removal, or modification by an
dministrator or infection with malware (Analytica, 2021a). Therefore,
t is expedient to select the conditions for creating checkpoints based
n the generation, removal, and modification events of files through
he detection of file system events. iContainer is designed to efficiently
onitor file system events using Inotify. Therefore, users can generate

onditions to create checkpoints when a file system event occurs.
owever, users should be cautious because memory-resident malware
ay not generate a file system event.

.2. Scenario 2: Checkpoint creation based on resource usage

If users desire to leave many parts of containers as checkpoints, they
an set the checkpoint based on resource usage. The hot zone data can
e lost for checkpoints that are performed based on a cycle or a file
ystem event. To minimize data loss for hot zone, adaptive checkpoint
reation based on resource usage is required. Adaptive checkpoint
reation generates checkpoints based on the change of hot zone. Thus,
fine-grained checkpoint is created if the memory usage is large and
coarse checkpoint is created if the memory usage is small. This
ethod is useful when closely monitoring the behavior of a container

ecause active checkpoint creation can preserve data. However, if the
ontainer operates a memory-intensive service, a performance delay
ay be caused by numerous checkpoints and memory tracking.
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5.3. Scenario 3: Service error detection and self-service rollback

The health check engine inside the iContainer can be used to deter-
mine the service state of the container in operation. The health check
engine normally self-diagnoses the state of services through two tests.
First, it verifies the operation through resource usage monitoring for a
process inside the container. The container service uses a resource to
process requested jobs when a request is received from the outside. If
the resource usage of the container does not increase when a normal
request is received, it is considered that the service does not work
normally. Second, it generates the health API through requested packet
monitoring. Health checker generates the health API that determines
whether a service operates normally by monitoring the packet that
enters the container. However, because the generated health API can
cause service overload or affect the service, the generated health API
does not have parameters and replicates the packet whose method is
obtained by monitoring. An example of this method is the API that
requests a server time. iContainer can quickly and efficiently determine
the service state using the two tests above. The health API has different
service interruption detection times depending on the request cycle.
When we performed health checks with 1 s cycle, the service inter-
ruption could be detected within 1.01 s on average. Furthermore, the
health check engine can be used for service error recovery and self-
recovery because it can be used to verify whether the rollback point
provides a stable service. However, detecting service errors only using
the health check engine was left for a case study because it can cause
false positive and false negative.

6. Conclusion

This study proposed iContainer, a framework that can quickly re-
store a cloud-based system to a point desired by the user and re-
store the stable service state when a failure occurs by continuously
recording container services to secure service resilience. iContainer has
three contributions. First, it minimized checkpoint operations through
checkpoint zoning. It reduced the storage cost by removing duplicate
checkpoints and reduced the checkpoint execution time. We classified
the checkpoint zones of the container into hot and cold zones using the
semantic-aware hot/cold container classification scheme. This scheme
minimized the unnecessary checkpoint operations for the cold zone.
Second, it minimized the time required for checkpoint operations. We
performed duplication removal operations through memory tracking
for the hot zone. Consequently, the checkpoint execution time of the
iContainer became faster by approximately 3.27 times compared to that
of CRIU and the storage cost was reduced by 69.2%. Finally, a case
study was conducted for rapid checkpoint restoration and selection of
checkpoint/restore points. We proposed the save point concept to im-
prove the performance for additional checkpoint restoration operation,
which is a limitation of iContainer. It was proven through an experiment
that 99% or more of the checkpoint restoration time specified by the
user can be guaranteed using save points. Consequently, it took 337 ms
on average to restore the container to the same checkpoint in the
event of a service error. Comparison with the conventional checkpoint
tool CRIU shows that the restoration time increased by approximately
1.93 times. Moreover, the user can freely select the checkpoints and
restore points through SDCR. The iContainer proposed in this study
was designed for services with small memory operations, such as web
services. Therefore, the checkpoint time may be delayed and the opera-
tion performance of the container may decrease in services that require
memory-intensive operations such as database, machine learning, and
storage services. This limitation is common to all checkpointing-based
restoration solutions. It can be solved through checkpoint creation by
user intervention or long-term checkpoint creation. iContainer can be
applied as a basic technology in forensics, introspection, and abnormal
behavior detection because it stores the lifecycles of containers as
checkpoints, which can be used as data to identify the cause of attacks
11
or security accidents. Furthermore, the proposed framework can be
used in a variety of areas because it can freely specify checkpoints and
restore points according to user requirements. In future work, we will
conduct studies to solve the execution time delay and service interrup-
tion problems in checkpoint creation for memory-intensive containers
and apply efficient checkpointing to the security field.
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