
Computers & Security 125 (2023) 103009

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Pwnable-Sherpa: An interactive coaching system with a case study of

pwnable challenges

Sung-Kyung Kim

a , Eun-Tae Jang

a , Hanjin Park

b , ∗, Ki-Woong Park

c , ∗∗

a SysCore Lab, Sejong University, Seoul 05006, South Korea
b The Affiliated Institute of ETRI, Daejeon, South Korea
c Department of Information Security, and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, South Korea

a r t i c l e i n f o

Article history:

Received 27 November 2021

Revised 1 November 2022

Accepted 7 November 2022

Available online 15 November 2022

Keywords:

Architectures for educational technology

system

Evaluation methodologies

Improving classroom teaching

Simulation

Teaching/learning strategies

a b s t r a c t

To improve their cybersecurity knowledge and skills, students participate in a competitive game called

capture the flag (CTF). CTF is used as an educational tool to improve students’ cybersecurity compe-

tency by solving challenges. As system vulnerabilities are the leading cause of cyberattacks on critical

systems, cybersecurity personnel with knowledge and skills to detect system vulnerabilities are increas-

ingly in demand. In this context, the importance of challenges concerning system vulnerabilities, such

as pwnable, is gradually increasing in CTF competitions. Unlike other CTF challenges, solving a pwnable

challenge requires considerable knowledge and skill. However, traditional evaluation methods in CTF (i.e.,

pass or non-pass) provide limited feedback regarding knowledge and skill gaps. To investigate this issue,

we analyzed the results of the CTF competitions held by our research team over the past three years

(2017, 2018, and 2020). Our analysis revealed the necessity for a new evaluation system that can pro-

vide detailed feedback to students, while reducing the grading burden on educators. Thus, to provide

detailed feedback, we propose a cybersecurity training platform, Pwnable-Sherpa, which sets three de-

tailed evaluation points for a given pwnable challenge. In addition, we designed our training platform

with a multi-container architecture and an LLVM dummy pass, thereby saving time by grading each de-

tailed assessment simultaneously rather than sequentially.

© 2022 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

p

t

t

s

fl

c

s

m

e

u

B

t

T

p

e

C

b

b

w

t

t

s

b

t

b

t

h

0

. Introduction

Students passionate about cybersecurity participate in a com-

etitive game called capture the flag (CTF), which helps improve

heir knowledge and skills. CTF is a game in which two or more

eams have flags in each other’s systems, and each team must

teal the flags of the opposing team while safeguarding their own

ags. Alternatively, flags are located in the system operated by the

ompetition management team, and each participant attempts to

teal these flags. To obtain flags from the system, the participants

ust possess considerable cybersecurity knowledge and skills. Sev-

ral studies have suggested introducing CTF for cybersecurity ed-

cation (Chothia and Novakovic, 2015; Rege, 2015; Vykopal and

arták, 2016). CTFs are increasingly used in cybersecurity educa-

ion because educators can measure students’ cybersecurity com-
∗ Corresponding author.
∗∗ Principal corresponding author.

E-mail addresses: jotun9935@gmail.com (S.-K. Kim), euntaejang@gmail.com (E.-

. Jang), hjpark001@nsr.re.kr (H. Park), woongbak@sejong.ac.kr (K.-W. Park) .

p

S

m

a

ttps://doi.org/10.1016/j.cose.2022.103009

167-4048/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article
etency based on their challenge solving performance (Chapman

t al., 2014; Chung, 2017). CTFs such as DEF CON CTF (DEF CON

TF), HITCON CTF (Hitcon CTF), and Codegate CTF (CODEGATE CTF)

ridge the gap between technical demand and learner competency

y reflecting the technical demand for cybersecurity in the real

orld.

In recent years, the main cause of cyber-attacks on critical sys-

ems, such as oil pipelines (US-CERT Alert) and other operational

echnologies (OT) (Forescout Research Labs and JFrog Security Re-

earch), has been system vulnerabilities. From this perspective, cy-

ersecurity personnel with the knowledge and skills to detect sys-

em vulnerabilities are increasingly in demand. 1

Hence, system vulnerability challenges, such as pwnable, are

ecoming increasingly important. The term “pwn” originated from

he mistyping of the word “own” on a keyboard and is used by
1 In this study, we consider the Pwnable-Sherpa training platform that can im-

rove the skills required to detect a program’s vulnerability and write an exploit.

tudying a training platform that can improve patch skills by testing students’ sub-

itted patched programs is interesting, because people who possess patching skills

re increasingly in demand. We leave this concept to future studies.

under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cose.2022.103009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.103009&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jotun9935@gmail.com
mailto:euntaejang@gmail.com
mailto:hjpark001@nsr.re.kr
mailto:woongbak@sejong.ac.kr
https://doi.org/10.1016/j.cose.2022.103009
http://creativecommons.org/licenses/by/4.0/

S.-K. Kim, E.-T. Jang, H. Park et al. Computers & Security 125 (2023) 103009

Fig. 1. Comparison of the two assessment methods: conventional CTF (for competition) and fine-grained CTF (for cybersecurity education).

t

o

c

n

p

s

t

s

s

e

w

s

i

u

a

o

2

c

S

s

p

s

t

(

b

v

t

P

a

t

F

f

a

y

a

(

(

p

e

t

2

p

c

r

p

f

a

h

s

e

m

w

f

f

F

o

t

m

b

p

b

t

a

S

m

h

s

a

S

S

C

S

e

he hacker community to obtain unauthorized control over some-

ne’s system. A pwnable challenge is testing whether a participant

an read a flag (string) from the target system by exploiting vul-

erabilities. After successfully acquiring unauthorized control, the

articipant can obtain the flag and authenticate it using a scoring

erver. A pwnable challenge consists of the binary of an applica-

ion, network access (e.g., IP address and port number) for a target

ystem where the binary runs as a service, and a challenge de-

cription. To solve this pwnable challenge, reverse engineering, the

xploit writing, operating systems, software vulnerability, and net-

ork programming knowledge and skills are required.

However, because a pwnable challenge requires a deep under-

tanding of the system (e.g., operating system, application, and

nstruction sets), many difficulties limit educational effectiveness,

nlike other CTF challenges. To examine these difficulties, we an-

lyzed the results of CTF competitions held by our research team

ver the past three years (2017 and 2018 Park et al., 2018), and

020 CTFs for 87 high school students). We identified a signifi-

ant variation in scores among participants using the Kolmogorov-

mirnov normality test (Kolmogorov-Smirnov) , indicating that a

mall number of students could solve the problem correctly.

In addition, the existing CTF evaluation method (pass or non-

ass) is more applicable to competition ranking than to improving

tudent competency. Therefore, it cannot provide detailed feedback

o students, limiting the enhancement of their knowledge and skill

KS). However, conducting an evaluation to provide detailed feed-

ack to a class (e.g., formative assessment) involves providing indi-

idual feedback to students, which demands significant labor and

ime from educators (Chothia and Novakovic, 2015).

Thus, we propose a cybersecurity training platform called

wnable-Sherpa, which sets three detailed evaluation points for

 pwnable challenge that provides detailed feedback by referring

o the control flow hijacking attack stage (Szekeres et al., 2013).

or each evaluation point, the following tasks (Ts) need to be per-

ormed to solve the challenge: (T1) identify vulnerabilities in the

pplication (e.g., memory corruption bugs) using program anal-

sis and then trigger them, (T2) hijack the control flow of the

pplication using the vulnerabilities, and (T3) bypass mitigations

i.e., protection techniques in the system, such as stack canary

Bufferoverflow) , data execution protection (DEP) (Executable space
2

rotection), no executable (NX) (Designer, 1997; van der Veen

t al., 2012; van de Ven, 2004), and address space layer randomiza-

ion (ASLR) (Shacham et al., 2004, Theo de Raadt, Chew and Song,

002, Executable space protection)).

Let us now present an example to better illustrate our ap-

roach. Suppose a student successfully performs tasks (T1, T2) but

an not perform T3 because the student does not have the KS

equired for T3. Under conventional CTF evaluation (pass or non-

ass), the student would not obtain a score. In contrast, if a new

ormative assessment method could provide scores for T1 and T2

longside feedback (e.g., the KS required to perform T3), it would

elp students improve their learning. Through such a detailed as-

essment, the educator can measure a student’s capability using

valuation points, as shown in Fig. 1 (e.g., radial shape chart).

To realize this educational evaluation philosophy as an auto-

ated and practical system, we designed our training platform

ith a multi-container architecture, thereby saving time by per-

orming these evaluations simultaneously, rather than sequentially,

or grading each assessment in an isolated manner, as shown in

ig. 2 . The system architecture of Pwnable-Sherpa can simultane-

usly perform detailed evaluations from the exploit code submit-

ed by the student (see Section 4.2). For instance, Pwnable-Sherpa

ay consider the memory offset between binary files in which two

inaries are applied to different mitigation techniques. For exam-

le, for binary layouts with and without a stack canary, the two

inary layouts are different. These technologies enable educators

o provide students with more detailed feedback while saving time

nd labor.

The remainder of this paper is organized as follows. In

ection 2 , we analyze the compositions of pwnable challenges in

ajor CTF competitions and explain the details of control flow

ijacking attacks. Section 3 describes a standard workflow for

olving the pwnable challenge of a control flow hijacking attack

nd the evaluation points for student achievement for each task.

ection 4 presents the design and implementation of the Pwnable-

herpa. Section 5 highlights the limitations of the conventional

TF evaluation method using the experimental results. Finally,

ection 6 concludes the paper.

This part of our paper was presented at the WISA 2020 confer-

nce and Information Security Application Lecture Notes in Com-

S.-K. Kim, E.-T. Jang, H. Park et al. Computers & Security 125 (2023) 103009

Fig. 2. Detailed evaluation method of a pwnable challenge.

p

a

a

p

a

t

s

s

i

t

u

m

2

2

n

d

i

t

s

A

n

v

s

(

m

l

t

o

s

a

d

o

o

D

a

p

s

t

j

b

p

2

m

g

uter Science (LNCS) (Kim et al., 2020), which includes the initial

rchitecture of Pwnable Sherpa. We have made several valuable

dditions to improve our LNCS paper as follows: (i) Analyzing the

wnable challenge-solving workflow using the Task, Knowledge,

nd Skill (TKS) framework, which is a standard framework for

raining implementation; (ii) dealing with post-implementation,

uch as integrating Pwnable-Sherpa with a course and measuring

tudent improvement based on detailed feedback; and (iii) analyz-

ng the 2020 pwnable CTF competition results held by our research

eam and demonstrating the problem with the existing CTF eval-

ation method; and (iv) providing sufficient evidence for why we

ust address the control flow hijacking pwnable challenge.

. Background

.1. Pwnable challenge

In a pwnable challenge, participants are provided with the bi-

ary of an application and network access information (e.g., IP ad-

ress and port number) for a remote server in which the binary

s running. If the participants read a flag (i.e., a unique string) on

he server by exploiting the vulnerability of the application and

ubmitting the flag to the scoring server, they obtained a score.

 pwnable challenge typically contains one of the following vul-

erabilities: memory safety violation bugs (Erlingsson et al., 2010;

an der Veen et al., 2012), logic errors (Kim et al., 2019, Zalewski),
3
ide-channel attacks (Seibert et al., 2014), or encryption misuses

 Microsoft, 2020). A memory safety violation, in which an attacker

anipulates the memory segment in a program written in low-

evel languages such as C or C++, is the most frequently tested

ype of pwnable challenge (Burns et al., 2017). Moreover, this type

f vulnerability consistently occurs in low-level system software,

uch as operating system kernels, run-time libraries, and browsers,

nd is a highly ranked vulnerability among MITRE’s top 25 most

angerous security vulnerabilities (MITRE, 2020).

Figure 3 shows the results of analyzing the vulnerability types

f 105 pwnable challenges tested in four major CTF competitions

ver the past three years: Plaid CTF (Plaid CTF), 0 CTF (0 CTF),

EFCON CTF (DEF CON CTF), and HITCON CTF (Hitcon CTF). The

nalysis results revealed that, on average, approximately 92% of the

wnable challenges required control flow hijacking using memory

afety violations. Based on the statistics of control flow hijacking

ype pwnable challenges, this study evaluates the control flow hi-

acking (CFH) pwnable challenge using a memory safety violation

ug. Hereafter, we use the terms “pwnable challenge” and “CFH

wnable challenge” interchangeably.

.2. Control flow hijacking

CFH is a typical tactic employed by programs that violate

emory safety because software written in a low-level lan-

uage, such as C and C++, is susceptible to memory safety viola-

S.-K. Kim, E.-T. Jang, H. Park et al. Computers & Security 125 (2023) 103009

Fig. 3. Proportions of the control flow hijacking in pwnable challenges.

t

(

s

o

r

l

p

t

a

t

p

m

p

m

t

c

o

g

c

i

d

I

c

m

e

r

t

t

t

c

A

o

i

t

g

(

r

a

a

c

o

o

t

t

b

a

a

fi

i

t

p

R

3

d

f

S

d

3

fi

a

a

t

o

fi

g

t

b

m

T

a

t

p

q

T

a

p

l

m

E

T

a

d

c

c

ions, unlike those written in higher-level languages, such as Java

 Dhurjati et al., 2003) and Rust (Matsakis and Klock, 2014), which

upport memory safety at the programming language level. Lack

f memory safety can lead to serious security threats. An unautho-

ized person can seize the targeted program or system by manipu-

ating the program memory, thereby operating the program with a

urpose not originally designed by the developer, or even hijacking

he program’s control flow.

The initial step of CFH is to induce memory errors in vulner-

ble programs. In this step, the participant can violate the spa-

ial or temporal safety of memory by abusing various bugs in the

rogram. Spatial safety is violated when a participant accesses the

emory in an unintended manner, such as referencing outside a

ointer’s boundary or an object (e.g., buffer overflow or underflow

ay occur). Temporal safety is violated when a program accesses

he memory using invalid references. In general, if memory allo-

ation is explicitly released using the free function and deletion

perator, all pointers pointing to the respective memory are dan-

ling. If dangling pointers are not successfully freed, a participant

an access the memory released using a dangling pointer, which

s called use-after-free vulnerability. In the subsequent steps, free

ata are manipulated using the previously induced memory error.

f the data that a participant can control are related to program

ontrol, the participant can hijack the program’s control flow by

anipulating the program’s code segment or memory space. For

xample, if a participant can manipulate a memory segment cor-

espondings to the return address of a function or pointer of a vir-

ual table, the control flow of the program changes when the re-

urn command or indirect call/jmp of the program is executed. Fur-

hermore, unintended code can be executed (e.g., executing shell

ode, such as /bin/sh, by controlling the program execution flow).

 participant requires information related to the data memory lay-

ut shown in Fig. 4 to trigger a vulnerability that can be exploited.

Meanwhile, if a protection technique (i.e., mitigation) is present

n the system or program, the participant must bypass the pro-

ection method to hijack the control flow of the application. Miti-

ation policies, such as W �X (write XOR execute), non-executable

NX) (Designer, 1997; van de Ven, 2004), and address space layout

andomization (ASLR) (Shacham et al., 2004, Theo de Raadt, Chew

nd Song, 2002) of the latest OS, and the stack cookie deployed in

 compiler can increase the difficulty level of exploiting a memory

orruption bug.

However, several mitigation bypass tactics exist, such as return-

riented programming (ROP) (Return Oriented Programing), jump-

riented programming (Bletsch et al., 2011; Nergal, 2001), informa-

ion leakage (Serna, 2012; Strackx et al., 2009), and global offset
4
able (GOT) overwrite (c0ntex) . In particular, an ROP exploit can

ypass various mitigation policies while enabling a participant to

chieve Turing completeness without inserting a new code, such

s shellcode, into the program. ROP consists of a chain of identi-

ed command sequences within the program code called gadgets,

n which an exploit is performed by changing the control flow in

he code segment while maintaining memory execution rights. The

articipant requests the address of a fixed gadget to constitute the

OP chain, as shown in Fig. 4 .

. Pwnable challenge-solving tasks and their evaluation

In this section, a challenge-solving workflow is deduced for stu-

ents participating in a CFH pwnable challenge. The KS required

or students to perform each task in the workflow was analyzed.

ubsequently, the evaluation points for detailed feedback were de-

uced based on the derived challenge-solving workflow.

.1. Tasks for solving a pwnable challenge

A CFH pwnable challenge generally involves capturing the flag

le in a system by exploiting the vulnerability of a program oper-

ting on the system. In this study, the challenge-solving process for

 pwnable challenge was considered to have three tasks: (1) iden-

ifying and triggering vulnerabilities, (2) hijacking the control flow

f the program, and (3) bypass mitigation, as shown in Fig. 5 .

To solve this type of a pwnable challenge, a participant must

rst identify the vulnerability of the given application through pro-

ram analysis. The participant then builds an exploit code to cap-

ure the control flow of the application by exploiting the vulnera-

ility. If mitigation is present in the environment, the participant

ust write an exploit code to bypass identified mitigation policies.

he details of each task are as follows:

Task 1 (T1). Identify and Trigger the Vulnerabilities : To solve

 pwnable challenge, a student (i.e., learner) must first identify

he vulnerability within the program by analyzing the given ap-

lication and then triggering the vulnerability. Examples of KSs re-

uired for this task are as follows:

• Knowledge: knowledge of various types of architectures, such

as x86-64, ARM, and MIPS, depending on the system environ-

ment in which the program operates and the vulnerabilities

within the application.
• Skills: static and dynamic analysis skills for identifying the vul-

nerability of an application, skill to analyze the source code, re-

verse engineering skill, and programming skills to write an ex-

ploit payload to trigger the vulnerabilities of the application.

ask 2 (T2). Hijack the Control Flow of the Program : Most pwn-

ble challenges aim to capture the control flow of a program. A

articipant captures the control flow by manipulating the data re-

ated to the indirect call of a program located within the virtual

emory, while maintaining write permissions within the program.

xamples of KS required for this task are as follows:

• Knowledge: knowledge of the memory structure, such as the

return address of a function, function pointers, v-tables, and

global offset tables (GOTs), which are the data used for indirect

calls of a program.
• Skills: shell coding skills that capture the control of a program

by capturing the control flow by interfering with the indirect

call of the program.

ask 3 (T3). Bypass Mitigation : Most current operating systems

re subjected to various mitigation techniques that minimize the

amage caused by security vulnerabilities. Accordingly, certain

hallenges in CTF competitions require participants to capture the

ontrol of a program while bypassing several protection techniques

S.-K. Kim, E.-T. Jang, H. Park et al. Computers & Security 125 (2023) 103009

Fig. 4. Control flow hijacking with W �X and ASLR mitigation.

Fig. 5. Challenge-solving workflow for pwnable challenges.

(

l

3

p

a

i

t

d

c

f

t

j

i

p

c

T

i.e., mitigation). Examples of KS required for this task are as fol-

ows:

• Knowledge: knowledge of the mitigation techniques present in

the system or program, such as W �X, DEP, NX, and ASLR.
• Skills: programming skills to write exploit code for bypassing

the mitigations.

.2. Evaluation points: How to evaluate whether a learner can

erform a task

If an educator can measure students’ achievements in a pwn-

ble challenge in a task unit, students’ failure can be precisely
5
dentified by examining whether the students completed specific

asks. Pwnable-Sherpa has three possible cases in which a stu-

ent can earn points while solving a challenge: (i) students suc-

essfully performed only task 1, (ii) students successfully per-

ormed tasks 1 and 2, and (iii) students successfully performed

asks 1, 2, and 3. Hence, we chose detailed evaluation points to

udge whether the student has completed specific tasks, as shown

n Fig. 6 . In addition, the detection policies for each evaluation

oint were configured based on the workflow to solve a pwnable

hallenge.

Evaluation Point 1 (EP1): Memory Access Violation Check :

his evaluation point assesses whether a student can analyze the

S.-K. Kim, E.-T. Jang, H. Park et al. Computers & Security 125 (2023) 103009

Fig. 6. Evaluation points for measuring achievements in a pwnable challenge-solving workflow.

v

u

p

i

t

w

v

”

i

g

t

e

fl

fl

c

g

v

f

e

t

i

n

c

d

p

i

e

t

f

p

r

o

4

4

f

d

d

t

t

p

p

i

c

t

c

c

c

u

s

e

p

d

t

A

b

T

p

h

f

c

a

ulnerable program and trigger actual vulnerabilities. To perform

nintended memory access using the vulnerability of the executed

rogram, a student must analyze the given program (i.e., binary) to

dentify the vulnerability and configure the program’s input data

o trigger the identified vulnerability. Evaluation point 1 assesses

hether the exploit code of the student induces a memory access

iolation in the program (e.g., an error with a message such as

Cannot access memory at that address” or the ”SIGFAULT” string

n stderr(2)). That is, if a student can induce crashes using the pro-

ram’s vulnerability, the student is considered to have the ability

o analyze the vulnerability.

Evaluation Point 2 (EP2): Control Flow Handling Check : This

valuation point assesses a student’s ability to capture the control

ow of the program. In the challenge-solving process for control

ow hijacking, a student must be able to manipulate a program’s

ontrol flow by exploiting the vulnerabilies identified in the pro-

ram. The exploit code submitted by the student runs in an en-

ironment without mitigation, and whether the code can success-

ully perform CFH is assessed.

Evaluation Point 3 (EP3): Mitigation Bypassing Check : This

valuation point assesses whether a student knows the mitiga-

ions applied to the environment in which the challenge binary

s running, and possesses the skills to bypass the mitigation tech-

iques. For example, when a mitigation technique, such as a stack

anary, is present in a program, a student must leak the canary

ata inserted in the program using information leakage for an ex-

loit or brute-force attack. Furthermore, if ASLR or NX mitigation

s present, the student must create an exploit, such as a code-reuse

xploit, that can bypass the mitigation.

If the student successfully passes a specific evaluation point n,

he educator can determine that the student has the KS to per-

orm task n. However, if the student does not pass the evaluation

oint, the educator can provide appropriate feedback (e.g., the KS

equired for this task) to help the student overcome the difficulty

f completing task n.
6
. Design and implementation of Pwnable-Sherpa

.1. Pwnable-Sherpa design

The proposed framework is expected to function as a CTF

ramework that can perform formative assessments for each stu-

ent while relieving educators’ burden in terms of labor and time

emands. The design of Pwnable-Sherpa has the following charac-

eristics:

Fine-grained assessment and its automation : For the forma-

ive assessment of a pwnable CTF, we subdivided the evaluation

rocess of an original pwnable challenge into three evaluation

oints according to the challenge-solving workflow, as described

n Section 3 . Because each challenge is divided into multiple sub

hallenges, the number of evaluation processes increases. To save

ime in the detailed evaluation process, we applied a parallel ar-

hitecture design for each detailed evaluation by reconfiguring the

hallenge, if needed, for the task, as shown in Fig. 7 .

Each evaluation point was independently checked in a separate

ontainer. The original challenge can be modified for a given eval-

ation point (Section 4.2). When the exploit code submitted by a

tudent is executed for the original and modified challenges in the

valuation environment, the student’s exploit achievement for the

roblem is precisely measured by determining whether the stu-

ent realized the exploit in each evaluation environment in which

he detection policies were applied. Providing detailed feedback :

fter the evaluation, our framework can provide descriptive feed-

ack to students for each task, such as a list of the required KS.

he educator can edit the description of KS for each task before

resenting a challenge to the students. In addition, our framework

as a function through which educators can provide additional in-

ormation on challenges, such as hints, to enable students to solve

hallenges.

Encouraging two-way communication : When a student solves

 challenge, he/she can ask the educator questions using a bi-

S.-K. Kim, E.-T. Jang, H. Park et al. Computers & Security 125 (2023) 103009

Fig. 7. Overall architecture of Pwnable-Sherpa.

d

n

i

c

c

t

d

d

e

S

f

t

d

s

t

c

e

s

fl

t

4

v

t

e

c

r

i

(

t

b

t

g

E

a

w

F

i

g

t

d

t

i

a

p

t

i

w

E

r

u

s

F

4

t

t

e

v

irectional communication channel. For the communication chan-

el, we used the existing Discord communication platform (an

nstant messaging application) (Discord) . Analyzing and solving

hallenges from various perspectives can help improve students’

hallenge-solving skills.

Providing detailed feedback can burden the educator because

he educator may need to edit the detailed feedback for each stu-

ent. The following methods can alleviate this burden:

Preparing feedback for each challenge and providing it on

emand : The educator can prepare the expected feedback for

ach challenge (when they upload the challenge to Pwnable-

herpa). Because determining which task the student cannot per-

orm is easy using Pwnable-Sherpa, the KS required to solve the

ask, which was prepared in advance, can be retrieved from the

atabase and immediately displayed.

Using students who have already succeeded as tutors : Giving

tudents who have successfully solved the challenge opportunities

o provide feedback to other students can help alleviate the edu-

ator’s labor and time constraints.

This framework consists of a preparation phase, in which the

ducator deploys the challenge, and an exercise phase, in which

tudents solve the challenge. Figure 7 shows the entire process

ow, from the educator submitting a challenge to students solving

he challenge (P: preparation phase, E: exercise phase).

.1.1. Preparation phase

As shown in Fig. 7 , Pwnable-Sherpa consists of web-based ser-

ices, where an educator submits the problem through a web in-

erface. Subsequently, the challenge is reconfigured in a detailed

valuation environment by an automated process. First, to set a

hallenge, the educator submits the source code of the challenge

equired to configure the environment and build scripts, hints, mit-

gations, and feedback (e.g., required KS) through the web interface
7
P.1 in Figs. 7 and 8). As shown in Fig. 8 , the educator can edit

he list of the required KS using our framework to provide feed-

ack to students. The build information of the challenge submit-

ed by the educator is then delivered to the Deploy Engine. While

enerating the challenge program and its environment, the Deploy

ngine reconfigures the challenge environment to determine the

chievements of the student in each task of the challenge-solving

orkflow and deploys the environment in containers (P.3 in

ig. 7).

Each evaluation point is configured as a power set for all mit-

gation techniques applied to the problem. For example, if a miti-

ation technique is not applied to a specific container, the respec-

ive container corresponds to evaluation point 2 to assess a stu-

ent’s knowledge of control-flow capture. For evaluation point 3,

he problem environment is deployed in a container in which mit-

gation techniques are applied in varying combinations and it is

ssessed whether the student has the knowledge required to by-

ass the mitigation techniques. Then, for the container in which

he educator designated all mitigation techniques for the challenge,

t is determined whether the student can fully exploit the program,

hich corresponds to evaluation point 4. In addition, the Deploy

ngine saves the information required to identify a container cor-

esponding to each evaluation point deployed for a detailed eval-

ation in the internal database, and the Deploy Engine uses the

aved data when evaluating the exploit code of a student (P.2 in

ig. 7).

.1.2. Exercise phase

After the educator submits the challenge using our framework,

he student downloads the challenge program through the web in-

erface, writes the exploit code, and submits it (E.1 in Fig. 7). The

xploit code is directly submitted through the web, unlike a con-

entional pwnable CTF, where an exploit payload is delivered from

S.-K. Kim, E.-T. Jang, H. Park et al. Computers & Security 125 (2023) 103009

Fig. 8. Web interface for setting a pwnable challenge.

a

q

a

t

p

t

l

s

s

s

o

S

l

c

S

o

p

p

h

4

t

c

(

a

u

t

m

a

f

t

T

u

m

a

m

u

t

a

t

g

o

i

i

i

e

c

(

a

I

b

I

w

F

m

T

e

o

o

s

c

D

t

i

 remote server through the program port (E.2 in Fig. 7). Subse-

uently, the exploit code submitted by the student is evaluated in

n isolated container environment to prevent malicious behavior

hat may occur when the code is executed (E.3 in Fig. 7). The ex-

loit code executed in an isolated environment is combined with

he identification information of each evaluation point of the chal-

enge saved in the database to be executed in the container corre-

ponding to each evaluation point (E.4 and E.5 of Fig. 7). The re-

ults of executing the exploit code for each evaluation point are

aved in the database, which can be viewed later by an educator

r students through the web interface (Es.6 and 7 of Figs. 7 and 9).

tudents have multiple opportunities to submit exploits for a chal-

enge. The number of opportunities provided to students is a policy

omponent that educators determine when running the Pwnable-

herpa platform. Students can obtain points for the exploit that

btains the highest score on the platform among the multiple ex-

loits they submit.

As shown in Fig. 9 , the student can determine which evaluation

oints were and were not solved through the web page, which can

elp the student concentrate on improving the required KS.

.2. Implementation issues of Pwnable-Sherpa

Some mitigations, such as the inline reference monitor (IRM)

ype (e.g., stack canary), cause the program code to change be-

ause they insert the reference monitor into the program binary

for example, see the changes by comparing the codes in Fig. 10 (a)

nd (b)). Changes in the binary file can affect the success or fail-

re of an exploit because virtual memory address space layout of

he process changes. For example, to develop an exploit that uses

emory safety violations, such as buffer overflow and heap chunk

ttacks, a student must know the program’s memory layout in-

ormation. Furthermore, some exploit skills for bypassing mitiga-

ion techniques, such as ROP, using a code gadget in the memory.

herefore, students should develop an exploit according to the sit-

ation in which mitigation is applied.
8
As shown in Fig. 7 , in Pwnable-Sherpa, we configured different

itigation environments in several containers for detailed evalu-

tion. However, this burdens students by requiring them to write

ultiple exploits for a given pwnable challenge to meet each eval-

ation point condition separately while considering which mitiga-

ion type was applied.

To solve this problem, we modified the LLVM-based compiler by

dding a new LLVM pass (Dummy StackProtector) that maintains

he code offset and virtual memory layout of the pwnable pro-

ram. Because of the proposed technique, the student writes only

ne exploit under the assumption of one system environment (all

ntended mitigations are active); thus, the abovementioned burden

s alleviated. Furthermore, in Pwnable-Sherpa, a detailed evaluation

s possible in multiple mitigation environments (multiple contain-

rs) using the exploit simultaneously.

The LLVM compiler consists of three parts: a front-end that

onverts C or C++ source code into an intermediate representation

IR), a middle-end that transforms IR to IR throughout the passes,

nd a back-end that converts IR to machine code (LLVM Compiler

nfrastructure), as shown in Fig. 11 . The LLVM pass is a building

lock in which code optimization occurs while transforming IR into

R.

First, we wrote a new LLVM pass (refer to the details about

riting an LLVM Pass in (Writing an LLVM Pass), see Pass dummy in

ig. 11) and a Dummy StackProtector, a code with the same instru-

entation code size that does not perform the stack canary check.

he code with the same instrumentation code size is designed to

nsure that the same code offset and virtual memory layout are

btained, regardless of whether the Dummy StackProtector or the

riginal StackProtector is used.

Second, we modified the abstract syntax tree (AST) generation

tep for the StackProtector in the LLVM code such that the LLVM IR

an be generated with the specified option (see IR dummy of Fig. 11).

epending on the compilation options, the platform can use either

he original StackProtector or the Dummy StackProtector (by mod-

fying the code to create a basic block to jump to when the stack

S.-K. Kim, E.-T. Jang, H. Park et al. Computers & Security 125 (2023) 103009

Fig. 9. Web interface for challenge solving achievements.

Fig. 10. Binary reconfiguration for maintaining memory layout regardless of stack canary.

p

a

t

(

t

o

t

_

i

a

d

c

c

t

4

t

s

l

t

s

rotector check fails (see the details of a member function, Cre-

teFailBB(), in (LLVM StackProtector)) in LLVM CodeGen, StackPro-

ector can be created as a Dummy StackProtector when the option

dummy-ssp) is specified).

As shown in Fig. 10 (b) and (c), the program code when

he Dummy StackProtector is applied has the same code lay-

ut as when the stack canary is applied while not performing

he stack canary check. In Fig. 10 (b), the program goes to the

_stack_chk_fail logic if the canary value changes when perform-

ng a canary check (see the cmp and jne instructions at 0x400692

nd 0x40069e in Fig. 10 (b)). However, in Fig. 10 (c), the program

oes not go to the __stack_chk_fail routine because it does not en-
s

9
ounter a jump instruction in the canary failure routine (see the

mp and consecutive add al, 0 instructions (such as a nop instruc-

ion) at the same code offset).

.2.1. Deploy engine

The proposed LLVM dummy pass technique is applied when

he deploy engine is built. This ensures that the same code off-

et and memory layout are maintained by reconfiguring the chal-

enge’s original binary such that each assessment in the evalua-

ion container can be executed simultaneously with the exploit

ubmitted by the student. This technique inserts the dummy code

hown in Fig. 10 (c) into the challenge binary, which has the same

S.-K. Kim, E.-T. Jang, H. Park et al. Computers & Security 125 (2023) 103009

Fig. 11. LLVM dummy pass generation module design.

Fig. 12. Evaluation containers and LLVM dummy pass.

s

(

i

a

i

p

a

t

4

a

i

t

c

t

e

(

4

s

A

t

p

i

p

c

w

e

b

ize as the inserted code because of the mitigation technique

 Fig. 10 (b)) and passes through this code area without executing

t such that it has the same memory layout as when mitigation is

pplied.

Suppose we have a pwnable challenge that runs with two mit-

gations: the stack canary and NX. From the architecture of the

roposed framework, the Deploy Engine builds four containers for

 given example: Container 1 (EP1 and EP2: no mitigation), Con-

ainer 2 (EP3: stack canary), Container 3 (EP3: NX), and Container

 (EP3: stack canary + NX), as shown in Fig. 12 . The student writes

n exploit code and submits it considering Container 4’s system,

n which all mitigations are applied. Because stack canary mitiga-

ion changes the memory layout affecting the writing of the exploit

ode, the LLVM dummy pass technique is applied to the other con-

ainers in which stack canary mitigation was not applied (Contain-
10
rs 1 and 3) such that it could be evaluated with only one exploit

see Fig. 12).

.2.2. Judge container

The exploit code submitted by the student undergoes a precise

equential evaluation based on each evaluation point, as shown in

lgorithm 1 . The judge container sends exploit code to the con-

ainers at each evaluation point. As shown in Fig. 12 , evaluation

oints 1 and 2 (EP 1 and EP 2) can be checked simultaneously

n one container (i.e., container 1) because whether a student has

assed EP 1 or not is checked by determining whether a crash oc-

urs in the system with the exploit code, which can be executed

ith the process of EP 2 (CFH) using the same exploit code. If the

xploit code hijacks the control flow, EP 1 is considered to have

een successfully passed.

S.-K. Kim, E.-T. Jang, H. Park et al. Computers & Security 125 (2023) 103009

Algorithm 1 Evaluation process of the judge container.

Input : N - challenge number (i.e, challenge identifier)

E - exploit code submitted by the student

D - database

C - crash identifier (“SIGABRT”, “SIGSEGV”)

Output : S - exploit status

1: P ← getPortNums (D, N) � get the port numbers of evaluation

containers.

2: H ← getHost (D, N) � get the host IP address of evaluation

containers.

3: for p ← P do

4: F ← getFlags (p) � read the flag stored in the evaluation

containers.

5: s ← tryExploit (E, H, p) � try exploit and save out stream

6: if isContain (s , F) then

7: S ← updateExploitState (S, D, p) � Update exploit

status.

8: end if

9: if isContain (s , C) then

10: S ← updateExploitState (S, D, p) � Update exploit

status (crashed)

11: end if

12: end for

i

f

t

c

e

s

d

a

e

4

o

S

p

4

T

i

t

v

f

v

t

i

a

e

m

s

K

i

t

4

w

t

p

a

a

m

a

p

n

d

w

v

e

t

w

m

p

s

t

s

h

c

e

(

s

o

g

a

d

h

b

t

P

t

t

(

K

f

T

s

d

o

(

c

(

t

a

o

4

c

S

e

t

t

a

t

v

t

w

s

s

r

g

The exploit code submitted by the student through the web

nterface is evaluated in a container environment that is isolated

rom the host environment, thereby preventing malicious behavior

hat may occur when the code is executed. Furthermore, to prevent

heating scenarios, the flags present in each container at different

valuation points are difficult for users to infer, and different flags

hould be used for each container. Therefore, in this study, ran-

omly generated flags were used during the challenge deployment

nd exploit-scoring processes. Hence, the flags were different for

ach user and evaluation point.

.3. Post-Implementation

In this section, we briefly examine the usage and effectiveness

f Pwnable-Shera. In particular, we discuss the use of Pwnable-

herpa in an educational course and measure the degree of im-

rovement in student KS.

.3.1. Integrating Pwnable-Sherpa in a course

Pwnable-Sherpa can be used as a tool in educational courses.

he following briefly describes how Pwnable-Sherpa can be used

n a class. First, when students register for courses, educators test

hem using Pwnable-Sherpa, classify them into levels, and pro-

ide guidelines for suitable classes. For example, educators can of-

er classes based on level, such as beginner, intermediate, and ad-

anced courses. The students can then enroll in a class suitable for

hem. In addition, by testing students using Pwnable-Sherpa dur-

ng a class, it is possible to know precisely which KS the students

re lacking; thus, the educator can add more material for these KS,

xtend class and office hours to explain these KS, and schedule a

ake-up class for students who want to improve their KS. At the

ame time, students can ask as many questions as possible about

S. Thus, using Pwnable-Sherpa in a course helps educators flex-

bly manage classes. Meanwhile, students can efficiently improve

heir KS using Pwnable-Sherpa.

.3.2. Evaluation of how Pwnable-Sherpa helps students

Examples of feedback that an educator can provide students

ith in Pwnable-Sherpa’s challenge-solving are as follows: (i) the

ask(s) that the student could not perform (e.g., Student A failed to
11
erform T3 (NP, Non-Pass), as shown in Fig. 1); (ii) the KS sets that

re related to the task(s) of (i) (e.g., KS 8 , KS 9 , KS 10 , KS 11 , and KS 12

re required for T3, bypass mitigation, as shown in Fig. 1); and (iii)

ore detailed information about each KS.

To provide more detailed feedback about KS, the educator may

sk the student how much the student knows about each KS while

roviding the set of KS related to the task that the student could

ot perform. This may be related to the KS assessment of the stu-

ents to provide more detailed feedback. There may be several

ays to know the student’s understanding of KS. Because there are

arious types of KS, developing separate evaluation methods for

ach KS is complicated and challenging. As it is somewhat beyond

he scope of this paper, a technical evaluation method for assessing

hether a student possesses KS will be left for future work.

However, to deal with more detailed feedback, we used the

ethod proposed by Park and Hong (2019) in which students can

erform a self-assessment for each KS. The assessment can be de-

igned to accept values between 0 and 5 that are a measure of

he student’s level of understanding (0: Inexperience, 1: Having ba-

ic knowledge, 2: Beginner (limited experience, need professional

elp), 3: Intermediate (possible to adopt practical usage, need oc-

asional professional help), 4: Expert (challenge solving without

xternal help, subject to inquiries from others), and 5: Professional

certified professional)). A student can be asked to perform a KS

elf-assessment when the student submits exploits for a challenge

r when a student submits exploits for all challenges. More fine-

rained feedback can be provided to students through the KS self-

ssessment and the Pwnable-Sherpa (see the radial graph with

ark gray color in Fig. 13 (c)).

In addition, the educator can measure how much the feedback

elped the student by comparing the KS self-assessment results

efore and after the feedback is given, as shown in Fig. 13 . The de-

ailed procedure is as follows. First, students solve challenges with

wnable-Sherpa (Fig. 13 (a.1)); they self-assess KS, which is called

he 1st round KS assessment (Fig. 13 (a.2)), which is related to

he task that the students could not perform using Pwnable-Sherpa

i.e., T3, KS 8 , KS 9 , KS 10 , KS 11 , and KS 12). The results of the 1st round

S assessment of the student can be represented in radial graph

orm, as shown by the dark gray colored areas in Fig. 13 (b) and (c).

he educator then gives feedback to the students based on the re-

ults of the 1st round of KS assessment (Fig. 13 (a.3)). The stu-

ents solved the challenges that were similar to those of the previ-

us round (Fig. 13 (a.4)), and conduct a KS self-assessment (Fig. 13

a.5)). The result of the 2nd round KS assessment of the student

an be represented as a light gray colored area in Fig. 13 (b) and

c). By comparing the differences between the two colored areas,

he educator can measure the effects of feedback. In addition, by

nalyzing the feedback effect, educators may develop a better form

f feedback.

.3.3. Extension of Pwnable-Sherpa’s approach to other CTF

hallenges

It is possible to extend the approach introduced in Pwnable-

herpa to other CTF challenges, such as web, forensic, or reversing

ngineering because solving some challenges also requires multiple

asks. However, as each challenge has its own characteristics, de-

ailed evaluation methods for each step should be developed sep-

rately. For example, to solve a web challenge requiring SQL injec-

ion, students will approach it step-wise (e.g., (1) find an injection

ulnerability; (2) craft an appropriate SQL command according to

he DMBS; and (3) gain access to the query results). To evaluate

hether a student can find an SQL injection vulnerability, the as-

essment system may monitor the web server’s access log and re-

ponses from the web server when the assessment system sends

equests using the student’s exploit instead of monitoring the pro-

ram’s crash. Details of Pwnable-Sherpa’s extension to other CTF

S.-K. Kim, E.-T. Jang, H. Park et al. Computers & Security 125 (2023) 103009

Fig. 13. Measuring the feedback’s effects by comparison of two KS self-assessment results before and after feedback is given.

Fig. 14. Comparison of correct answer rate according to pwnable CTF challenges.

c

s

C

5

5

l

2

t

i

s

d

5

t

c

F

b

s

(

hallenges seem to be another research topic (e.g., how we can de-

ign and implement a detailed assessment system for SQL injection

TF challenges), so we leave this as future work.

. Lessons learned from the 2020 pwnable CTF competition

.1. Challenges

Based on the workflow of the pwnable challenge described ear-

ier, the following two types of challenges were presented at the

020 CTF competition held by our research team at Kongju Na-

ional University. The partial challenge can be solved by complet-
12
ng a single task (Task 1) for the entire exploit writing process. The

ynthesis challenge can be solved by completing at least two tasks

uring the entire exploit process.

.1.1. Partial challenge

We designed challenges (a) and (b) such that only Task 1 (iden-

ifing vulnerabilities and triggering them) was required; students

an solve the challenges without KS required for Tasks 2 and 3.

or the challenges in Fig. 14 (a) and (b), the vulnerabilities are the

uffer and integer overflow, respectively. For example, if students

uccessfully identify the vulnerability of a program and trigger it

e.g., buffer overflow), they can directly read the flag inserted into

S.-K. Kim, E.-T. Jang, H. Park et al. Computers & Security 125 (2023) 103009

t

n

a

i

t

t

s

p

5

t

p

i

l

a

a

s

g

r

c

F

a

w

p

5

i

a

T

t

d

T

t

e

f

(

m

t

t

6

r

c

d

(

3

i

d

s

a

v

t

e

e

c

d

e

t

m

c

D

c

i

C

W

H

a

p

g

i

D

A

C

K

F

s

0

r

(

g

s

S

R

0

B

B

B

c

C

C

C

C

C
D

D

he program using the data area overflow such that they do not

eed to hijack the control flow of the program. Here, students have

ccess to a core dump. Because the flag of the challenge is inserted

nto the program, students can print the flag in the core dump by

riggering the programs’ vulnerability to their local machine. Note

hat Pwnable-Sherpa was not used in this competition. This analy-

is was performed to identify a problem in evaluating the pass/non

ass method of the existing pwnable CTF.

.2. Synthesis challenge

The synthesis challenge requires at least two of the several

asks of the challenge-solving workflow to acquire the flag of the

wnable challenge (i.e., T1 and T2: CFH). Most pwnable problems

n competitions require comprehensive KS to solve. For the chal-

enges in Fig. 14 (c) and (d), the program contains buffer overflow

nd use-after-free (UAF) vulnerabilities, respectively, and students

re expected to have the required KS for these vulnerabilities to

olve the challenge. In addition, for the problem in Fig. 14 (d), miti-

ation techniques were not applied in the system or program, thus

equiring students to acquire the flag by completing the task of

apturing the control flow to solve the problem (i.e., T1 and T2).

or the challenge in Fig. 14 (c), the challenge binary was operated in

n environment in which the NX and ASLR mitigation techniques

ere applied, thus requiring students to acquire the flag by by-

assing the mitigation techniques (i.e., T1, T2, and T3).

.3. Competition result analysis

The percentages of students who solved partial challenges dur-

ng the CTF competition were 37% and 22%, as shown in Fig. 14 (a)

nd (b), respectively. To solve challenges (a) and (b), only KS for

1 is required. In contrast, when comprehensive KSs were required

o be solved for the synthesis challenges, only one out of 87 stu-

ents solved the challenge correctly, as shown in Fig. 14 (c) and (d).

he challenge shown in Fig. 14 (c) had the same vulnerability as

hat shown in Fig. 14 (a). This indicated that no significant differ-

nce was observed in the knowledge required for T1. Thus, the dif-

erence in the number of solvers arises from solving other tasks

i.e., T2). These results reveal that using a dichotomous evaluation

ethod for pwnable challenges complicates the provision of de-

ailed feedback to students, because it is difficult to establish what

he student does or does not know.

. Conclusion

The CTF-style evaluation method widely used in cybersecu-

ity competitions is challenging to apply in education because, in

ompetitions, the focus is on ranking and not on improving stu-

ents’ KS. In this study, based on the results of CTF competitions

2017, 2018, 2020) conducted by our research team over the past

 years, we determined that to use CTF in education and train-

ng classes, a function must provide sufficient feedback to stu-

ents. For a detailed evaluation of Pwnable-Sherpa, the challenge-

olving process was extracted from the stages of the CFH attack,

nd three detailed evaluation points were presented. However, pro-

iding detailed feedback to students can be labor-intensive and

ime consuming for educators; thus, alleviating this burden is nec-

ssary. Therefore, we proposed Pwnable-Sherpa, which can relieve

ducators’ burdens using automatic challenge distribution, multi-

ontainer, simultaneous execution of detailed evaluation, and LLVM

ummy pass while providing feedback. Based on Pwnable-Sherpa,

ducators can provide more feedback to students (e.g., KS sets for

asks). This process approaches a one-on-one coaching environ-

ent for educators and students.
13
In future work, we will adopt Pwnable-Sherpa in a training

lass to study it through interviews with students and educators.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

Sung-Kyung Kim: Conceptualization, Software, Data curation,

riting – original draft, Visualization. Eun-Tae Jang: Software.

anjin Park: Conceptualization, Methodology, Validation, Formal

nalysis, Writing – original draft, Writing – review & editing, Su-

ervision. Ki-Woong Park: Conceptualization, Validation, Investi-

ation, Resources, Writing – original draft, Writing – review & edit-

ng, Supervision, Project administration, Funding acquisition.

ata availability

The authors do not have permission to share data.

cknowledgments

This work was supported by the Institute of Information &

ommunications Technology Planning & Evaluation (IITP), South

orea (Project No. RS-2022-00165794, Development of a Multi-

aceted Collection-Analysis-Response Platform for Proactive Re-

ponse to Ransomware Incidents, 30%, and Project No. 2022-0-

 07010 0 010 03, 30%), and a National Research Foundation of Ko-

ea (NRF), South Korea grant funded by the Korean government

Project No. NRF-2020R1A2C4002737, 30%), and the ICT R&D Pro-

ram of MSIT/IITP, South Korea (Project No. 2021-0-01816, A Re-

earch on Core Technology of Autonomous Twins for Metaverse,

outh Korea, 10%).

eferences

 CTF, https://0ops.sjtu.cn/ . [Online; accessed 09-April-2022].

letsch, T., Jiang, X., Freeh, V.W., Liang, Z., 2011. Jump-oriented programming: a new

class of code-reuse attack. In: Proceedings of the 6th ACM Symposium on In-

formation, Computer and Communications Security. Association for Computing
Machinery, New York, NY, USA, pp. 30–40. doi: 10.1145/1966913.1966919 .

ufferoverflow, Buffer overflow protection. https://en.wikipedia.org/wiki/Buffer _
overflow _ protection#Canaries . [Online; accessed 09-April-2022].

urns, T.J., Rios, S.C., Jordan, T.K., Gu, Q., Underwood, T., 2017. Analysis and ex-

ercises for engaging beginners in online CTF competitions for security edu-
cation. 2017 USENIX Workshop on Advances in Security Education (ASE 17).

USENIX Association, Vancouver, BC . https://www.usenix.org/conference/ase17/
workshop-program/presentation/burns .

0ntex, How to hijack the global offset table with pointers for root shells. http:
//www.infosecwriters.com/text _ resources/pdf/GOT _ Hijack.pdf . [Online; accessed

09-April-2022].

hapman, P., Burket, J., Brumley, D., 2014. PicoCTF: a game-based com-
puter security competition for high school students. 2014 USENIX Sum-

mit on Gaming, Games, and Gamification in Security Education (3GSE 14).
USENIX Association, San Diego, CA . http://www.usenix.org/conference/3gse14/

summit-program/presentation/chapman .
hew, M., Song, D., 2002. Mitigating Buffer Overflows by Operating System Ran-

domization. Technical Report . http://citeseerx.ist.psu.edu/viewdoc/summary? .

hothia, T., Novakovic, C., 2015. An offline capture the flag-style virtual machine
and an assessment of its value for cybersecurity education. 2015 USENIX

Summit on Gaming, Games, and Gamification in Security Education (3GSE
15). USENIX Association, Washington, D.C. . https://www.usenix.org/conference/

3gse15/summit-program/presentation/chothia .
hung, K., 2017. Live lesson: lowering the barriers to capture the flag administra-

tion and participation. 2017 USENIX Workshop on Advances in Security Ed-
ucation (ASE 17). USENIX Association, Vancouver, BC . https://www.usenix.org/

conference/ase17/workshop-program/presentation/chung .

ODEGATE CTF, http://codegate.org/en/ . [Online; accessed 09-April-2022].
EF CON CTF, https://www.defcon.org/html/links/dc-ctf.html . [Online; accessed 09-

April-2022].
esigner, S., 1997. Linux kernel patch to remove stack exec permission. https:

//seclists.org/bugtraq/1997/Apr/31 . [Online; accessed 09-April-2022].

https://0ops.sjtu.cn/
https://doi.org/10.1145/1966913.1966919
https://en.wikipedia.org/wiki/Buffer_overflow_protection#Canaries
https://www.usenix.org/conference/ase17/workshop-program/presentation/burns
http://www.infosecwriters.com/text_resources/pdf/GOT_Hijack.pdf
http://www.usenix.org/conference/3gse14/summit-program/presentation/chapman
http://citeseerx.ist.psu.edu/viewdoc/summary?
https://www.usenix.org/conference/3gse15/summit-program/presentation/chothia
https://www.usenix.org/conference/ase17/workshop-program/presentation/chung
http://codegate.org/en/
https://www.defcon.org/html/links/dc-ctf.html
https://seclists.org/bugtraq/1997/Apr/31

S.-K. Kim, E.-T. Jang, H. Park et al. Computers & Security 125 (2023) 103009

D

D

E

E

F

H

K

K

K

L

L

M

M

M

N

P

P

P

R

R

S

S

S

S

S

T

U

v

v

V

W

Z

S

f
s

E

f

s
i

H
S

r

2

i

r

K

s
A

i

G
a

i
s

m

hurjati, D., Kowshik, S., Adve, V., Lattner, C., 2003. Memory safety without runtime
checks or garbage collection. SIGPLAN Not. 38 (7), 69–80. doi: 10.1145/780731.

780743 .
iscord, https://discord.com/ . [Online; accessed 09-April-2022].

rlingsson, Ú., Younan, Y., Piessens, F., 2010. Low-Level Software Security by Exam-
ple. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 633–658 .

xecutable space protection, https://en.wikipedia.org/wiki/Executable _ space _
protection#Windows . [Online; accessed 09-April-2022].

orescout Research Labs and JFrog Security Research, Infra:Halt, Jointly discov-

ering and mitigating large-scale OT vulnerabilities. https://www.forescout.
com/resources/infrahalt-discovering-mitigating-large-scale-ot-vulnerabilities/ .

[Online; accessed 09-April-2022].
itcon CTF, https://ctf2021.hitcon.org/ . [Online; accessed 09-April-2022].

im, S., Xu, M., Kashyap, S., Yoon, J., Xu, W., Kim, T., 2019. Finding semantic bugs in
file systems with an extensible fuzzing framework. In: Proceedings of the 27th

ACM Symposium on Operating Systems Principles. Association for Computing

Machinery, New York, NY, USA, pp. 147–161. doi: 10.1145/3341301.3359662 .
im, S.-K., Jang, E.-T., Park, K.-W., 2020. Toward a fine-grained evaluation of the

pwnable CTF. In: You, I. (Ed.), Information Security Applications. Springer In-
ternational Publishing, Cham, pp. 179–190. doi: 10.1007/978- 3- 030- 65299- 9 _ 14 .

olmogorov-Smirnov, Kolmogorov-smirnov test. https://en.wikipedia.org/wiki/
Kolmogorov-Smirnov _ test . [Online; accessed 09-April-2022].

LVM Compiler Infrastructure, https://llvm.org/ . [Online; accessed 09-April-2022].

LVM StackProtector, https://github.com/llvm/llvm-project/blob/989f1c72e0f4236
ac35a35cc9998ea34bc62d5cd/llvm/lib/CodeGen/StackProtector.cpp#L553 . [On-

line; accessed 09-April-2022].
atsakis, N.D., Klock, F.S., 2014. The rust language. In: Proceedings of the 2014

ACM SIGAda Annual Conference on High Integrity Language Technology. Associ-
ation for Computing Machinery, New York, NY, USA, pp. 103–104. doi: 10.1145/

2663171.2663188 .

icrosoft, 2020. Microsoft exchange validation key remote code execution vulner-
ability. https://msrc.microsoft.com/update- guide/vulnerability/CVE- 2020- 0688 .

[Online; accessed 09-April-2022].
ITRE, 2020. CWE top 25 most dangerous software weaknesses. https://cwe.

mitre.org/top25/archive/2020/2020 _ cwe _ top25.html . [Online; accessed 09-April-
2022].

ergal, 2001. Advanced return-into-lib(c) exploits (pax case study). http://phrack.

org/issues/58/4.html . [Online; accessed 09-April-2022].
ark, H., Hong, S., 2019. Strategy for developing cybersecurity workforce in CSTEC:

a link between lab-based training and a live-fire competition. In: 32nd Annual
FISSEA Conference : Innovations in Cybersecurity Awareness and Training : A 360

Degree Perspective .
ark, J.-G., Choi, S.-H., il Kim, H., Hong, D., Park, K.-W., 2018. Our experiences on

the design, build and run of CTF. In: The 4th International Conference on Next

Generation Computing (ICNGC 2018) .
laid CTF, https://plaidctf.com/ . [Online; accessed 09-April-2022].

ege, A., 2015. Multidisciplinary experiential learning for holistic cybersecurity ed-
ucation, research and evaluation. 2015 USENIX Summit on Gaming, Games, and

Gamification in Security Education (3GSE 15). USENIX Association, Washington,
D.C. . https://www.usenix.org/conference/3gse15/summit-program/presentation/

rege .
eturn Oriented Programing (ROP), https://en.wikipedia.org/wiki/Return-oriented _

programming . [Online; accessed 09-April-2022].

eibert, J., Okhravi, H., Söderström, E., 2014. Information leaks without memory
disclosures: remote side channel attacks on diversified code. In: Proceedings

of the 2014 ACM SIGSAC Conference on Computer and Communications Se-
curity. Association for Computing Machinery, New York, NY, USA, pp. 54–65.

doi: 10.1145/2660267.2660309 .
erna, F.J., 2012. CVE-2012-0769, the case of the perfect info leak. In: Black-

hat 12 USA Conference . https://paper.bobylive.com/Meeting _ Papers/BlackHat/

USA-2012/BH _ US _ 12 _ Serna _ Leak _ Era _ WP.pdf .
14
hacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., Boneh, D., 2004. On
the effectiveness of address-space randomization. In: Proceedings of the 11th

ACM Conference on Computer and Communications Security. Association for
Computing Machinery, New York, NY, USA, pp. 298–307. doi: 10.1145/1030083.

1030124 .
trackx, R., Younan, Y., Philippaerts, P., Piessens, F., Lachmund, S., Walter, T., 2009.

Breaking the memory secrecy assumption. In: Proceedings of the Second Euro-
pean Workshop on System Security. Association for Computing Machinery, New

York, NY, USA, pp. 1–8. doi: 10.1145/1519144.1519145 .

zekeres, L., Payer, M., Wei, T., Song, D., 2013. SoK: Eternal war in memory. In: 2013
IEEE Symposium on Security and Privacy, pp. 48–62. doi: 10.1109/SP.2013.13 .

heo de Raadt, Exploit mitigation techniques. https://www.openbsd.org/papers/
ven05-deraadt/index.html . [Online; accessed 09-April-2022].

S-CERT Alert (AA21-131A), Colonial pipeline ransomware attack. https://us-cert.
cisa.gov/ncas/alerts/aa21-131a . [Online; accessed 09-April-2022].

an der Veen, V., dutt-Sharma, N., Cavallaro, L., Bos, H., 2012. Memory errors: the

past, the present, and the future. In: Balzarotti, D., Stolfo, S.J., Cova, M. (Eds.),
Research in Attacks, Intrusions, and Defenses. Springer Berlin Heidelberg, Berlin,

Heidelberg, pp. 86–106. doi: 10.1007/978- 3- 642- 33338-5 _ 5 .
an de Ven, A., 2004. New Security Enhancements in Red Hat Enterprise

Linux. RedHat . https://people.redhat.com/mingo/exec-shield/docs/WHP0 0 06US _
Execshield.pdf .

ykopal, J., Barták, M., 2016. On the design of security games: from frustrating to

engaging learning. 2016 USENIX Workshop on Advances in Security Education
(ASE 16). USENIX Association, Austin, TX . https://www.usenix.org/conference/

ase16/workshop-program/presentation/vykopal .
riting an LLVM Pass, https://llvm.org/docs/WritingAnLLVMPass.html . [Online; ac-

cessed 09-April-2022].
alewski, M., Bash bug: the other two RCEs, or how we chipped away at

the original fix (CVE-2014-6277 and ’78). https://lcamtuf.blogspot.com/2014/10/

bash- bug- how- we- finally- cracked.html . [Online; accessed 09-April-2022].

ung-Kyung Kim received the B.S. degree in the department of information security

rom Sejong University in 2019, the M.S. degree in the department of information
ecurity from Sejong in 2021. His research interests include system security.

un-Tae Jang received the B.S. degree in the department of information security

rom Sejong University in 2019, the M.S. degree in the department of information

ecurity from Sejong in 2021. He has been a researcher in INETCOP. His research
nterests include system security.

anjin Park received the B.S. degree in computer science from Yonsei University,
eoul, South Korea, in 2007, and the Ph.D. degree in computer Science from Ko-

ea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea, in

015. He has been a senior researcher in the Affiliated Institute of ETRI. His research
nterests include computer network security, cybersecurity training, and cybersecu-

ity competition.

i-Woong Park received the B.S. degree in computer science from Yonsei Univer-

ity, South Korea, in 2005, the M.S. degree in electrical engineering from the Korea
dvanced Institute of Science and Technology (KAIST) in 2007, and the Ph.D. degree

n electrical engineering from KAIST in 2012. He received a 2009–2010 Microsoft

raduate Research Fellowship. He worked for National Security Research Institute
s a senior researcher. He has been a professor in the department of computer and

nformation security at Sejong University. His research interests include security is-
ues for cloud and mobile computing systems as well as the actual system imple-

entation and subsequent evaluation in a real computing system.

https://doi.org/10.1145/780731.780743
https://discord.com/
http://refhub.elsevier.com/S0167-4048(22)00401-1/sbref0008
https://en.wikipedia.org/wiki/Executable_space_protection#Windows
https://www.forescout.com/resources/infrahalt-discovering-mitigating-large-scale-ot-vulnerabilities/
https://ctf2021.hitcon.org/
https://doi.org/10.1145/3341301.3359662
https://doi.org/10.1007/978-3-030-65299-9_14
https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test
https://llvm.org/
https://github.com/llvm/llvm-project/blob/989f1c72e0f4236ac35a35cc9998ea34bc62d5cd/llvm/lib/CodeGen/StackProtector.cpp#L553
https://doi.org/10.1145/2663171.2663188
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2020-0688
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
http://phrack.org/issues/58/4.html
http://refhub.elsevier.com/S0167-4048(22)00401-1/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00401-1/sbref0013
https://plaidctf.com/
https://www.usenix.org/conference/3gse15/summit-program/presentation/rege
https://en.wikipedia.org/wiki/Return-oriented_programming
https://doi.org/10.1145/2660267.2660309
https://paper.bobylive.com/Meeting_Papers/BlackHat/USA-2012/BH_US_12_Serna_Leak_Era_WP.pdf
https://doi.org/10.1145/1030083.1030124
https://doi.org/10.1145/1519144.1519145
https://doi.org/10.1109/SP.2013.13
https://www.openbsd.org/papers/ven05-deraadt/index.html
https://us-cert.cisa.gov/ncas/alerts/aa21-131a
https://doi.org/10.1007/978-3-642-33338-5_5
https://people.redhat.com/mingo/exec-shield/docs/WHP0006US_Execshield.pdf
https://www.usenix.org/conference/ase16/workshop-program/presentation/vykopal
https://llvm.org/docs/WritingAnLLVMPass.html
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html

	Pwnable-Sherpa: An interactive coaching system with a case study of pwnable challenges
	1 Introduction
	2 Background
	2.1 Pwnable challenge
	2.2 Control flow hijacking

	3 Pwnable challenge-solving tasks and their evaluation
	3.1 Tasks for solving a pwnable challenge
	3.2 Evaluation points: How to evaluate whether a learner can perform a task

	4 Design and implementation of Pwnable-Sherpa
	4.1 Pwnable-Sherpa design
	4.1.1 Preparation phase
	4.1.2 Exercise phase

	4.2 Implementation issues of Pwnable-Sherpa
	4.2.1 Deploy engine
	4.2.2 Judge container

	4.3 Post-Implementation
	4.3.1 Integrating Pwnable-Sherpa in a course
	4.3.2 Evaluation of how Pwnable-Sherpa helps students
	4.3.3 Extension of Pwnable-Sherpa’s approach to other CTF challenges

	5 Lessons learned from the 2020 pwnable CTF competition
	5.1 Challenges
	5.1.1 Partial challenge

	5.2 Synthesis challenge
	5.3 Competition result analysis

	6 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	References

