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Phase Change RAM (PRAM) is a candidate to replace DRAM main memory due to its low idle power
consumption and high scalability. However, its latency and endurance have generated problems in fulfilling
its main memory role. The latency can be treated with a DRAM buffer, but the endurance problem remains,
with three critical points that need to be improved despite the use of, existing wear-leveling algorithms. First,
existing DRAM buffering schemes do not consider write count distribution. Second, swapping and shifting
operations are performed statically. Finally, swapping and shifting operations are loosely coupled with a
DRAM buffer. As a remedy to these drawbacks, we propose an adaptive wear-leveling algorithm that consists
of three novel schemes for PRAM main memory with a DRAM buffer. The PRAM-aware DRAM buffering
scheme reduces the write count and prevents skewed writing by considering the write count and clean data
based on the least recently used (LRU) scheme. The adaptive multiple swapping and shifting scheme makes
the write count even with the dynamic operation timing, the number of swapping pages being based on
the workload pattern. Our DRAM buffer-aware swapping and shifting scheme reduces overhead by curbing
additional swapping and shifting operations, thus reducing unnecessary write operations. To evaluate the
wear-leveling effect, we have implemented a PIN-based wear-leveling simulator. The evaluation confirms
that the PRAM lifetime increases from 0.68 years with the previous wear-leveling algorithm to 5.32 years
with the adaptive wear-leveling algorithm.
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1. INTRODUCTION

For several decades, DRAM has been the primary main memory used for applications
ranging from mobile devices to large-scale computing systems. With the growth of new
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Fig. 1. Two types of hybrid main memory architectures with DRAM and PRAM.

applications, there is a need for increased main memory capacity. However, with the
increasing memory requirement, DRAM memory systems have been faced with prac-
tical limitations in terms of high power consumption and low scalability. For example,
the DRAM idle power has significantly increased in proportion to its size, which has a
substantial effect on total power consumption [Roberts et al. 2009]. Also, DRAM has
almost reached its capacity limit because of the scalability wall [Ipek et al. 2010].

As a remedy to the limitations, many researchers have attempted to replace DRAM
with Phase Change RAM (PRAM), an emerging memory technology, as an alternative
main memory device. PRAM has a nonvolatile characteristic, thereby having little idle
power consumption. It is also believed that PRAM is more scalable than DRAM [Ipek
et al. 2010]. Therefore, using PRAM as the main memory can increase the memory
capacity. However, the primary challenges in deploying PRAM include its latency and
endurance issues.

From an architectural perspective, two hybrid main memory design options have
been proposed to solve the latency issue of PRAM as shown in Figure 1. Figure 1(a)
shows the configuration that locates DRAM and PRAM in the same linear region
[Dhiman et al. 2009; Park et al. 2010, 2011b; Ramos et al. 2011]. In this configuration,
data in both DRAM and PRAM can be directly accessed, and a conventional memory
controller can be used without any changes. In order to solve the endurance problem,
data allocation and migration schemes in the OS layer, as well as additional hardware
components, are needed. Figure 1(b) describes another configuration that locates the
DRAM in front of the PRAM [Park et al. 2011a, 2012; Qureshi et al. 2009a, 2009b; Lee
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et al. 2009; Ferreira et al. 2010]. This configuration can solve the endurance problem
better than the first configuration thanks to the DRAM buffer. Consequently, we incor-
porated the second configuration of PRAM main memory with a DRAM buffer into our
system as an underlying memory architecture.

In order to solve the endurance problem of PRAM main memory with a DRAM
buffer, various wear-leveling algorithms have been presented [Dhiman et al. 2009;
Qureshi et al. 2009a, 2009b; Lee et al. 2009; Ferreira et al. 2010; Park et al. 2012].
There are two wear-leveling algorithm goals: write count reduction and uniform write
count distribution. In order to reduce the PRAM write count, the DRAM buffer kept
frequently updated data [Qureshi et al. 2009b; Ferreira et al. 2010; Park et al. 2012],
and data comparison write schemes were used for writing only modified bits/lines [Lee
et al. 2009]. In order to even out the PRAM write count, swapping and shifting schemes
were presented [Dhiman et al. 2009; Qureshi et al. 2009a, 2009b; Ferreira et al. 2010;
Park et al. 2012].

While previous wear-leveling algorithms increased the PRAM lifetime, we identified
three critical improvement points by thoroughly investigating them. First, previous
DRAM buffering schemes did not account for write count distribution. They were
only designed for write count reduction. Consideration of PRAM’s endurance in the
DRAM buffer helps to even out the PRAM write count as well as reduce the PRAM
write count. Second, the swapping and shifting operations have parameters: operation
timing and the number of swapping pages. Careful attention should be paid to these
parameters because they critically affect wear-leveling. With static parameters, it is
hard to achieve good wear-leveling. However, the wear-leveling effect can be improved
if the parameters are adaptively controlled based on the workload pattern. Finally,
the swapping and shifting operations were loosely coupled with data in the DRAM
buffer. The cooperation between the data in the DRAM buffer and the swapping and
shifting operations in the PRAM main memory can alleviate the overhead incurred by
additional operations.

Motivated by these observations, we developed an adaptive wear-leveling algorithm
for PRAM main memory with a DRAM buffer. As depicted in Figure 1(b), we developed
three novel schemes: a PRAM-aware DRAM buffering scheme, an adaptive multiple
data swapping and shifting scheme, and a DRAM buffer-aware swapping and shifting
scheme. The following points discuss the schemes in more detail.

—Our PRAM-aware DRAM buffering scheme considers the PRAM write count and
clean data based on the LRU scheme for victim selection when the DRAM buffer is
full. It can prevent the skewing of the write count of specific pages, as well as reduce
the PRAM write count, thereby improving the PRAM lifetime.

—To improve the PRAM endurance, the PRAM write count needs to be evened out. An
adaptive multiple data swapping and shifting scheme was designed to accomplish
this. Swapping multiple pages at once can efficiently even out the write count among
all the pages. A shifting scheme was also applied to even out the write count among all
the lines in each page. To effectively perform the swapping and shifting operations,
the operation timing and number of swapping pages are dynamically controlled based
on the workload pattern. The adaptive multiple data swapping and shifting scheme
can prolong the PRAM lifetime.

—In order to alleviate the overhead incurred by additional swapping and shifting
operations, a DRAM buffer-aware swapping and shifting scheme was proposed. The
DRAM buffer contents are considered during the swapping and shifting operations,
thereby reducing unnecessary write operations.

This study is an extension of our previous work [Park et al. 2012], in which we
focused on the basic buffering, swapping, and shifting designs for PRAM main memory
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with a DRAM buffer. Our objective in this study, however, was to devise a full-fledged
wear-leveling scheme for PRAM main memory with a DRAM buffer, and transparently
integrate the overall components in a PIN-based wear-leveling simulator.

The remainder of this article is organized as follows. The article begins with back-
ground about PRAM, and introduces previous wear-leveling algorithms in Section 3.
Section 4 describes an adaptive wear-leveling algorithm that consists of a PRAM-aware
DRAM buffering scheme, an adaptive multiple data swapping and shifting scheme, and
a DRAM buffer-aware swapping and shifting scheme. The evaluation is explained in
Section 5. Section 6 concludes the article and presents future work.

2. BACKGROUND

The purpose of this section is to provide background for our work. We introduced a
PRAM cell structure, and discussed the advantages and disadvantages of PRAM.

Many researchers have developed new memory technologies (Phase-change RAM
(PRAM), Ferroelectric RAM (FRAM), and Magnetic RAM (MRAM)). Among these mem-
ories, PRAM is considered as the most promising technology for future memory. PRAM
uses a phase change material (GST: Ge2Sb2Te5), which has two phases: an amorphous
or a crystalline phase. Since the amorphous and the crystalline phases have a large
variance in their resistance, the data are read by measuring the current of the PRAM.
The phase of the GST can be changed by heating the material. A moderate and long
current pulse crystallizes GST. On the other hand, a short current pulse melts and
quenches GST quickly, and makes it amorphous.

Basically, PRAM is byte-addressable like DRAM. The great advantages of PRAM
are high scalability and low idle power consumption [Dhiman et al. 2009]. PRAM does
not require an implementation of a capacitor for memory cells, thus providing superior
density relative to DRAM. Because the phase of PRAM is maintained persistently,
PRAM has negligible leakage power consumption. Therefore, PRAM can provide much
higher capacity and lower power consumption than DRAM.

However, the long current pulse for crystallizing increases the PRAM write latency.
Although the PRAM access latency is tens of nanoseconds, it is still not comparable to
the DRAM access latency. The frequent access of PRAM can impact the performance.
The high write power consumption for the long pulse for phase change and write
endurance are also limitations of PRAM [Dhiman et al. 2009]. PRAM writing makes
the material thermally expand and contract. It degrades the electrode-storage contact
and reduces the reliability of the programming current. Thus, the write endurance of
PRAM cells is degraded. PRAM can sustain 108 rewrites per cell [Zhou et al. 2009; Lee
et al. 2009; Zhang and Li 2009; Kong and Zhou 2010].

3. RELATED WORK

Many wear-leveling algorithms have emerged to overcome the PRAM endurance prob-
lem as main memory or storage. These algorithms are categorized into two design
issues: write count reduction and uniform write count distribution, as described in
Table I. In this section we will present a careful analysis of previous wear-leveling
algorithms.

3.1. Write Count Reduction

The redundant write removal and DRAM buffering algorithms are the main ones used
to reduce the PRAM write count. In this section, we will describe them in detail and
introduce other methods like encryption and content-aware block placement.

3.1.1. Redundant Write Removal. Yang et al. [2007] proposed a data-comparison write
(DCW) scheme. This scheme reads the stored data during the write operation, and
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Table I. Related Wear-Leveling Categorization

Write Count Reduction Uniform Write Count Distribution

DCW [Yang et al. 2007] Page Swapping [Dhiman et al. 2009]
Partial Writes [Lee et al. 2009] Segment Switching [Park et al. 2008]

Redundant Redundant Writes [Zhou et al. 2009] Data Segment Swapping [Zhou et al. 2009]
Write RWR [Ferreira et al. 2010] Swapping Swap Algorithm [Ferreira et al. 2010]

Removal Flip-N-Write [Cho and Lee 2009] Data Swapping [Park et al. 2012]
LLWB [Qureshi et al. 2009b] Wear Rate Leveling [Dong et al. 2011]

Sub-Page [Ferreira et al. 2010]
Word-Level Shifting [Park et al. 2008]

DRAM Lazy Write [Qureshi et al. 2009b] Data Row Shifting [Zhou et al. 2009]
Buffering N-Chance [Ferreira et al. 2010] Shifting FGWL [Qureshi et al. 2009b]

Line-Level LRU [Park et al. 2012] Start-Gap [Qureshi et al. 2009a]
Data Shifting [Park et al. 2012]

Other ADCW [Zhang and Li 2009] Other
Methods Encryption [Kong and Zhou 2010] Methods PA-to-PCMA translation [Seznec 2010]

CA [Wongchaowart et al. 2010]

then writes the input data only when the input and stored data are different. Lee
et al. [2009] proposed a partial write scheme that reduces the number of writes to PRAM
by tracking the dirty data from the L1 cache to the memory banks. Zhou et al. [2009]
proposed a redundant bit-write scheme that removes unnecessary bit-writes during
an entire row (or a page) update. Ferreira et al. [2010] proposed a page partitioning
scheme to avoid the write-back of clean subpages, and a read-write-read (RWR) scheme
to remove unnecessary writes within a subpage. In order to improve the DCW scheme,
Cho and Lee [2009] proposed a flip-N-write scheme that updates, at most, N/2 bits
at a time when updating N bits by exploiting read-modify-write and data encoding
schemes. Qureshi et al. [2009b] proposed a line level writeback (LLWB) scheme to write
only dirty lines within a page. By reducing wasteful writes, these schemes can improve
PRAM endurance. However, they have drawbacks in that they require additional read
operations and storage overhead to track the dirty data.

3.1.2. DRAM Buffering. As another method to reduce the PRAM write count, the DRAM
buffer is used to maintain frequently updated data. Qureshi et al. [2009b] proposed
the lazy-write organization, which avoids the first write to PRAM for the dirty pages.
Ferreira et al. [2010] proposed an N-chance cache replacement mechanism, which
selects a victim from a page set, the oldest clean page among the N least recently used
pages, for writeback minimization. Park et al. [2012] proposed a line-level LRU scheme
to reduce the PRAM write count. This scheme needs no additional bits to identify dirty
lines because the request is the same as the line size. Although these DRAM buffering
schemes can improve PRAM endurance by reducing the PRAM write count, better
PRAM endurance improvement can be achieved by considering the uniform write count
distribution.

3.1.3. Other Methods. Zhang and Li [2009] proposed an adaptive data comparison write
(ADCW) scheme that eliminates redundant bit-writes to PRAM cells that require sub-
stantially higher programming due to Process Variation (PV). Kong and Zhou [2010]
presented simple, yet effective extensions to the encryption scheme to revive partial
writes. Wongchaowart et al. [2010] presented a content-aware block placement scheme
to reduce the number of PRAM bit programming operations. When a block write re-
quest is received, it is located within free blocks that are similar to a given data block.
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Fig. 2. Basic swapping and shifting operations.

In order to quickly locate a new block of data within a free block with similar contents,
free blocks are indexed by using a content-based signature.

3.2. Uniform Write Count Distribution

To even out the write count in the PRAM main memory, various swapping and shifting
schemes were used. We will explain them in detail in the following.

3.2.1. Data Swapping. The basic swapping operation is to periodically exchange data in
the oldest page (or segment), which means the most-written page among all the pages,
with data in the youngest page, which means the least-written page among all the pages
as shown in Figure 2(a). Thus, the write count can be evened out among all the pages.
Dhiman et al. [2009] proposed a page swapping scheme that moves all the free pages
from the threshold-free list to the original free list. This occurs if the number of writes
to any PRAM page exceeds a given threshold. Park et al. [2008] proposed a segment
switching scheme that swaps the data in the oldest segment with data in the youngest
segment. The segment switching is performed if the difference between the write count
of the oldest segment and the youngest segment is larger than a threshold value. Zhou
et al. [2009] also proposed a segment swapping scheme with a large segment and a
last swapped parameter. The large segment reduced the storage overhead, and the
last swapped parameter prevented the segment from being selected again too soon.
Ferreira et al. [2010] proposed a PCM-aware swap algorithm that swaps pages on
page cache writebacks. Park et al. [2012] designed a multiple data swapping scheme.
This scheme swaps data in the oldest pages with data in the youngest pages in order to
efficiently handle a wide range of the PRAM main memory. Dong et al. [2011] proposed a
wear rate leveling mechanism that considers the wear rates (write traffic/endurance) by
migrating hot/cold data to strong/weak domains. A maximum hyperweight rematching
scheme was also proposed to solve a trade-off between the endurance improvement
and the swapping data volume. While these swapping schemes can achieve uniform
write count distribution among the pages, they have the limitation of being statically
performed despite the dynamic workload pattern.

3.2.2. Data Shifting. While the swapping operations even out the write count among
all the pages, evening out the write count among the lines in each page is needed.
The basic shifting operation is to periodically store lines of each page in a rotated
manner as shown in Figure 2(b). Park et al. [2008] proposed a word-level shifting
scheme that stores the segments after shifting several words of the data from the
beginning of the segments. This can prevent the specific usage pattern in the virtual
segment being repeated in other physical segments. Zhou et al. [2009] proposed a row
shifting scheme by one byte on every 256 writes, which shows the most effective result.
Qureshi et al. [2009a] proposed a start-gap scheme, which moves one line from its
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location to a neighboring location with two registers, start and gap. The gap register
keeps track of how many lines have moved, and the start register is incremented to
keep track of the number of times all lines have moved. With these two registers,
the start-gap scheme can achieve low storage overhead for implementing the shifting
operation. Park et al. [2012] presented a data shifting scheme that considers a shifting
level and shifting period. Because the shifting schemes are also statically performed,
their wear-leveling effect could be improved if the operation timing is dynamically
changed.

3.2.3. Other Methods. As another method to even out the write count, Seznec [2010]
presented a PA (the physical memory address)-to-PCMA (the PRAM memory address)
translation scheme to protect from malicious overwrite by evening out and randomizing
the write flow of the PRAM main memory. The PA-to-PCMA translation is continuously
modified through a random process. This scheme can also be applied to conventional
nonmalicious applications.

3.3. Additional Improvement Issues

While previous studies have increased the PRAM lifetime by designing various wear-
leveling algorithms (redundant write removal, DRAM buffering, data swapping, and
data shifting), there are several additional improvement issues related to the wear-
leveling effect. First, previous DRAM buffering schemes only focused on reducing the
PRAM write count, but a better wear-leveling effect can be achieved by considering the
write count and clean data. Skewed writes to specific pages can be prevented, by con-
sidering the write count, thereby improving the PRAM lifetime. By applying the clean
first scheme [Park et al. 2006; Ou et al. 2009], the PRAM write count can be reduced by
making room for the dirty data. Therefore, we created a PRAM-aware DRAM buffer-
ing scheme, thus reducing the write count and preventing skewed writing. Second,
previous swapping and shifting operations were performed on every N writes, even
though the workload pattern was changing dynamically. The wear-leveling effect could
be improved with dynamic operation timing. We developed an adaptive multiple data
swapping and shifting scheme, thus making the write count even among all the pages
and lines. Finally, during swapping and shifting operations, exploiting a DRAM buffer
can also improve the wear-leveling effect. Without considering the DRAM buffer in
the swapping and shifting operations, unnecessary write operations would be allowed.
Therefore, the PRAM lifetime was improved by exploiting the dirty data in the DRAM
buffer. This scheme was inspired by BAGC [Lee et al. 2008], which reduces unnecessary
page migrations during a garbage collection operation in flash memory-based storage
systems. By designing a DRAM buffer-aware swapping and shifting scheme, we reduce
unnecessary writes by curbing additional swapping and shifting operations. Through
an adaptive wear-leveling algorithm that consists of a PRAM-aware DRAM buffer-
ing scheme, an adaptive multiple data swapping and shifting scheme, and a DRAM
buffer-aware swapping and shifting scheme, a better wear-leveling effect as compared
to previous algorithms, can be achieved.

4. ADAPTIVE WEAR-LEVELING ALGORITHM

We proposed an adaptive wear-leveling algorithm for PRAM main memory with a
DRAM buffer in order to improve PRAM endurance by reducing and evening out the
PRAM write count. To efficiently even out the PRAM write count among all the pages
and lines, we created an adaptive multiple data swapping and shifting scheme. By
applying dynamic operation timing to the swapping and shifting operations, PRAM
endurance can be improved. Being aware of the DRAM buffer can also reduce the
overhead incurred by additional swapping and shifting operations.
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4.1. PRAM-Aware DRAM Buffering Scheme

In the hybrid main memory that locates DRAM in front of PRAM, DRAM is used as
a buffer to reduce latency and improve the endurance of the PRAM main memory. A
relatively small DRAM buffer (3% of the size of the PRAM main memory) can bridge
most of the latency gap between DRAM and PRAM [Qureshi et al. 2009b]. Due to
the DRAM buffer size limitation, it is necessary to secure the DRAM buffer space
by designing a novel victim selection algorithm. When designing the victim selection
algorithm, uniform write count distribution, as well as write count reduction, should
be considered.

4.1.1. Design Issues. The main goal of the DRAM buffering scheme is to reduce the
PRAM write count. To achieve this, many previous studies have used a least recently
used (LRU) scheme that increases the hit ratio by evicting the least recently used
data first. This is because the LRU scheme exploits a temporal locality, meaning that
recently accessed data will be referenced again in the near future. Therefore, the PRAM
write count can be reduced by keeping frequently updated data in a DRAM buffer for
a long time. We also considered the clean data to reduce the PRAM write count. The
clean data are referenced, but not modified, while the dirty data are modified by the
write operation. Thus, only dirty data increases the PRAM write count. In the case of
a LRU-only scheme, the dirty data may be evicted to the PRAM main memory, thereby
resulting in an increased write count. Therefore, considering clean data is important
when designing a DRAM buffering policy. Although previous DRAM buffering policies
have focused on reducing the PRAM write count, in our design, uniform write count
distribution can be achieved by considering the PRAM write count. Since the memory
controller handles both the DRAM buffer and PRAM main memory, a DRAM buffering
scheme that considers the PRAM write count can be created. This can prevent the
skewing of the write count of a specific page.

4.1.2. Algorithm Description. By investigating the temporal locality, clean data, and
PRAM write count, a PRAM-aware DRAM buffering scheme was created, as shown in
Figure 3. The DRAM buffer was divided into two layers for the application of different
policies to each layer. We applied the least recently used (LRU) scheme to both clean
and dirty data in the first layer of the DRAM buffer. This discards the least recently
used data first from the first layer because the data are considered “cold data” if not
frequently updated. In this way, the LRU scheme can reduce the PRAM write count
by maintaining frequently updated data in the DRAM buffer. In the second layer, the
clean data and write count are used for the victim selection. In this layer, the clean
data are evicted first to make room in the DRAM buffer as well as reduce the PRAM
write count. If there are no clean data in the second layer, the write counts of dirty
data in the second layer are compared and the dirty data with the lowest write count
are chosen. By using the address as the key, the write counts in the PRAM main mem-
ory can be measured. By considering the write count, we can prevent the write count
skewing of a specific page. This results in reducing the maximum write count, thus
the PRAM lifetime increases. If the dirty data have the same write count, the data in
the LRU location are selected as a victim. We adopted a line-level granularity as the
management granularity because the request size from the memory controller is equal
to the line size of the last level cache.

4.1.3. Window Size. In the PRAM-aware DRAM buffering scheme, it is also important
to determine the size of the second layer, called window size, because it critically affects
both the wear-leveling effect and performance overhead. If the window size is large, the
PRAM-aware DRAM buffering scheme can improve the wear-leveling effect by working
with the write count and clean data, but may incur performance overhead due to less
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Fig. 3. PRAM-aware DRAM buffering scheme.

efficiency in keeping frequently updated data via the LRU scheme and a large sort-
ing overhead in the window. However with a small window size, we cannot achieve the
wear-leveling effect with the write count and clean data. In order to determine an appro-
priate window size, we performed the evaluation with various window sizes in Section 5.

4.2. Adaptive Multiple Data Swapping and Shifting Scheme

In order to improve the PRAM endurance, it is also important to even out the write
count among all the lines and pages of the PRAM main memory. To achieve this,
an adaptive multiple data swapping and shifting scheme was developed. In order to
improve the wear-leveling effect, parameters such as the operation timing and the
number of swapping pages, were considered. In the following section, the concept and
benefits of the proposed swapping and shifting scheme will be explained in detail.

4.2.1. Motivation. Previous swapping schemes [Dhiman et al. 2009; Park et al. 2008;
Zhou et al. 2009; Ferreira et al. 2010; Park et al. 2012] periodically exchange the data of
the oldest page with data from the youngest page to even out the write count among all
the pages. Previous shifting schemes [Park et al. 2008, 2012; Zhou et al. 2009; Qureshi
et al. 2009a, 2009b] also periodically shift data in each page to even out the write count
among all the lines. However, previous swapping and shifting schemes are limited due
to their periodic operation and one-page swapping.

4.2.2. Design Issues. The operation timing and the number of swapping pages should
be carefully considered when designing swapping and shifting schemes because they
critically affect the wear-leveling effect. First, when determining the operation timing,
we have to account for the workload pattern. If the write accesses are skewed to a
specific page or line, frequent swapping and shifting operations are efficient. However,
no operation is very efficient if the write accesses are evenly distributed to the PRAM
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main memory because the swapping and shifting operations consist of read and write
operations, thereby increasing the PRAM write count. Therefore, it is necessary to
change the operation timing dynamically depending on the workload pattern.

Second, the number of pages that the swapping operation can perform at once is
important to consider. Previous swapping schemes swapped only one page at a time.
Although one-page swapping is efficient if a specific page is skewed intensively, most
workload patterns access a wide region of the PRAM main memory. Thus, it is hard to
achieve the wear-leveling effect with one-page swapping. To overcome this limitation,
some previous studies expanded the page size, but they created uneven write accesses
on a page. Therefore, it is necessary to design the swapping operation to-efficiently
cover a wide range of PRAM main memory.

4.2.3. Algorithm Description. By considering the operation timing and the number of
swapping pages, we proposed an adaptive multiple data swapping and shifting scheme.
To adapt the workload pattern dynamically, we periodically monitored the increase in
the maximum write count, which represents whether the write access is skewed or
not. The maximum write count denotes the maximum page write count among all the
pages of the PRAM main memory for the swapping operation, and the maximum line
write count among all the lines in each page for the shifting operation. Based on this
information, we can predict the future workload pattern. As a prediction method, we
used the exponentially weighted moving average (EWMA) [Ye et al. 2004], which is
calculated by (1). In EWMA, N means a check period that is measured by the number
of writes to the PRAM main memory, and n∗

t+1 represents an increase in the maximum
write count in the future. Thus, if EWMA is over a threshold value, we regarded the
write access as being skewed.

n∗
t+1 = αnt + (1 − α)n∗

t
(α = 2/N + 1)

, where
n∗

t+1: EWMA of next check period,
nt: max. write count of current check period,
n∗

t : EWMA of current check period,
N: check period size.

(1)

To efficiently cover a wide range of the PRAM main memory, instead of using a large
page (1MB), we chose multiple 4KB pages for the swapping operation. The number
of swapping pages is determined by the interval between swapping operations. The
interval is evaluated by the number of writes to the PRAM main memory. If the interval
is short, a small range of the PRAM main memory may be accessed. Thus, only a few
pages are selected for the swapping operation. On the contrary, if the interval is long,
many pages are selected to cover a broad range of the PRAM main memory. To do
this, we can also minimize the overhead incurred by the swapping operations. In this
article, the overhead was set to under 1%. Therefore, the ratio of the swapping pages to
the total PRAM write counts cannot exceed the 1% predefined overhead. By swapping
multiple oldest pages with multiple youngest pages at once, the write count among
all the pages of the PRAM main memory may be efficiently evened out. This produces
a better wear-leveling effect compared to the scheme that handles swapping only one
page at a time. A line-level data shifting scheme, which shifts a page at a line level
because the request size from a last level cache matches the line size, was also designed.
This evens out the write count among all the lines within a page.
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Fig. 4. Operation flow of adaptive multiple data swapping and shifting scheme.

4.2.4. Operation Flow of Adaptive Multiple Data Swapping and Shifting. Figure 4 shows the
operation flow of an adaptive multiple data swapping and shifting scheme. For the
swapping operation, the increase in the maximum page write count among all the pages
in the check period is monitored first. The check period for the swapping operation is
determined by the number of write accesses to the PRAM main memory. Using this
value, the increase in the maximum page write count, EWMASW , can be estimated for
the next future period. If the expectation value, EWMASW , is over a threshold value,
THSW , the number of swapping pages is determined. Then, we find the old and young
pages by sorting the write counts in the PRAM main memory. Finally, the swapping
operations between those pages are performed. The shifting operation is similar to the
swapping operation. First, the increase in the maximum line write count among all the
lines of each page in the check period is monitored. The check period for the shifting
operation is determined by the number of write accesses to each page. The number
of write accesses to each page when a write request is issued to the PRAM main
memory is easily known. The increase in the maximum line write count, EWMASH , in
the next future period can also be estimated. If EWMASH is over a threshold value,
THSH , a shifting operation is performed. If not, no operation is performed because the
write accesses are evenly distributed. Via the adaptive multiple data swapping and
shifting scheme, the wear-leveling effect of basic swapping and shifting schemes can
be improved, thereby reducing the maximum write count and evening out the PRAM
write count.

4.3. DRAM Buffer-Aware Swapping and Shifting Scheme

In order to reduce the additional write overhead, the data in the DRAM buffer should
be considered during the swapping and shifting operations. In this section, a DRAM
buffer-aware swapping and shifting scheme will be explained in detail.

4.3.1. Motivation. There are two reasons to increase the PRAM write count: dirty data
eviction from the DRAM buffer and writes by the swapping/shifting operation. We found
that there are duplicate writes between dirty data eviction and the swapping/shifting
operation. This results in increasing the PRAM write count. The dirty data in the
DRAM buffer are more up-to-date than the data in the PRAM main memory. There-
fore, if the data in the DRAM buffer are not considered when swapping and shifting
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Fig. 5. Example of buffer-aware swapping and shifting.

operations are performed, the PRAM write count will increase due to the swapping and
shifting operations, as well as the dirty data evicted from the DRAM buffer.

4.3.2. Algorithm Description. To overcome the unnecessary write overhead, a DRAM
buffer-aware swapping and shifting scheme was proposed. By reducing the PRAM
write count, the PRAM endurance can be improved. This scheme uses the dirty data
in the DRAM buffer. If there are data whose line number (LN) is contained in the
selected pages for the swapping and shifting operations, the data are simultaneously
evicted during the operations. Then the line is marked as clean data because the data
are reflected to the PRAM main memory. By doing this, we can maintain a hit ratio in
the DRAM buffer as well as reduce the PRAM write count.

Figure 5 shows a DRAM buffer-aware data swapping and shifting scheme. In
Figure 5, the gray box represents the dirty data, while the white box represents the
clean data. LN is the line number, and we assumed a page consists of 64 lines. During
the swapping operation, the page that contains lines from LN0 to LN63 is interchanged
with the page that contains lines from LN192 to LN255. In this case, LN192 in the
DRAM buffer is selected for the swapping operation because it is dirty and contained in
the exchanged pages. Thus, LN192 in the DRAM buffer is simultaneously evicted to the
PRAM main memory during the swapping operation. Then it is marked as clean data
in the DRAM buffer, as shown in Figure 5(a). In the case of LN191, its operation is the
same as that of LN192. Therefore, unnecessary writes to the PRAM main memory can
be reduced. During the shifting operation, 1-line shifting of a page is performed, which
consists of lines from LN256 to LN319. LN318 is located in the DRAM buffer as dirty
data. Similar to the DRAM buffer-aware swapping operation, LN318 is simultaneously
evicted to the PRAM main memory during the shifting operation. After the shifting
operation, this line is marked as clean data as shown in Figure 5(b).
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Fig. 6. Flow chart of adaptive wear leveling algorithm.

By exploiting data in the DRAM buffer during swapping and shifting operations, the
additional write overhead can be reduced, thereby improving the PRAM endurance.

4.4. Overall Operation Flow

The flow chart of the adaptive wear-leveling algorithm is depicted in Figure 6. This
operation starts when a memory controller receives a request from a last level cache
(LLC). The request is stored in the DRAM buffer and managed by the PRAM-aware
DRAM buffering algorithm. If the DRAM buffer is full due to its limited size, a victim
is selected for securing a DRAM buffer space, as explained in Section 4.1. If the victim
is clean, there is no need to write it because it is already stored in the PRAM main
memory. Otherwise, the victim is written to the PRAM main memory.

The dirty victim, which is evicted from the DRAM buffer, is written to the PRAM
main memory, thereby increasing the PRAM write count. The total PRAM write count
is checked for the swapping operation, while the page write count is checked for the
shifting operation. Using the write counts, EWMA values are calculated for identifying
skewed write accesses, as explained in Section 4.2. If this meets the conditions, a DRAM
buffer-aware multiple data swapping or shifting is performed. These swapping and
shifting operations can be performed independently. After the swapping and shifting
operations, the write counts, remap table, and shifting bits, which are stored in the
PRAM main memory, are finally updated.

4.5. Implementation Details

To support the adaptive wear-leveling algorithm for PRAM main memory with a DRAM
buffer, we designed a new memory controller and hybrid main memory, as shown in
Figure 7. We implemented additional hardware components, which are the DRAM
buffer manager, swapping and shifting module, address remap table, and write count
manager, in the conventional memory controller [Ramos et al. 2011].

The role of the DRAM buffer manager is to control the DRAM buffer like a cache,
which is managed by the PRAM-aware DRAM buffering scheme. A capacitor is used
to protect the data in the DRAM buffer at a sudden power off [Guo et al. 2013]. Under
the backup power, the data in the DRAM buffer are moved to storage. The swapping
and shifting module performs the swapping and shifting operations in the PRAM main
memory. The write count per each line is managed in the write count manager. While
managing the line write count, we need a page write count for the PRAM main memory
whose management unit is a page. Therefore, we calculated the page write count by
using the line write counts. A page consists of several lines. Thus, we defined the
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Fig. 7. Overall architecture for the adaptive wear-leveling technique.

page write count as the highest line count among the lines in a page. A remap table
was designed to support the swapping scheme. The swapping scheme exchanges data
between two physical pages, thereby making the remap table necessary. When the
request arrives at the memory controller, the remap table is first checked to determine
whether or not the physical address has changed. Then that request is served.

The dirty bits, LRU bits, and tag bits are made of SRAM for fast latency. The write
counts, remap table, and shifting bits are stored in the PRAM main memory, and
periodically written to storage in order to prepare for power failure [Qureshi et al.
2009b]. During the reboot, they are first stored before the system shuts down. Then,
when the system starts up, the space in the PRAM main memory is reserved, and the
data are copied from storage [Dhiman et al. 2009].

4.6. Overhead Analysis

We summarized a storage overhead for managing a 16MB DRAM buffer and 512MB
PRAM main memory, as described in Table II. For the DRAM buffering scheme, an
additional storage overhead is required for tag bits, dirty bits, and LRU bits, which
are stored in SRAM. Forty-five bits of tag-store (26 tag bits + 1 dirty bit + 18 LRU
bits) for each line whose size is 64B, are needed. Thus, 1.4MB is necessary for a 16MB
DRAM buffer. In order to implement an adaptive wear-leveling algorithm, the storage
overhead is also needed to house the write count, remap table, and shifting bits, which
are stored in PRAM. First, the proposed wear-leveling schemes are based on the write
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Table II. Storage Overhead for Managing 16MB DRAM Buffer with 512MB PRAM Main Memory

Structure Storage Overhead Storage Location
Metadata for Tag Bits 832KB (26bits/64B)
DRAM Buffer Dirty Bits 32KB (1bit/64B) SRAM

(16MB) LRU Bits 576KB (18bits/64B)
Metadata for Write Counts 32MB (4B/64B)

PRAM Main Memory Remap Table 512KB (4B/4KB) PRAM
(512MB) Shifting Bits 96KB (6bits/4KB)

Total Storage Overhead 34MB

count per line unit. Therefore, 32MB for 512MB PRAM main memory is needed because
4B is needed for storing each line’s write count. 4B is large enough to handle over 108

write counts. Second, a remap table is needed for the swapping operation. In order to
maintain the remap table, we need 0.5MB for 512MB PRAM main memory because
4B is needed to store each page’s address. For the shifting operation, 6 bits per page is
needed, thereby making 96KB necessary for 512MB of PRAM main memory. Therefore,
the total storage overhead for managing the 16MB DRAM buffer and 512MB PRAM
main memory, is 34MB. Except for the write count management, the storage overhead
is 2MB which takes 0.4% of the total main memory size. In order to reduce the write
count management overhead, we will consider bit arrays [Chang et al. 2010]. By using
a clock algorithm instead of an LRU scheme, we can also reduce the storage overhead.
With these schemes, the total storage overhead can be significantly reduced.

The adaptive wear-leveling algorithm is accompanied by the performance overhead.
First, in the PRAM-aware DRAM buffering scheme, the victim selection procedure
needs to find a victim with the lowest write count in the window, which requires a linear
search. Although the linear search has O(n) complexity, it cannot significantly influence
the overall performance because of a limited window size [Jo et al. 2006]. Second,
the swapping and shifting operations consist of read and write operations, thereby
potentially creating a latency problem, especially in a multiple swapping operation
that exchanges multiple pages at once. In order to overcome the latency problem in the
future, exploiting the write pausing and cancellation scheme [Qureshi et al. 2010] or
the bank usage table scheme with the multibank characteristic [Delaluz et al. 2002]
will be considered. Therefore, we can improve the latency by reducing the overhead
incurred by wear-leveling operations. It is better to show the actual measurement of
the processing and time overhead, but the current memory controller is designed for
measuring the PRAM write counts to show the wear-leveling effect. In the future we
will analyze this computation overhead with a cycle-accurate memory controller.

5. EXPERIMENT

In this section, we present the experimental environment and results obtained with
the adaptive wear-leveling algorithm. In the experimental environment section, the
specifications of the simulator, workload characteristics, metrics, and comparisons are
explained. In the experimental results section, the effects of the PRAM-aware DRAM
buffering scheme, adaptive multiple data swapping and shifting scheme, and DRAM
buffer-aware data swapping and shifting scheme as compared to previous wear-leveling
algorithms are shown. Finally, the PRAM lifetime is discussed.

5.1. Experimental Environment

In order to evaluate an adaptive wear-leveling algorithm, a simulator based on PIN was
implemented [Luk et al. 2005]. As shown in Figure 8, a function to analyze the memory
accesses was used. We also modeled the DRAM buffer and PRAM main memory, as
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Fig. 8. Overall architecture of PIN-based wear-leveling simulator.

Table III. SPEC CPU2006 Benchmark Description1

Benchmarks Description
bzip2 Compression
gcc C Compiler
mcf Combinational Optimization

gobmk Artificial Intelligence: go
sjeng Artificial Intelligence: chess

libquantum Physics: Quantum Computing
h264ref Video Compression
omnetpp Discrete Event Simulation

well as the memory controller, and L1 and L2 caches. The L1 and L2 caches, as well as
the DRAM buffer, all have 64B blocks with capacities of 32KB and two-associativity,
4MB and eight-associativity, and 16MB, respectively. The PRAM main memory has
4KB pages with a capacity of 512MB, and each page consists of 64 lines whose size is
64B.

In order to determine an appropriate DRAM buffer size, a preliminary experiment
was performed with eight benchmarks from the SPEC CPU 2006, which are described
in Table III. If the DRAM buffer is too small, the buffering effect is trivial. On the other
hand, if the DRAM buffer is too large, all memory accesses are handled by the DRAM
buffer, thereby masking the wear-leveling effect. As shown in Figure 9, the average
number of write operations per page written to the PRAM main memory was evaluated.
As the DRAM buffer size increases, the number of write operations decreases. Based
on this result, we set the DRAM buffer size to 16MB because it is appropriate for most
workloads for the SPEC CPU 2006.

The maximum write count and standard deviation of the write count were used as
the main metrics. The maximum write count is important because it critically affects
the PRAM lifetime. The standard deviation of write count represents how the page
write counts are uniformly distributed. Using the metrics, the effects of an adaptive
wear-leveling algorithm is given. The resulting PRAM lifetime is then discussed.

As comparisons schemes, the swapping and shifting proposed by Zhou et al. [2009]
were chosen. The LRU scheme was used as the baseline buffering scheme because Zhou
et al. [2009] did not use a DRAM buffer.

1http://www.spec.org.
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Fig. 9. Experimental results for setting DRAM buffer size.

Fig. 10. PRAM-aware DRAM buffering effect with window sizes, (X) = (ratio for DRAM buffer size).

5.2. Experimental Result

In this section, the experimental results of the adaptive wear-leveling algorithm,
which consists of a PRAM-aware DRAM buffering scheme, an adaptive multiple data
swapping and shifting scheme, and a DRAM buffer-aware data swapping and shifting
scheme are presented by showing the maximum write count and standard deviation of
the write count. First, the effect of each scheme is evaluated according to various config-
urations. After evaluating each scheme’s effects, the overall wear-leveling effects of the
adaptive wear-leveling algorithm compared to the previous wear-leveling algorithm is
evaluated.

5.2.1. PRAM-Aware DRAM Buffering Effects. In order to show the PRAM-aware DRAM
buffering effects, we evaluated the maximum write count and standard deviation of
the write count for three window sizes, 0.001, 0.005, and 0.010 of the DRAM buffer
size [Ou et al. 2009]. The results were normalized to that of an LRU scheme.

As shown in Figure 10, the PRAM-aware DRAM buffering scheme, which considers
the write count and clean data via an LRU scheme, can reduce the maximum write
count from 3% in gobmk to 99.97% in libquantum, and the standard deviation of the
write count from 0.3% in bzip2 to 97% in libquantum compared to just an LRU scheme.
The results are the most effective in mcf and libquantum because they are read-
intensive workloads that make a lot of clean data. The clean data can cause the dirty
data to be forcibly evicted in a LRU scheme, thus increasing the PRAM write count. On
the other hand, the PRAM-aware DRAM buffering scheme can select the clean data
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Fig. 11. Multiple data swapping effect as a function of operation timing and number of swapping pages,
(X, Y) = (Total PRAM write count, number of swapping pages).

first in the window as a victim, thus making its effect significant in read-intensive
workloads.

We can also show that the maximum write count is reduced as the window size in-
creases. While a large window size reduces the maximum write count, the computation
overhead for finding the victim in the window substantially increased. Therefore, a
window size is set to 0.005 of the DRAM buffer size for further evaluation because
its average maximum write count is similar to that of 0.01 (0.48 vs. 0.45), but its
computation overhead is two times lower than that of 0.01.

From the experimental results, we concluded that the PRAM-aware DRAM buffering
scheme can reduce the maximum write count and standard deviation of the write count
as compared to the LRU scheme.

5.2.2. Effect of a Multiple Data Swapping and Line-Level Data Shifting Scheme. This section
describes the effect of multiple data swapping and line-level data shifting schemes
based on the operation timings and the number of swapping pages. We used an LRU
scheme as the baseline buffering scheme only to show the effect of the swapping
and shifting schemes. The results were normalized to that of an LRU scheme without
any swapping and shifting scheme. For the multiple data swapping scheme, the opera-
tion timing was determined by the total PRAM write counts, which was set to 128000,
1280000, and 12800000. According to the operation timing, the number of swapping
pages was set to 10, 100, and 1000. This is because an additional write overhead
was maintained under 1% of the total PRAM write counts. For the line-level shifting
scheme, the operation timing was determined by the PRAM write count per page, and
it was set to 256, 1024, and 4096. From the evaluations with various configurations, we
were able to find an appropriate configuration that shows the best wear-leveling effect.

Figure 11 shows the effect of the multiple data swapping scheme. The (X, Y) con-
figuration represents the operation timing and the number of swapping pages. The
operation timing is determined by the total PRAM write count. The multiple data
swapping scheme can reduce both the maximum write count and standard deviation
of the write count by evening out the write counts among the pages. The maximum
write count is reduced by up to 64% in h264ref, and the standard deviation is reduced
by up to 62% in omnetpp. In the (1280000, 100) configuration, four benchmarks, gcc,
sjeng, h264ref, and omnetpp, show the best wear-leveling effects, while other bench-
marks, bzip2, mcf, and gobmk, show the best wear-leveling effects in the (12800000,
1000) configuration. Only the libquantum benchmark achieved the best wear-leveling
effect in the (128000, 10) configuration. For some workloads with the (128000, 10)
configuration, the multiple data swapping scheme does not achieve the wear-leveling
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Fig. 12. Line-level data shifting effect as a function of operation timing, (X) = (PRAM write count per page).

effect, but rather increases the maximum write count and standard deviation of the
write count. This is because frequent swapping operations can make additional write
counts to specific pages. Therefore, it is necessary to dynamically adapt parameters
depending on the workload pattern.

Figure 12 shows the effect of the line-level data shifting scheme. The (X) configura-
tion represents the operation timing, which is determined by the PRAM write count per
page. The line-level data shifting scheme can also reduce the maximum write count and
standard deviation of the write count by evening out the write counts among the lines
of a page. The maximum write count is reduced by up to 92%, and the standard devia-
tion of the write count is reduced by up to 91% in libquantum. Similar to the swapping
operation, the configuration for the best wear-leveling effect is different according to
the workload pattern, and the configurations of (256), (1024), and (4096) show an addi-
tional write overhead of up to 18.5%, 2.9%, and 0.5%, respectively. Therefore, it is also
necessary to dynamically adapt the operation timing according to the workload pattern.

5.2.3. Adaptive Data Swapping and Shifting Effect. In order to show the adaptive data swap-
ping and shifting effect, the increase in the maximum write count was evaluated by
comparing a static data swapping and a shifting scheme. In both cases, an LRU scheme
was used as the baseline buffering scheme. We used the (1280000, 100) configuration
for the static data swapping and the (1024) configuration for the static data shifting
scheme. For the adaptive data swapping and shifting scheme, the check period was
set to 1280000 total PRAM write counts for the swapping operation, 256 PRAM write
counts per page for the shifting operation, and a threshold value of 1 for the swapping
operation and 7 for the shifting operation, which showed the best wear-leveling effect.

Figure 13 shows the increase in the maximum write count as the number of write
operations increases. For the bzip2, mcf, sjeng, and omnetpp benchmarks, the adaptive
data swapping and shifting scheme can reduce the maximum write count by 29%, 54%,
16%, and 34%, respectively, compared to a static data swapping and shifting scheme.
This is due to the adaptive data swapping and shifting scheme being able to efficiently
adapt the workload pattern. When the write access is skewed to a specific page, fre-
quent swapping and shifting operations are performed, but no swapping and shifting
operations are performed when the write access is uniform. On the other hand, the
results between the adaptive scheme and static scheme are similar to the gcc, gobmk,
libquantum, and h264ref benchmarks. This is because the workload pattern cannot
be changed dynamically or the adaptive data swapping and shifting scheme predicts
the changes in the workload pattern incorrectly. While the adaptive data swapping
and shifting scheme is inefficient for some workloads, it is still necessary because the
workload patterns changed differently with the PRAM-aware DRAM buffering scheme.
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Fig. 13. Improvement of adaptive data swapping and shifting effects.

Fig. 14. Ratio of write counts to PRAM main memory.

5.2.4. Effect of DRAM Buffer-Aware Swapping and Shifting Scheme. In order to show the
DRAM buffer-aware swapping and shifting effect, the ratio of total write counts that
consists of write counts incurred by the DRAM buffer eviction and the swapping and
shifting operation is given. For this experiment, the (1280000, 100) configuration and
(1024) configuration were set for the swapping and shifting, respectively.

Figure 14 shows the ratio of PRAM write counts. The reason for the write count
portion of the DRAM buffer eviction being less than 100% is that the DRAM buffer-
aware scheme can reduce the write count by marking dirty data as clean during the
swapping and shifting operations. In gobmk, the total write count is reduced by up to
1.71%. By reducing the PRAM write counts with the DRAM buffer-aware swapping
and shifting scheme, the wear-leveling effect can be improved.

5.2.5. Overall Wear-Leveling Effect Compared with Previous Algorithm. We evaluated the over-
all wear-leveling effect by comparing the adaptive wear-leveling algorithm with the
previous swapping and shifting proposed by Zhou et al. [2009] based on an LRU
scheme. First, the maximum write count and standard deviation of the write count
were evaluated. Then, the PRAM lifetime was calculated.
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Fig. 15. Effect of adaptive wear-leveling technique compared to previous wear-leveling algorithm.

For the adaptive wear-leveling algorithm, we set the window size to 0.005 of the
DRAM buffer size, the check period to 1280000 total PRAM write counts for the swap-
ping and 256 PRAM write counts per page for the shifting, the threshold value to 1
for the swapping and 7 for the shifting. For the previous wear-leveling algorithm, we
set the swapping period to 1280000 total PRAM write counts, a shifting period to 1024
PRAM write counts per page, and a page size to 256*4KB.

Figure 15 shows the effect of the adaptive wear-leveling algorithm compared to
the previous wear-leveling algorithm. The results are normalized to that of an LRU
scheme without any swapping and shifting schemes. While the previous wear-leveling
algorithm can reduce the maximum write count and the standard deviation of write
count compared to only the LRU scheme, the adaptive wear-leveling algorithm achieves
a greater wear-leveling effect than the previous wear-leveling algorithm. As compared
to the previous wear-leveling algorithm, the adaptive wear-leveling algorithm can re-
duce the maximum write count from 12.6% in the gobmk benchmark to 99.4% in the
libquantum benchmark, and the standard deviation of write count from 0.2% in the
bzip2 benchmark to 64.0% in the libquantum benchmark.

5.2.6. Lifetime Improvement. By using the results from the previous section, the PRAM
lifetime based on Equation (2) was calculated. This function is a modified version
of a previous system lifetime provided by Qureshi et al. [2009b]. The reason why
we modified the lifetime is that they assumed that the write counts are distributed
uniformly across the entire main memory system.

System Lifetime (sec) = Emax · S
Bef f · Wmax

, where
Emax: Endurance of PRAM Main Memory,
S: Size of PRAM Main Memory (GB),
Bef f : Effective Write Traffic (GBps),
Wmax: Effective Maximum Write Count.

(2)

We used Emax as the endurance of the PRAM main memory, and S as the size of the
PRAM main memory. In this experiment, we set Emax to 108 [Zhou et al. 2009; Lee et al.
2009; Zhang and Li 2009; Kong and Zhou 2010] and S to 512MB. For DDR3 DRAM,
the maximum bandwidth is 10GB/s in both the read and write operations, but the
PRAM maximum read bandwidth is 2 times lower and the maximum write bandwidth
is 5 times lower than that of DRAM. Therefore, the PRAM maximum read bandwidth
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Fig. 16. Lifetime of PRAM main memory.

of 5GB/s and the maximum write bandwidth of 2GB/s were used. From these values,
the effective write traffic (Bef f ) was used instead of the memory access traffic, because
only writes to the PRAM main memory affect the PRAM lifetime. Bef f was calculated
using ((2 · Write Ratio+5 · Read Ratio) · PRAM Write Ratio). PRAM Write Ratio was
used because a DRAM buffer was used, thereby considering the ratio of actual PRAM
write operations to total memory operations for calculating the effective write traffic.
Actually, because of other factors (the victim selection and the idle time between the
memory requests), we cannot achieve the maximum bandwidth for all memory accesses.
However, in order to show the worst-case lifetime, we assume that our approach can be
performed with the maximum bandwidth. Wmax was calculated by (max write count ·
coverage(MB)

512(MB) ). This is because each benchmark has its own memory coverage, which
means a range of virtual memory addresses, and it is performed within the coverage in
our evaluation. Therefore, we normalized the maximum write count by using the PRAM
main memory size and the memory coverage of benchmarks. With these parameters,
the system lifetime was finally calculated.

Figure 16 shows the lifetime of the PRAM main memory. For the libquantum bench-
mark, the PRAM lifetime increased up to 34.81 years compared to 0.2 years of the
previous wear-leveling algorithm, due to the prevention of skewed write operations to
a specific page by considering the clean data and write count in the DRAM buffer. For
the bzip2, gcc, and h264ref benchmarks, the PRAM lifetime increased from 1.25, 0.89,
and 2.96 years of the previous wear-leveling algorithm to 1.88, 1.08, and 4.54 years,
respectively. For the mcf, sjeng, and omnetpp benchmarks, the PRAM lifetime of the
baseline system is only 0.001, 0.004, and 0.002 years, respectively. This is because they
have large maximum write counts compared to other benchmarks. Nevertheless, 18.8
times, 3.36 times, and 7.7 times longer PRAM lifetime was achieved compared to the
baseline system. For the gobmk benchmark, only 1.15 times longer PRAM lifetime was
achieved compared to an LRU only scheme because the gobmk benchmark has a uni-
form write pattern. On average, the PRAM lifetime increased from 0.36 years with the
baseline and 0.68 years with the previous wear-leveling algorithm to 5.32 years with
the proposed algorithm. Except for the libquantum benchmark, which had an extreme
lifetime increase, the PRAM lifetime increased to 1.11 years.

5.2.7. Additional Write Overhead by Swapping and Shifting Operations. Although the swap-
ping and shifting operations have improved the wear-leveling effect, they make addi-
tional read and write operations. As shown in Figure 17, we evaluated the ratio of the
additional write count to the total PRAM write count. For the previous wear-leveling
algorithm, the ratio was 4.9% on average (from 1.1% in the bzip2 benchmark to 8.8%

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 88, Publication date: February 2014.



Adaptive Wear-Leveling Algorithm for PRAM Main Memory with a DRAM Buffer 88:23

Fig. 17. Ratio of additional write count to total PRAM write count.

in the omnetpp benchmark). For the adaptive wear-leveling algorithm, the ratio was
3.7% on average (from 0.98% for the libquantum benchmark to 9.3% in the sjeng bench-
mark). Compared to the previous wear-leveling algorithm, the adaptive wear-leveling
algorithm shows a lower overhead on average with a higher wear-leveling effect. This is
because the adaptive wear-leveling algorithm can predict the future workload pattern.
Thus, no operation is performed when the write accesses are evenly distributed. The
DRAM buffer-aware swapping and shifting scheme also reduces unnecessary writes.
In case of the gcc and sjeng benchmarks, frequent shifting operations are necessary
due to skewed write accesses to a specific line. Although the adaptive wear-leveling
algorithm shows a higher ratio of additional operations in those benchmarks, it shows
a higher wear-leveling effect than the previous wear-leveling algorithm.

6. CONCLUSION AND FUTURE WORK

An adaptive wear-leveling algorithm for PRAM main memory with a DRAM buffer
was proposed. This adaptive wear-leveling algorithm improves the PRAM lifetime via
a PRAM-aware DRAM buffering scheme, an adaptive multiple data swapping and
shifting scheme, and a DRAM buffer-aware data swapping and shifting scheme. By
considering the write count and clean data based on an LRU scheme in the DRAM
buffer, the PRAM write count is reduced and a skewed write count of specific pages
is prevented. Via the adaptive multiple data swapping and shifting scheme, the wear-
leveling effect of the previous static swapping and shifting scheme can be improved by
adapting the workload pattern. Finally, the DRAM buffer-aware data swapping and
shifting scheme reduces the overhead of additional swapping and shifting operations
by reducing unnecessary write counts. With the adaptive wear-leveling algorithm,
the maximum write count was reduced by up to 64.0%, and the standard deviation
of the write count by up to 99.4% compared to the previous wear-leveling scheme.
Therefore, the PRAM lifetime also increased from 0.68 years with the previous wear-
leveling algorithm to 5.32 years with the adaptive wear-leveling algorithm with a 3.6%
additional write overhead, on average.

While the adaptive wear-leveling algorithm improves the PRAM lifetime, there are
several areas that could be further improved. In future work, the reduction of storage
and performance overhead for the adaptive wear-leveling algorithm will be the main
focus. The storage overhead for write counts and LRU bookkeeping overhead can be
reduced by using bit arrays and a clock algorithm, respectively. The performance over-
head incurred by the adaptive wear-leveling algorithm can be reduced by exploiting
the write pausing and cancellation scheme in PRAM [Qureshi et al. 2010] or the bank
usage table scheme with the multibank characteristics [Delaluz et al. 2002]. We can
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also overcome a trade-off between the wear-leveling effect and the performance over-
head by implementing a cycle-accurate memory controller. Finally, we will consider
a multiprogrammed environment as future work. Because the multiprogrammed en-
vironment makes more dynamic workload patterns, we anticipate that our adaptive
wear-leveling algorithm will improve the PRAM endurance compared to previous static
wear-leveling algorithms as well.
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