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a b s t r a c t 

To improve their cybersecurity knowledge and skills, students participate in a competitive game called 

capture the flag (CTF). CTF is used as an educational tool to improve students’ cybersecurity compe- 

tency by solving challenges. As system vulnerabilities are the leading cause of cyberattacks on critical 

systems, cybersecurity personnel with knowledge and skills to detect system vulnerabilities are increas- 

ingly in demand. In this context, the importance of challenges concerning system vulnerabilities, such 

as pwnable, is gradually increasing in CTF competitions. Unlike other CTF challenges, solving a pwnable 

challenge requires considerable knowledge and skill. However, traditional evaluation methods in CTF (i.e., 

pass or non-pass) provide limited feedback regarding knowledge and skill gaps. To investigate this issue, 

we analyzed the results of the CTF competitions held by our research team over the past three years 

(2017, 2018, and 2020). Our analysis revealed the necessity for a new evaluation system that can pro- 

vide detailed feedback to students, while reducing the grading burden on educators. Thus, to provide 

detailed feedback, we propose a cybersecurity training platform, Pwnable-Sherpa, which sets three de- 

tailed evaluation points for a given pwnable challenge. In addition, we designed our training platform 

with a multi-container architecture and an LLVM dummy pass, thereby saving time by grading each de- 

tailed assessment simultaneously rather than sequentially. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Students passionate about cybersecurity participate in a com- 

etitive game called capture the flag (CTF), which helps improve 

heir knowledge and skills. CTF is a game in which two or more 

eams have flags in each other’s systems, and each team must 

teal the flags of the opposing team while safeguarding their own 

ags. Alternatively, flags are located in the system operated by the 

ompetition management team, and each participant attempts to 

teal these flags. To obtain flags from the system, the participants 

ust possess considerable cybersecurity knowledge and skills. Sev- 

ral studies have suggested introducing CTF for cybersecurity ed- 

cation ( Chothia and Novakovic, 2015; Rege, 2015; Vykopal and 

arták, 2016 ). CTFs are increasingly used in cybersecurity educa- 

ion because educators can measure students’ cybersecurity com- 
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etency based on their challenge solving performance ( Chapman 

t al., 2014; Chung, 2017 ). CTFs such as DEF CON CTF ( DEF CON

TF ), HITCON CTF ( Hitcon CTF ), and Codegate CTF ( CODEGATE CTF )

ridge the gap between technical demand and learner competency 

y reflecting the technical demand for cybersecurity in the real 

orld. 

In recent years, the main cause of cyber-attacks on critical sys- 

ems, such as oil pipelines ( US-CERT Alert ) and other operational 

echnologies (OT) ( Forescout Research Labs and JFrog Security Re- 

earch ), has been system vulnerabilities. From this perspective, cy- 

ersecurity personnel with the knowledge and skills to detect sys- 

em vulnerabilities are increasingly in demand. 1 

Hence, system vulnerability challenges, such as pwnable, are 

ecoming increasingly important. The term “pwn” originated from 

he mistyping of the word “own” on a keyboard and is used by 
1 In this study, we consider the Pwnable-Sherpa training platform that can im- 

rove the skills required to detect a program’s vulnerability and write an exploit. 

tudying a training platform that can improve patch skills by testing students’ sub- 

itted patched programs is interesting, because people who possess patching skills 

re increasingly in demand. We leave this concept to future studies. 
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Fig. 1. Comparison of the two assessment methods: conventional CTF (for competition) and fine-grained CTF (for cybersecurity education). 
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he hacker community to obtain unauthorized control over some- 

ne’s system. A pwnable challenge is testing whether a participant 

an read a flag (string) from the target system by exploiting vul- 

erabilities. After successfully acquiring unauthorized control, the 

articipant can obtain the flag and authenticate it using a scoring 

erver. A pwnable challenge consists of the binary of an applica- 

ion, network access (e.g., IP address and port number) for a target 

ystem where the binary runs as a service, and a challenge de- 

cription. To solve this pwnable challenge, reverse engineering, the 

xploit writing, operating systems, software vulnerability, and net- 

ork programming knowledge and skills are required. 

However, because a pwnable challenge requires a deep under- 

tanding of the system (e.g., operating system, application, and 

nstruction sets), many difficulties limit educational effectiveness, 

nlike other CTF challenges. To examine these difficulties, we an- 

lyzed the results of CTF competitions held by our research team 

ver the past three years (2017 and 2018 Park et al., 2018 ), and

020 CTFs for 87 high school students). We identified a signifi- 

ant variation in scores among participants using the Kolmogorov- 

mirnov normality test (Kolmogorov-Smirnov) , indicating that a 

mall number of students could solve the problem correctly. 

In addition, the existing CTF evaluation method (pass or non- 

ass) is more applicable to competition ranking than to improving 

tudent competency. Therefore, it cannot provide detailed feedback 

o students, limiting the enhancement of their knowledge and skill 

KS). However, conducting an evaluation to provide detailed feed- 

ack to a class (e.g., formative assessment) involves providing indi- 

idual feedback to students, which demands significant labor and 

ime from educators ( Chothia and Novakovic, 2015 ). 

Thus, we propose a cybersecurity training platform called 

wnable-Sherpa, which sets three detailed evaluation points for 

 pwnable challenge that provides detailed feedback by referring 

o the control flow hijacking attack stage ( Szekeres et al., 2013 ). 

or each evaluation point, the following tasks (Ts) need to be per- 

ormed to solve the challenge: (T1) identify vulnerabilities in the 

pplication (e.g., memory corruption bugs) using program anal- 

sis and then trigger them, (T2) hijack the control flow of the 

pplication using the vulnerabilities, and (T3) bypass mitigations 

i.e., protection techniques in the system, such as stack canary 

Bufferoverflow) , data execution protection (DEP) ( Executable space 
2

rotection ), no executable (NX) ( Designer, 1997; van der Veen 

t al., 2012; van de Ven, 2004 ), and address space layer randomiza- 

ion (ASLR) ( Shacham et al., 2004, Theo de Raadt, Chew and Song, 

002, Executable space protection )). 

Let us now present an example to better illustrate our ap- 

roach. Suppose a student successfully performs tasks (T1, T2) but 

an not perform T3 because the student does not have the KS 

equired for T3. Under conventional CTF evaluation (pass or non- 

ass), the student would not obtain a score. In contrast, if a new 

ormative assessment method could provide scores for T1 and T2 

longside feedback (e.g., the KS required to perform T3), it would 

elp students improve their learning. Through such a detailed as- 

essment, the educator can measure a student’s capability using 

valuation points, as shown in Fig. 1 (e.g., radial shape chart). 

To realize this educational evaluation philosophy as an auto- 

ated and practical system, we designed our training platform 

ith a multi-container architecture, thereby saving time by per- 

orming these evaluations simultaneously, rather than sequentially, 

or grading each assessment in an isolated manner, as shown in 

ig. 2 . The system architecture of Pwnable-Sherpa can simultane- 

usly perform detailed evaluations from the exploit code submit- 

ed by the student (see Section 4.2 ). For instance, Pwnable-Sherpa 

ay consider the memory offset between binary files in which two 

inaries are applied to different mitigation techniques. For exam- 

le, for binary layouts with and without a stack canary, the two 

inary layouts are different. These technologies enable educators 

o provide students with more detailed feedback while saving time 

nd labor. 

The remainder of this paper is organized as follows. In 

ection 2 , we analyze the compositions of pwnable challenges in 

ajor CTF competitions and explain the details of control flow 

ijacking attacks. Section 3 describes a standard workflow for 

olving the pwnable challenge of a control flow hijacking attack 

nd the evaluation points for student achievement for each task. 

ection 4 presents the design and implementation of the Pwnable- 

herpa. Section 5 highlights the limitations of the conventional 

TF evaluation method using the experimental results. Finally, 

ection 6 concludes the paper. 

This part of our paper was presented at the WISA 2020 confer- 

nce and Information Security Application Lecture Notes in Com- 
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Fig. 2. Detailed evaluation method of a pwnable challenge. 
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uter Science (LNCS) ( Kim et al., 2020 ), which includes the initial 

rchitecture of Pwnable Sherpa. We have made several valuable 

dditions to improve our LNCS paper as follows: (i) Analyzing the 

wnable challenge-solving workflow using the Task, Knowledge, 

nd Skill (TKS) framework, which is a standard framework for 

raining implementation; (ii) dealing with post-implementation, 

uch as integrating Pwnable-Sherpa with a course and measuring 

tudent improvement based on detailed feedback; and (iii) analyz- 

ng the 2020 pwnable CTF competition results held by our research 

eam and demonstrating the problem with the existing CTF eval- 

ation method; and (iv) providing sufficient evidence for why we 

ust address the control flow hijacking pwnable challenge. 

. Background 

.1. Pwnable challenge 

In a pwnable challenge, participants are provided with the bi- 

ary of an application and network access information (e.g., IP ad- 

ress and port number) for a remote server in which the binary 

s running. If the participants read a flag (i.e., a unique string) on 

he server by exploiting the vulnerability of the application and 

ubmitting the flag to the scoring server, they obtained a score. 

 pwnable challenge typically contains one of the following vul- 

erabilities: memory safety violation bugs ( Erlingsson et al., 2010; 

an der Veen et al., 2012 ), logic errors ( Kim et al., 2019, Zalewski ),
3 
ide-channel attacks ( Seibert et al., 2014 ), or encryption misuses 

 Microsoft, 2020 ). A memory safety violation, in which an attacker 

anipulates the memory segment in a program written in low- 

evel languages such as C or C++, is the most frequently tested 

ype of pwnable challenge ( Burns et al., 2017 ). Moreover, this type 

f vulnerability consistently occurs in low-level system software, 

uch as operating system kernels, run-time libraries, and browsers, 

nd is a highly ranked vulnerability among MITRE’s top 25 most 

angerous security vulnerabilities ( MITRE, 2020 ). 

Figure 3 shows the results of analyzing the vulnerability types 

f 105 pwnable challenges tested in four major CTF competitions 

ver the past three years: Plaid CTF ( Plaid CTF ), 0 CTF ( 0 CTF ),

EFCON CTF ( DEF CON CTF ), and HITCON CTF ( Hitcon CTF ). The

nalysis results revealed that, on average, approximately 92% of the 

wnable challenges required control flow hijacking using memory 

afety violations. Based on the statistics of control flow hijacking 

ype pwnable challenges, this study evaluates the control flow hi- 

acking (CFH) pwnable challenge using a memory safety violation 

ug. Hereafter, we use the terms “pwnable challenge” and “CFH 

wnable challenge” interchangeably. 

.2. Control flow hijacking 

CFH is a typical tactic employed by programs that violate 

emory safety because software written in a low-level lan- 

uage, such as C and C++, is susceptible to memory safety viola- 
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Fig. 3. Proportions of the control flow hijacking in pwnable challenges. 
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ions, unlike those written in higher-level languages, such as Java 

 Dhurjati et al., 2003 ) and Rust ( Matsakis and Klock, 2014 ), which

upport memory safety at the programming language level. Lack 

f memory safety can lead to serious security threats. An unautho- 

ized person can seize the targeted program or system by manipu- 

ating the program memory, thereby operating the program with a 

urpose not originally designed by the developer, or even hijacking 

he program’s control flow. 

The initial step of CFH is to induce memory errors in vulner- 

ble programs. In this step, the participant can violate the spa- 

ial or temporal safety of memory by abusing various bugs in the 

rogram. Spatial safety is violated when a participant accesses the 

emory in an unintended manner, such as referencing outside a 

ointer’s boundary or an object (e.g., buffer overflow or underflow 

ay occur). Temporal safety is violated when a program accesses 

he memory using invalid references. In general, if memory allo- 

ation is explicitly released using the free function and deletion 

perator, all pointers pointing to the respective memory are dan- 

ling. If dangling pointers are not successfully freed, a participant 

an access the memory released using a dangling pointer, which 

s called use-after-free vulnerability. In the subsequent steps, free 

ata are manipulated using the previously induced memory error. 

f the data that a participant can control are related to program 

ontrol, the participant can hijack the program’s control flow by 

anipulating the program’s code segment or memory space. For 

xample, if a participant can manipulate a memory segment cor- 

espondings to the return address of a function or pointer of a vir- 

ual table, the control flow of the program changes when the re- 

urn command or indirect call/jmp of the program is executed. Fur- 

hermore, unintended code can be executed (e.g., executing shell 

ode, such as /bin/sh, by controlling the program execution flow). 

 participant requires information related to the data memory lay- 

ut shown in Fig. 4 to trigger a vulnerability that can be exploited. 

Meanwhile, if a protection technique (i.e., mitigation) is present 

n the system or program, the participant must bypass the pro- 

ection method to hijack the control flow of the application. Miti- 

ation policies, such as W �X (write XOR execute), non-executable 

NX) ( Designer, 1997; van de Ven, 2004 ), and address space layout 

andomization (ASLR) ( Shacham et al., 2004, Theo de Raadt, Chew 

nd Song, 2002 ) of the latest OS, and the stack cookie deployed in

 compiler can increase the difficulty level of exploiting a memory 

orruption bug. 

However, several mitigation bypass tactics exist, such as return- 

riented programming (ROP) ( Return Oriented Programing ), jump- 

riented programming ( Bletsch et al., 2011; Nergal, 2001 ), informa- 

ion leakage ( Serna, 2012; Strackx et al., 2009 ), and global offset 
4 
able (GOT) overwrite (c0ntex) . In particular, an ROP exploit can 

ypass various mitigation policies while enabling a participant to 

chieve Turing completeness without inserting a new code, such 

s shellcode, into the program. ROP consists of a chain of identi- 

ed command sequences within the program code called gadgets, 

n which an exploit is performed by changing the control flow in 

he code segment while maintaining memory execution rights. The 

articipant requests the address of a fixed gadget to constitute the 

OP chain, as shown in Fig. 4 . 

. Pwnable challenge-solving tasks and their evaluation 

In this section, a challenge-solving workflow is deduced for stu- 

ents participating in a CFH pwnable challenge. The KS required 

or students to perform each task in the workflow was analyzed. 

ubsequently, the evaluation points for detailed feedback were de- 

uced based on the derived challenge-solving workflow. 

.1. Tasks for solving a pwnable challenge 

A CFH pwnable challenge generally involves capturing the flag 

le in a system by exploiting the vulnerability of a program oper- 

ting on the system. In this study, the challenge-solving process for 

 pwnable challenge was considered to have three tasks: (1) iden- 

ifying and triggering vulnerabilities, (2) hijacking the control flow 

f the program, and (3) bypass mitigation, as shown in Fig. 5 . 

To solve this type of a pwnable challenge, a participant must 

rst identify the vulnerability of the given application through pro- 

ram analysis. The participant then builds an exploit code to cap- 

ure the control flow of the application by exploiting the vulnera- 

ility. If mitigation is present in the environment, the participant 

ust write an exploit code to bypass identified mitigation policies. 

he details of each task are as follows: 

Task 1 (T1). Identify and Trigger the Vulnerabilities : To solve 

 pwnable challenge, a student (i.e., learner) must first identify 

he vulnerability within the program by analyzing the given ap- 

lication and then triggering the vulnerability. Examples of KSs re- 

uired for this task are as follows: 

• Knowledge: knowledge of various types of architectures, such 

as x86-64, ARM, and MIPS, depending on the system environ- 

ment in which the program operates and the vulnerabilities 

within the application. 
• Skills: static and dynamic analysis skills for identifying the vul- 

nerability of an application, skill to analyze the source code, re- 

verse engineering skill, and programming skills to write an ex- 

ploit payload to trigger the vulnerabilities of the application. 

ask 2 (T2). Hijack the Control Flow of the Program : Most pwn- 

ble challenges aim to capture the control flow of a program. A 

articipant captures the control flow by manipulating the data re- 

ated to the indirect call of a program located within the virtual 

emory, while maintaining write permissions within the program. 

xamples of KS required for this task are as follows: 

• Knowledge: knowledge of the memory structure, such as the 

return address of a function, function pointers, v-tables, and 

global offset tables (GOTs), which are the data used for indirect 

calls of a program. 
• Skills: shell coding skills that capture the control of a program 

by capturing the control flow by interfering with the indirect 

call of the program. 

ask 3 (T3). Bypass Mitigation : Most current operating systems 

re subjected to various mitigation techniques that minimize the 

amage caused by security vulnerabilities. Accordingly, certain 

hallenges in CTF competitions require participants to capture the 

ontrol of a program while bypassing several protection techniques 
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Fig. 4. Control flow hijacking with W �X and ASLR mitigation. 

Fig. 5. Challenge-solving workflow for pwnable challenges. 
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i.e., mitigation). Examples of KS required for this task are as fol- 

ows: 

• Knowledge: knowledge of the mitigation techniques present in 

the system or program, such as W �X, DEP, NX, and ASLR. 
• Skills: programming skills to write exploit code for bypassing 

the mitigations. 

.2. Evaluation points: How to evaluate whether a learner can 

erform a task 

If an educator can measure students’ achievements in a pwn- 

ble challenge in a task unit, students’ failure can be precisely 
5 
dentified by examining whether the students completed specific 

asks. Pwnable-Sherpa has three possible cases in which a stu- 

ent can earn points while solving a challenge: (i) students suc- 

essfully performed only task 1, (ii) students successfully per- 

ormed tasks 1 and 2, and (iii) students successfully performed 

asks 1, 2, and 3. Hence, we chose detailed evaluation points to 

udge whether the student has completed specific tasks, as shown 

n Fig. 6 . In addition, the detection policies for each evaluation 

oint were configured based on the workflow to solve a pwnable 

hallenge. 

Evaluation Point 1 (EP1): Memory Access Violation Check : 

his evaluation point assesses whether a student can analyze the 
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Fig. 6. Evaluation points for measuring achievements in a pwnable challenge-solving workflow. 
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ulnerable program and trigger actual vulnerabilities. To perform 

nintended memory access using the vulnerability of the executed 

rogram, a student must analyze the given program (i.e., binary) to 

dentify the vulnerability and configure the program’s input data 

o trigger the identified vulnerability. Evaluation point 1 assesses 

hether the exploit code of the student induces a memory access 

iolation in the program (e.g., an error with a message such as 

Cannot access memory at that address” or the ”SIGFAULT” string 

n stderr(2)). That is, if a student can induce crashes using the pro- 

ram’s vulnerability, the student is considered to have the ability 

o analyze the vulnerability. 

Evaluation Point 2 (EP2): Control Flow Handling Check : This 

valuation point assesses a student’s ability to capture the control 

ow of the program. In the challenge-solving process for control 

ow hijacking, a student must be able to manipulate a program’s 

ontrol flow by exploiting the vulnerabilies identified in the pro- 

ram. The exploit code submitted by the student runs in an en- 

ironment without mitigation, and whether the code can success- 

ully perform CFH is assessed. 

Evaluation Point 3 (EP3): Mitigation Bypassing Check : This 

valuation point assesses whether a student knows the mitiga- 

ions applied to the environment in which the challenge binary 

s running, and possesses the skills to bypass the mitigation tech- 

iques. For example, when a mitigation technique, such as a stack 

anary, is present in a program, a student must leak the canary 

ata inserted in the program using information leakage for an ex- 

loit or brute-force attack. Furthermore, if ASLR or NX mitigation 

s present, the student must create an exploit, such as a code-reuse 

xploit, that can bypass the mitigation. 

If the student successfully passes a specific evaluation point n, 

he educator can determine that the student has the KS to per- 

orm task n. However, if the student does not pass the evaluation 

oint, the educator can provide appropriate feedback (e.g., the KS 

equired for this task) to help the student overcome the difficulty 

f completing task n. 
6 
. Design and implementation of Pwnable-Sherpa 

.1. Pwnable-Sherpa design 

The proposed framework is expected to function as a CTF 

ramework that can perform formative assessments for each stu- 

ent while relieving educators’ burden in terms of labor and time 

emands. The design of Pwnable-Sherpa has the following charac- 

eristics: 

Fine-grained assessment and its automation : For the forma- 

ive assessment of a pwnable CTF, we subdivided the evaluation 

rocess of an original pwnable challenge into three evaluation 

oints according to the challenge-solving workflow, as described 

n Section 3 . Because each challenge is divided into multiple sub 

hallenges, the number of evaluation processes increases. To save 

ime in the detailed evaluation process, we applied a parallel ar- 

hitecture design for each detailed evaluation by reconfiguring the 

hallenge, if needed, for the task, as shown in Fig. 7 . 

Each evaluation point was independently checked in a separate 

ontainer. The original challenge can be modified for a given eval- 

ation point ( Section 4.2 ). When the exploit code submitted by a 

tudent is executed for the original and modified challenges in the 

valuation environment, the student’s exploit achievement for the 

roblem is precisely measured by determining whether the stu- 

ent realized the exploit in each evaluation environment in which 

he detection policies were applied. Providing detailed feedback : 

fter the evaluation, our framework can provide descriptive feed- 

ack to students for each task, such as a list of the required KS. 

he educator can edit the description of KS for each task before 

resenting a challenge to the students. In addition, our framework 

as a function through which educators can provide additional in- 

ormation on challenges, such as hints, to enable students to solve 

hallenges. 

Encouraging two-way communication : When a student solves 

 challenge, he/she can ask the educator questions using a bi- 
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Fig. 7. Overall architecture of Pwnable-Sherpa. 
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irectional communication channel. For the communication chan- 

el, we used the existing Discord communication platform (an 

nstant messaging application) (Discord) . Analyzing and solving 

hallenges from various perspectives can help improve students’ 

hallenge-solving skills. 

Providing detailed feedback can burden the educator because 

he educator may need to edit the detailed feedback for each stu- 

ent. The following methods can alleviate this burden: 

Preparing feedback for each challenge and providing it on 

emand : The educator can prepare the expected feedback for 

ach challenge (when they upload the challenge to Pwnable- 

herpa). Because determining which task the student cannot per- 

orm is easy using Pwnable-Sherpa, the KS required to solve the 

ask, which was prepared in advance, can be retrieved from the 

atabase and immediately displayed. 

Using students who have already succeeded as tutors : Giving 

tudents who have successfully solved the challenge opportunities 

o provide feedback to other students can help alleviate the edu- 

ator’s labor and time constraints. 

This framework consists of a preparation phase, in which the 

ducator deploys the challenge, and an exercise phase, in which 

tudents solve the challenge. Figure 7 shows the entire process 

ow, from the educator submitting a challenge to students solving 

he challenge (P: preparation phase, E: exercise phase). 

.1.1. Preparation phase 

As shown in Fig. 7 , Pwnable-Sherpa consists of web-based ser- 

ices, where an educator submits the problem through a web in- 

erface. Subsequently, the challenge is reconfigured in a detailed 

valuation environment by an automated process. First, to set a 

hallenge, the educator submits the source code of the challenge 

equired to configure the environment and build scripts, hints, mit- 

gations, and feedback (e.g., required KS) through the web interface 
7 
P.1 in Figs. 7 and 8 ). As shown in Fig. 8 , the educator can edit

he list of the required KS using our framework to provide feed- 

ack to students. The build information of the challenge submit- 

ed by the educator is then delivered to the Deploy Engine. While 

enerating the challenge program and its environment, the Deploy 

ngine reconfigures the challenge environment to determine the 

chievements of the student in each task of the challenge-solving 

orkflow and deploys the environment in containers (P.3 in 

ig. 7 ). 

Each evaluation point is configured as a power set for all mit- 

gation techniques applied to the problem. For example, if a miti- 

ation technique is not applied to a specific container, the respec- 

ive container corresponds to evaluation point 2 to assess a stu- 

ent’s knowledge of control-flow capture. For evaluation point 3, 

he problem environment is deployed in a container in which mit- 

gation techniques are applied in varying combinations and it is 

ssessed whether the student has the knowledge required to by- 

ass the mitigation techniques. Then, for the container in which 

he educator designated all mitigation techniques for the challenge, 

t is determined whether the student can fully exploit the program, 

hich corresponds to evaluation point 4. In addition, the Deploy 

ngine saves the information required to identify a container cor- 

esponding to each evaluation point deployed for a detailed eval- 

ation in the internal database, and the Deploy Engine uses the 

aved data when evaluating the exploit code of a student (P.2 in 

ig. 7 ). 

.1.2. Exercise phase 

After the educator submits the challenge using our framework, 

he student downloads the challenge program through the web in- 

erface, writes the exploit code, and submits it (E.1 in Fig. 7 ). The

xploit code is directly submitted through the web, unlike a con- 

entional pwnable CTF, where an exploit payload is delivered from 
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Fig. 8. Web interface for setting a pwnable challenge. 
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 remote server through the program port (E.2 in Fig. 7 ). Subse- 

uently, the exploit code submitted by the student is evaluated in 

n isolated container environment to prevent malicious behavior 

hat may occur when the code is executed (E.3 in Fig. 7 ). The ex-

loit code executed in an isolated environment is combined with 

he identification information of each evaluation point of the chal- 

enge saved in the database to be executed in the container corre- 

ponding to each evaluation point (E.4 and E.5 of Fig. 7 ). The re-

ults of executing the exploit code for each evaluation point are 

aved in the database, which can be viewed later by an educator 

r students through the web interface (Es.6 and 7 of Figs. 7 and 9 ).

tudents have multiple opportunities to submit exploits for a chal- 

enge. The number of opportunities provided to students is a policy 

omponent that educators determine when running the Pwnable- 

herpa platform. Students can obtain points for the exploit that 

btains the highest score on the platform among the multiple ex- 

loits they submit. 

As shown in Fig. 9 , the student can determine which evaluation 

oints were and were not solved through the web page, which can 

elp the student concentrate on improving the required KS. 

.2. Implementation issues of Pwnable-Sherpa 

Some mitigations, such as the inline reference monitor (IRM) 

ype (e.g., stack canary), cause the program code to change be- 

ause they insert the reference monitor into the program binary 

for example, see the changes by comparing the codes in Fig. 10 (a)

nd (b)). Changes in the binary file can affect the success or fail- 

re of an exploit because virtual memory address space layout of 

he process changes. For example, to develop an exploit that uses 

emory safety violations, such as buffer overflow and heap chunk 

ttacks, a student must know the program’s memory layout in- 

ormation. Furthermore, some exploit skills for bypassing mitiga- 

ion techniques, such as ROP, using a code gadget in the memory. 

herefore, students should develop an exploit according to the sit- 

ation in which mitigation is applied. 
8 
As shown in Fig. 7 , in Pwnable-Sherpa, we configured different 

itigation environments in several containers for detailed evalu- 

tion. However, this burdens students by requiring them to write 

ultiple exploits for a given pwnable challenge to meet each eval- 

ation point condition separately while considering which mitiga- 

ion type was applied. 

To solve this problem, we modified the LLVM-based compiler by 

dding a new LLVM pass (Dummy StackProtector) that maintains 

he code offset and virtual memory layout of the pwnable pro- 

ram. Because of the proposed technique, the student writes only 

ne exploit under the assumption of one system environment (all 

ntended mitigations are active); thus, the abovementioned burden 

s alleviated. Furthermore, in Pwnable-Sherpa, a detailed evaluation 

s possible in multiple mitigation environments (multiple contain- 

rs) using the exploit simultaneously. 

The LLVM compiler consists of three parts: a front-end that 

onverts C or C++ source code into an intermediate representation 

IR), a middle-end that transforms IR to IR throughout the passes, 

nd a back-end that converts IR to machine code ( LLVM Compiler 

nfrastructure ), as shown in Fig. 11 . The LLVM pass is a building

lock in which code optimization occurs while transforming IR into 

R. 

First, we wrote a new LLVM pass (refer to the details about 

riting an LLVM Pass in ( Writing an LLVM Pass ), see Pass dummy in

ig. 11 ) and a Dummy StackProtector, a code with the same instru- 

entation code size that does not perform the stack canary check. 

he code with the same instrumentation code size is designed to 

nsure that the same code offset and virtual memory layout are 

btained, regardless of whether the Dummy StackProtector or the 

riginal StackProtector is used. 

Second, we modified the abstract syntax tree (AST) generation 

tep for the StackProtector in the LLVM code such that the LLVM IR 

an be generated with the specified option (see IR dummy of Fig. 11 ). 

epending on the compilation options, the platform can use either 

he original StackProtector or the Dummy StackProtector (by mod- 

fying the code to create a basic block to jump to when the stack 
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Fig. 9. Web interface for challenge solving achievements. 

Fig. 10. Binary reconfiguration for maintaining memory layout regardless of stack canary. 
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rotector check fails (see the details of a member function, Cre- 

teFailBB(), in ( LLVM StackProtector )) in LLVM CodeGen, StackPro- 

ector can be created as a Dummy StackProtector when the option 

dummy-ssp) is specified). 

As shown in Fig. 10 (b) and (c), the program code when 

he Dummy StackProtector is applied has the same code lay- 

ut as when the stack canary is applied while not performing 

he stack canary check. In Fig. 10 (b), the program goes to the 

_stack_chk_fail logic if the canary value changes when perform- 

ng a canary check (see the cmp and jne instructions at 0x400692 

nd 0x40069e in Fig. 10 (b)). However, in Fig. 10 (c), the program 

oes not go to the __stack_chk_fail routine because it does not en- 
s

9 
ounter a jump instruction in the canary failure routine (see the 

mp and consecutive add al, 0 instructions (such as a nop instruc- 

ion) at the same code offset). 

.2.1. Deploy engine 

The proposed LLVM dummy pass technique is applied when 

he deploy engine is built. This ensures that the same code off- 

et and memory layout are maintained by reconfiguring the chal- 

enge’s original binary such that each assessment in the evalua- 

ion container can be executed simultaneously with the exploit 

ubmitted by the student. This technique inserts the dummy code 

hown in Fig. 10 (c) into the challenge binary, which has the same 
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Fig. 11. LLVM dummy pass generation module design. 

Fig. 12. Evaluation containers and LLVM dummy pass. 
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ize as the inserted code because of the mitigation technique 

 Fig. 10 (b)) and passes through this code area without executing 

t such that it has the same memory layout as when mitigation is 

pplied. 

Suppose we have a pwnable challenge that runs with two mit- 

gations: the stack canary and NX. From the architecture of the 

roposed framework, the Deploy Engine builds four containers for 

 given example: Container 1 (EP1 and EP2: no mitigation), Con- 

ainer 2 (EP3: stack canary), Container 3 (EP3: NX), and Container 

 (EP3: stack canary + NX), as shown in Fig. 12 . The student writes

n exploit code and submits it considering Container 4’s system, 

n which all mitigations are applied. Because stack canary mitiga- 

ion changes the memory layout affecting the writing of the exploit 

ode, the LLVM dummy pass technique is applied to the other con- 

ainers in which stack canary mitigation was not applied (Contain- 
10 
rs 1 and 3) such that it could be evaluated with only one exploit 

see Fig. 12 ). 

.2.2. Judge container 

The exploit code submitted by the student undergoes a precise 

equential evaluation based on each evaluation point, as shown in 

lgorithm 1 . The judge container sends exploit code to the con- 

ainers at each evaluation point. As shown in Fig. 12 , evaluation 

oints 1 and 2 (EP 1 and EP 2) can be checked simultaneously 

n one container (i.e., container 1) because whether a student has 

assed EP 1 or not is checked by determining whether a crash oc- 

urs in the system with the exploit code, which can be executed 

ith the process of EP 2 (CFH) using the same exploit code. If the 

xploit code hijacks the control flow, EP 1 is considered to have 

een successfully passed. 
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Algorithm 1 Evaluation process of the judge container. 

Input : N - challenge number (i.e, challenge identifier) 

E - exploit code submitted by the student 

D - database 

C - crash identifier (“SIGABRT”, “SIGSEGV”) 

Output : S - exploit status 

1: P ← getPortNums (D, N) � get the port numbers of evaluation 

containers. 

2: H ← getHost (D, N) � get the host IP address of evaluation 

containers. 

3: for p ← P do 

4: F ← getFlags ( p) � read the flag stored in the evaluation 

containers. 

5: s ← tryExploit (E, H, p) � try exploit and save out stream 

6: if isContain ( s , F) then 

7: S ← updateExploitState (S, D, p) � Update exploit 

status. 

8: end if 

9: if isContain ( s , C) then 

10: S ← updateExploitState (S, D, p) � Update exploit 

status (crashed) 

11: end if 

12: end for 
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The exploit code submitted by the student through the web 

nterface is evaluated in a container environment that is isolated 

rom the host environment, thereby preventing malicious behavior 

hat may occur when the code is executed. Furthermore, to prevent 

heating scenarios, the flags present in each container at different 

valuation points are difficult for users to infer, and different flags 

hould be used for each container. Therefore, in this study, ran- 

omly generated flags were used during the challenge deployment 

nd exploit-scoring processes. Hence, the flags were different for 

ach user and evaluation point. 

.3. Post-Implementation 

In this section, we briefly examine the usage and effectiveness 

f Pwnable-Shera. In particular, we discuss the use of Pwnable- 

herpa in an educational course and measure the degree of im- 

rovement in student KS. 

.3.1. Integrating Pwnable-Sherpa in a course 

Pwnable-Sherpa can be used as a tool in educational courses. 

he following briefly describes how Pwnable-Sherpa can be used 

n a class. First, when students register for courses, educators test 

hem using Pwnable-Sherpa, classify them into levels, and pro- 

ide guidelines for suitable classes. For example, educators can of- 

er classes based on level, such as beginner, intermediate, and ad- 

anced courses. The students can then enroll in a class suitable for 

hem. In addition, by testing students using Pwnable-Sherpa dur- 

ng a class, it is possible to know precisely which KS the students 

re lacking; thus, the educator can add more material for these KS, 

xtend class and office hours to explain these KS, and schedule a 

ake-up class for students who want to improve their KS. At the 

ame time, students can ask as many questions as possible about 

S. Thus, using Pwnable-Sherpa in a course helps educators flex- 

bly manage classes. Meanwhile, students can efficiently improve 

heir KS using Pwnable-Sherpa. 

.3.2. Evaluation of how Pwnable-Sherpa helps students 

Examples of feedback that an educator can provide students 

ith in Pwnable-Sherpa’s challenge-solving are as follows: (i) the 

ask(s) that the student could not perform (e.g., Student A failed to 
11 
erform T3 (NP, Non-Pass), as shown in Fig. 1 ); (ii) the KS sets that

re related to the task(s) of (i) (e.g., KS 8 , KS 9 , KS 10 , KS 11 , and KS 12 

re required for T3, bypass mitigation, as shown in Fig. 1 ); and (iii)

ore detailed information about each KS. 

To provide more detailed feedback about KS, the educator may 

sk the student how much the student knows about each KS while 

roviding the set of KS related to the task that the student could 

ot perform. This may be related to the KS assessment of the stu- 

ents to provide more detailed feedback. There may be several 

ays to know the student’s understanding of KS. Because there are 

arious types of KS, developing separate evaluation methods for 

ach KS is complicated and challenging. As it is somewhat beyond 

he scope of this paper, a technical evaluation method for assessing 

hether a student possesses KS will be left for future work. 

However, to deal with more detailed feedback, we used the 

ethod proposed by Park and Hong (2019) in which students can 

erform a self-assessment for each KS. The assessment can be de- 

igned to accept values between 0 and 5 that are a measure of 

he student’s level of understanding (0: Inexperience, 1: Having ba- 

ic knowledge, 2: Beginner (limited experience, need professional 

elp), 3: Intermediate (possible to adopt practical usage, need oc- 

asional professional help), 4: Expert (challenge solving without 

xternal help, subject to inquiries from others), and 5: Professional 

certified professional)). A student can be asked to perform a KS 

elf-assessment when the student submits exploits for a challenge 

r when a student submits exploits for all challenges. More fine- 

rained feedback can be provided to students through the KS self- 

ssessment and the Pwnable-Sherpa (see the radial graph with 

ark gray color in Fig. 13 (c)). 

In addition, the educator can measure how much the feedback 

elped the student by comparing the KS self-assessment results 

efore and after the feedback is given, as shown in Fig. 13 . The de-

ailed procedure is as follows. First, students solve challenges with 

wnable-Sherpa ( Fig. 13 (a.1)); they self-assess KS, which is called 

he 1st round KS assessment ( Fig. 13 (a.2)), which is related to 

he task that the students could not perform using Pwnable-Sherpa 

i.e., T3, KS 8 , KS 9 , KS 10 , KS 11 , and KS 12 ). The results of the 1st round 

S assessment of the student can be represented in radial graph 

orm, as shown by the dark gray colored areas in Fig. 13 (b) and (c).

he educator then gives feedback to the students based on the re- 

ults of the 1st round of KS assessment ( Fig. 13 (a.3)). The stu- 

ents solved the challenges that were similar to those of the previ- 

us round ( Fig. 13 (a.4)), and conduct a KS self-assessment ( Fig. 13

a.5)). The result of the 2nd round KS assessment of the student 

an be represented as a light gray colored area in Fig. 13 (b) and

c). By comparing the differences between the two colored areas, 

he educator can measure the effects of feedback. In addition, by 

nalyzing the feedback effect, educators may develop a better form 

f feedback. 

.3.3. Extension of Pwnable-Sherpa’s approach to other CTF 

hallenges 

It is possible to extend the approach introduced in Pwnable- 

herpa to other CTF challenges, such as web, forensic, or reversing 

ngineering because solving some challenges also requires multiple 

asks. However, as each challenge has its own characteristics, de- 

ailed evaluation methods for each step should be developed sep- 

rately. For example, to solve a web challenge requiring SQL injec- 

ion, students will approach it step-wise (e.g., (1) find an injection 

ulnerability; (2) craft an appropriate SQL command according to 

he DMBS; and (3) gain access to the query results). To evaluate 

hether a student can find an SQL injection vulnerability, the as- 

essment system may monitor the web server’s access log and re- 

ponses from the web server when the assessment system sends 

equests using the student’s exploit instead of monitoring the pro- 

ram’s crash. Details of Pwnable-Sherpa’s extension to other CTF 
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Fig. 13. Measuring the feedback’s effects by comparison of two KS self-assessment results before and after feedback is given. 

Fig. 14. Comparison of correct answer rate according to pwnable CTF challenges. 
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hallenges seem to be another research topic (e.g., how we can de- 

ign and implement a detailed assessment system for SQL injection 

TF challenges), so we leave this as future work. 

. Lessons learned from the 2020 pwnable CTF competition 

.1. Challenges 

Based on the workflow of the pwnable challenge described ear- 

ier, the following two types of challenges were presented at the 

020 CTF competition held by our research team at Kongju Na- 

ional University. The partial challenge can be solved by complet- 
12 
ng a single task (Task 1) for the entire exploit writing process. The 

ynthesis challenge can be solved by completing at least two tasks 

uring the entire exploit process. 

.1.1. Partial challenge 

We designed challenges (a) and (b) such that only Task 1 (iden- 

ifing vulnerabilities and triggering them) was required; students 

an solve the challenges without KS required for Tasks 2 and 3. 

or the challenges in Fig. 14 (a) and (b), the vulnerabilities are the 

uffer and integer overflow, respectively. For example, if students 

uccessfully identify the vulnerability of a program and trigger it 

e.g., buffer overflow), they can directly read the flag inserted into 
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he program using the data area overflow such that they do not 

eed to hijack the control flow of the program. Here, students have 

ccess to a core dump. Because the flag of the challenge is inserted 

nto the program, students can print the flag in the core dump by 

riggering the programs’ vulnerability to their local machine. Note 

hat Pwnable-Sherpa was not used in this competition. This analy- 

is was performed to identify a problem in evaluating the pass/non 

ass method of the existing pwnable CTF. 

.2. Synthesis challenge 

The synthesis challenge requires at least two of the several 

asks of the challenge-solving workflow to acquire the flag of the 

wnable challenge (i.e., T1 and T2: CFH). Most pwnable problems 

n competitions require comprehensive KS to solve. For the chal- 

enges in Fig. 14 (c) and (d), the program contains buffer overflow 

nd use-after-free (UAF) vulnerabilities, respectively, and students 

re expected to have the required KS for these vulnerabilities to 

olve the challenge. In addition, for the problem in Fig. 14 (d), miti- 

ation techniques were not applied in the system or program, thus 

equiring students to acquire the flag by completing the task of 

apturing the control flow to solve the problem (i.e., T1 and T2). 

or the challenge in Fig. 14 (c), the challenge binary was operated in 

n environment in which the NX and ASLR mitigation techniques 

ere applied, thus requiring students to acquire the flag by by- 

assing the mitigation techniques (i.e., T1, T2, and T3). 

.3. Competition result analysis 

The percentages of students who solved partial challenges dur- 

ng the CTF competition were 37% and 22%, as shown in Fig. 14 (a)

nd (b), respectively. To solve challenges (a) and (b), only KS for 

1 is required. In contrast, when comprehensive KSs were required 

o be solved for the synthesis challenges, only one out of 87 stu- 

ents solved the challenge correctly, as shown in Fig. 14 (c) and (d). 

he challenge shown in Fig. 14 (c) had the same vulnerability as 

hat shown in Fig. 14 (a). This indicated that no significant differ- 

nce was observed in the knowledge required for T1. Thus, the dif- 

erence in the number of solvers arises from solving other tasks 

i.e., T2). These results reveal that using a dichotomous evaluation 

ethod for pwnable challenges complicates the provision of de- 

ailed feedback to students, because it is difficult to establish what 

he student does or does not know. 

. Conclusion 

The CTF-style evaluation method widely used in cybersecu- 

ity competitions is challenging to apply in education because, in 

ompetitions, the focus is on ranking and not on improving stu- 

ents’ KS. In this study, based on the results of CTF competitions 

2017, 2018, 2020) conducted by our research team over the past 

 years, we determined that to use CTF in education and train- 

ng classes, a function must provide sufficient feedback to stu- 

ents. For a detailed evaluation of Pwnable-Sherpa, the challenge- 

olving process was extracted from the stages of the CFH attack, 

nd three detailed evaluation points were presented. However, pro- 

iding detailed feedback to students can be labor-intensive and 

ime consuming for educators; thus, alleviating this burden is nec- 

ssary. Therefore, we proposed Pwnable-Sherpa, which can relieve 

ducators’ burdens using automatic challenge distribution, multi- 

ontainer, simultaneous execution of detailed evaluation, and LLVM 

ummy pass while providing feedback. Based on Pwnable-Sherpa, 

ducators can provide more feedback to students (e.g., KS sets for 

asks). This process approaches a one-on-one coaching environ- 

ent for educators and students. 
13 
In future work, we will adopt Pwnable-Sherpa in a training 

lass to study it through interviews with students and educators. 
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