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Abstract—Memory contention among consolidated VMs on the same hardware has created the need for repetitive memory

balancing operations. In an attempt to provide a prompt memory balancing mechanism, we found problems with the retardation of

memory reallocation by the reclamation delay. The scheduling of the VMs and their VCPUs generates the delay, the dirtiness of

the candidate pages for balancing makes the delay fluctuated, and a conflict of two reclamation policies between the guest OS

and the hypervisor deteriorates the application performance. As a remedy to these problems, we propose HyperDealer2 (HD2),

which selects the victim pages based on the reference patterns of clean pages, reclaims them with hypervisor-level paging, and

reallocates those pages with explicit ballooning of the recipient guest OS. HD2 eliminates the involvement of victim VMs in

memory reclamation and extends the dwell time of reclaimed pages in the reclaimed state. Consequently, HD2 significantly

reduces the time taken to reallocate memory with a low overhead and enhances the value of additional memory for the recipient

VMs. The experimental results of HD2 show that the execution time of memory-intensive applications in the recipient VM is

reduced by up to 50 percent in spite of less than 2 percent performance penalty.

Index Terms—Memory balancing, virtualization, consolidated, VM, reference pattern
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1 INTRODUCTION

AS the primary bases of cloud computing, virtualiza-
tion technologies have played a key role as a new

hosting platform. They offer benefits of efficient resource
management, cost saving, and ease of system manage-
ment. Virtual machine (VM) consolidation is a core
scheme that increases resource utilization by sharing the
same hardware. In such a situation, a hypervisor controls
all hardware resources while providing each guest OS
with the illusion of a bare machine by virtualizing them.
However, misses in the resource management of a VM
can degrade other VM’s performance running with it.
Among many shared resources, memory is one of the
most sensitive resources in resource management for the
VM-consolidated environment. Its available size and
access speed greatly affects the application performance
on each VM. The ideal memory size is one that makes the
working set of applications fit with the VM’s main mem-
ory allocation. If the system underestimates its memory
requirements, the insufficient size of memory significantly
degrades the system performance. In contrast, application
performance is not proportional to the size of the mem-
ory, even with enough memory allocated to the VM.

In the consolidated VM environment, balancing memory
among the VMs is a key challenge in maximizing system-
wide performance. At any moment, each VM has its own
amount of memory that is more than actually required to
adapt various memory needs. Generally, not all of the mem-
ory is being actively used. It is because each application has
different working set and they act with different access
localities. However, unlike other resources such as CPU and
I/O components, it is harder to do time-sharing among
VMs. A guest OS has to preserve dynamically changing
contents either on memory or in permanent storage. Fur-
thermore, the guest OS can see only virtualized resources
and has no physical memory information while the hypervi-
sor can only see allocated resource information because
detailed memory usage information is inside the guest OS.
As a consequence, there is a need for cooperative memory
balancing among the hypervisor and the guest OSes.

Due to the memory pressure from the page cache’s occu-
pation and dynamic memory requirements, static memory
partitioning has a severe drawback as a result of the fixed
boundary of the free memory in the system. Therefore, con-
ventional virtualization systems enable the amount of phys-
ical memory to be extended or reduced to accommodate
changes in memory requirements. Although dynamic parti-
tioning [1], [2] and hypervisor-level paging [3], [4] provide
memory balancing schemes among multiple guests, they
are still incapable of maximizing the value of additional
memory for the recipient VM.

Dynamic partitioning is based on ballooning [1], which
utilizes internal knowledge of the guest OS. Following the
directives of the hypervisor, a balloon driver in each guest
allocates memory from its own free memory pool. If there is
not enough free memory, the driver utilizes the guest’s own
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reclaiming algorithm and internal memory access knowl-
edge. Those reclaimed page frames are returned to the
hypervisor for allocation to different guests.

However, besides the explicit overhead of the size deci-
sion for its high complexity, we identified a fundamental
limitation caused by the involvement of a victim guest OS
and its VCPU. That limitation drives the architecture of our
instant balancing scheme. A beneficiary VM can acquire
additional memory only after one or more victim VMs relin-
quish their page frames to be reallocated. Such dependency
delays balloon-based memory balancing operations, thus
depreciating the reallocated memory in the recipient VM.
Fig. 2 shows a sample balloon-based memory reallocation
with 16 VCPU-busy VMs. Additional memory arrives late
to the beneficiary VM due to the memory reallocation delay.
This makes the beneficiary VM lose chances to reduce
unnecessary swap overheads generated during t2 � t1.
Unlike the ballooning, hypervisor-level paging has no such
delays caused from the dependency. Instead, there exists a
mismatch of the two LRU-based page frame reclamation
policies on both the hypervisor and the guest OS. The mis-
match makes the hypervisor choose the worst candidate
whenever selecting page frames to reallocate.

In this paper, we present HyperDealer2 (HD2), a
hybrid approach that combines the strong points of the
hypervisor-level paging and the ballooning method. We
accelerate the memory balancing operation based on the
application’s characteristics while avoiding drawbacks.
Our architecture adapts a hybrid approach of two
schemes: 1) a hypervisor-level paging on the basis of the
reference pattern to the page cache in guest OSes and 2) a
ballooning to supply recipient guests with additional free
memory. We based our scheme in monitoring access to
the page frames that belong to the page cache of all guest
OSes. The hypervisor detects memory reference patterns
on the monitored clean pages at a filestream level. Those
sequentially referenced clean pages are the best candi-
dates for reallocation prior to other pages. During the
memory reallocation procedure, the hypervisor steals
page frames with the MRU strategy to avoid policy mis-
match, which will be described in Section 3. It reduces
the number of page faults from memory stealing. The
hypervisor reallocates those page frames either through
ballooning or through restoration of the stolen page
frames. Later, if a victim guest OS is deprived of too
much page frames, the hypervisor requests explicit mem-
ory borrowing from the guest. The borrowing makes the
victim guest OS know the exact size of the physical mem-
ory it actually uses. HD2 reduces the memory reallocation
delay and the number of page faults from memory steal-
ing. This reduction consequently improves the response

and throughput of the memory allocation requests for a
memory recipient guest.

This study is an extension of our previous work [6], in
which we focused on finding problems of memory balanc-
ing with a small number of cores. Our objective in this
study, however, is to devise a full-fledged non-obstructive
memory reallocation scheme and integrate the overall com-
ponents transparently in MN-MATE [5], our resource man-
agement system for manycores and a hybrid memory
hierarchy, as shown in Fig. 1.

We implemented our scheme in Xen [7]. The experiment
results showed that the scheme can accelerate memory bal-
ancing and significantly increase the performance of VMs
that suffer from insufficient memory allocation with only a
slight overhead for the initially over-allocated VMs.

The remainder of this paper is organized as follows: In
Section 2, we present some background. Section 3 describes
several motivations behind our work. Section 4 describes
our scheme in detail. Section 5 describes our implementa-
tion issues. Section 6 compares our experiment results with
the results of previous approaches. Section 7 discusses
related works. We conclude this paper in Section 8.

2 BACKGROUND

In this section, we introduce a hypervisor briefly, then we
present the memory balloon, which is used for explicit
memory reallocation.

2.1 Hypervisor

Hypervisor is a software that allows multiple guest OSes
to run on the same hardware host concurrently. With par-
avirtualization approach, it can minimize overhead from
virtualization through a hypercall, a software trap to a
hypervisor. With full virtualization, it can work with the
support of CPUs including Intel VT-x [8] or AMD-V [9]
extensions. Guest domains are initialized with the precon-
figured size of main memory. The hypervisor, however,
can reallocate allocated memory to each VM at runtime.

2.2 Memory Balloon

In the consolidated VMs environment, a guest OS can
acquire some memory to enhance application performance
running on it and it can also donate some redundant mem-
ory to other memory-thirsty guest OSes. After the move-
ment, the VM should perform as if it has been configured
with the changed memory size. Waldspurger [1] introduced
an important memory reclamation, transfer of ownership,
and supply a technique called memory ballooning among
multiple VMs in the VMware ESX Server. Fig. 3 illustrates
this procedure.

Fig. 1. MN-MATE [5] computing platform with manycores running
consolidated VMs with memory balancing scheme.

Fig. 2. An example of balloon-based memory reallocation delay with
16 VMs. Late arrival of additional memory dissipates chances to reduce
swap overheads.
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Each guest OS uses a special kernel module, the balloon,
as a device driver or kernel service. When the hypervisor
tries to reduce the size of allocated physical memory to a
guest OS, the balloon inflates. It increases memory pressure
in the guest OS by requesting free memory. Such pressure
then triggers its own reclamation algorithm in the memory
management system. The balloon pins unused memory
inside the guest OS and lets the hypervisor use them. This
works when the available memory size is decreased. Similar
to inflation, the balloon deflates to retrieve memory and to
give the memory back to a guest OS when the hypervisor
tries to increase the size of memory for the VM. Conse-
quently, the balloon gives the guest OS an illusion that the
driver occupies memory, even though the physical memory
is under the control of other VM.

3 MOTIVATION

Memory balancing is a consecutive procedure of finding the
least-valuable pages from VMs not being pressed for mem-
ory, making free memory by sacrificing found pages, and
reallocating them to memory-thirsty VMs. It is an efficient
method of enhancing system performance by increasing
memory utilization. Though there are two representative
balancing approaches, the ballooning and the hypervisor-
level paging, they have several drawbacks. Besides the high
complexity of the balancing decision, ballooning induces
memory reallocation delay among the VMs from the inter-
vention of guest OSes. With hypervisor-level paging, the
hypervisor undergoes delays due to the mismatch between
reclamation policies on each level. We will explain four
drawbacks in more detail. We also abbreviated victim VM
to domV and beneficiary VM to domB, respectively.

3.1 Decision Overhead from Information
Asymmetry

To balance memory among consolidated VMs, we have to
select victim VMs (domVs), beneficiary VMs (domBs), and
the size of the memory to move, as well as the page frames
to be reallocated. The hypervisor performs this based on
information about each candidate page frame’s memory
value, a relative need for staying its data on memory. How-
ever, information asymmetry about memory value makes
those decisions more complex and less accurate. Each guest
OS has no information about the relative values of its own
memory compared with other VMs. The hypervisor has no
knowledge about OS-internal memory usage though it can
see all memory on the hardware. This makes the hypervisor
misjudge the memory requirements of each guest OS. For
example, the hypervisor may overestimate the working set
size of each VMwith long sequential scans [10], [11].

Even if each guest OS exports the required knowledge to
the hypervisor, it takes too much time to select the proper

memory size of each VM. For example, assume that V is a
collection of VMs running on the same hardware. If a domB
2 V can get a maximum of M pages, then a brute force

search for the new memory size takes OðM jV jÞ time for each
VM. The calculation overhead delays the decision of domVs
and the amount of memory donation.

Periodic and incremental memory adaptation could be
an alternative solution for the decision overhead. The adap-
tation iteratively reallocates a fixed amount of memory
among VMs based on the monitored needs until the results
meet balance goals. Such approximation method may make
the decision simpler. However, it does not relieve perfor-
mance degradation from the internal memory reclamation
of the guest OS. If the memory requirement bursts within a
short time, added memory is not enough to cover immedi-
ate memory requirements until the iteration finishes. The
longer the period the hypervisor reallocates memory itera-
tively, the more the internal memory reclamation procedure
runs. It reduces the number of page frames to be reallocated
despite the need for more memory and the performance
degradation from the internal reclamation of the VM.

3.2 Memory Reallocation Delay among VMs

The time delay to deliver additional memory among the
participating VMs attenuates performance benefits from
additional free memory. The victim guest OS should explic-
itly donate free memory to the hypervisor by wasting own
timeslices. The domB cannot acquire memory during its
scheduled time if it is scheduled earlier than the donation of
the victim VM. These create a scheduling dependency
among memory donor VMs and recipient VMs, which gen-
erates memory reallocation delay, TRealloc.

Fig. 4a illustrates a one-way memory reallocation for
memory balancing based on ballooning [1], [2]. Assume
that three VMs are running on the same hardware and
the hypervisor tries to reallocate memory from a domV to
a domB. The elapsed time of a memory reallocation,
TRealloc, can be decomposed into four periods: TSchedule,
TRelease, TPresent, and TRecog. After the decision of memory
reallocation, a domV consumes own time quantum,
TRelease, to relinquish the allotted size of memory to the
hypervisor after TSchedule has passed until scheduled. The
hypervisor then allocates them to the domB when it is

Fig. 3. Basic operations of the balloon driver [1].

Fig. 4. Example timelines for memory reallocation.

2038 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 7, JULY 2015



scheduled for the first time since the hypervisor took con-
trol of the donated memory, which takes TPresent. Finally,
the domB recognizes the memory at the cost of time
TRecog, which is negligible.

Writes to permanent storage during reclamation
increases TRelease. Usually, a guest OS utilizes most of the
free page frames as a page cache for an indefinite period of
time until the OS needs more free memory [12]. If a domV
has not enough free pages to reallocate, the hypervisor can-
not took control of the designated amount of free memory
until the guest finishes its own page frame reclamation pro-
cedure and inflates own balloon. However, flushing dirty
pages in the page cache generates writes to permanent stor-
age. The swapping out of pages also delays the reclamation.

There are three factors that significantly increase TSchedule:
the number of busy VCPUs, the number of domVs, and the
number of busy tasks in a domV.

First, a higher number of busy VCPUs delays the alloca-
tion of PCPUs to domVs. From the fairness-oriented char-
acteristic of the hypervisor scheduler, more active VCPUs
of all VMs than the physical cores generate a longer delay
for a VCPU to be scheduled than a PCPU. Because the bal-
loon-based memory donation sacrifices its own time, it
delays the execution of the reclamation procedure by any
VCPU of a domV. Second, the number of domVs affects
the temporal distribution of donated memory arrival to
the hypervisor. On securing free memory to reallocate,
each domV transfers them to the hypervisor. If some
domVs are scheduled later and transfer the memory to the
hypervisor, the memory will arrive sporadically. There-
fore, domB receives memory fragments by consuming
multiple TRecog. The late arrival of additional memory
makes the domB initiate its own reclamation procedure,
which delays the application performance. Third, more
busy tasks in a domV also increase the TRelease and
TSchedule. In a domV, memory donation operation has at
most equal priority than other normal tasks. The OS sched-
uler may allocate VCPU timeslices after other active tasks
run long enough. If other tasks run out of VCPU timesli-
ces, the domV has to wait until the next VCPU allocation.

3.3 Page Frame Reclamation Policy Mismatch
between the Hypervisor and a Guest OS

Hypervisor-level paging [1], [13], [14] is a reclamation
mechanism of page frames based on paging by the hypervi-
sor. After swapping out the data from a page frame, the
hypervisor reloads the data into memory only if a page fault
occurs, which is the same operation as paging in the native
OS. It provides no intervention by the owner guest OS to

make free page frames for memory balancing. However,
similar paging policies operating each at the hypervisor and
the guest OS generate a mismatch. The mismatch is known
as a double paging anomaly [15] in a system running a
paged OS under a paged hypervisor. Most guest OSes use
an LRU-like policy for their own page frame reclamation. If
the hypervisor uses the LRU-like victim selection strategy,
the reclaimed pages are likely located in the LRU position
of the guest OS management list. Those reclaimed pages
may face an increased risk of access by the guest OS within
a short time, which generates additional overheads.

Fig. 5 illustrates an example of the memory reclamation
policy mismatch based on Mattson’s stack distance algo-
rithm [16]. In this example, we assume that the hypervisor
reallocates a page frame at the LRU position after the guest
OS fills the pages with data, whose variants are widely used
in many OSes [17]. If a guest OS loads data 5 to memory, it
tries to reclaim the least-valuable page frame with data 1 to
make a free page frame for the new data. It generates a page
fault. The hypervisor should handle this by recovering the
page with another free page frame. The hypervisor gets it
by reclaiming the next LRU-positioned page frame with
data 3, which is depicted as the curved arrow in the figure.
After recovery, the guest OS moves the page with the data 5
to the MRU position on the list.

Here, the recovery procedure incurs two additional stor-
age access: 1) A write to swap out data on a target page
frame to be sacrificed and 2) A read to restore data of the
accessed page. Repeated reclamation of guest OS generates
chained reclamation and recovery operations until the guest
OS stops reclaiming its own memory. Consequently, an
LRU-based selection of the hypervisor induces: 1) The
reclaimed page staying shorter; 2) Other page faults propa-
gated to follow guest OS accesses. If multiple page frames
are reallocated, the propagated overheads are accumulated
and degrade the performance. With multiple victim VMs,
the selected next least-valuable page is likely to have the
same owner VM for their own localities, thus also accumu-
lating overheads.

We can see the effect of policy mismatch more clearly
with the dwell time of reclaimed pages. A dwell time
indicates a time period that a page stays in the reclaimed
state by the hypervisor. It ends when the owner OS of the
page tries to access data on the page or reclaim the page.
Page reclamation takes effect as if there is an additional page
frame in the system while the page remains reclaimed. A
longer dwell time of a reclaimed page increases the effect of
an additional page frame to the system. The mismatch of
two policies, however, incurs the worst-case selection of the

Fig. 5. An example of page frame reclamation policy mismatch between the hypervisor and a guest OS. After transfer of an LRU-positioned page
frame, every reclamation trial of the guest OS generates a page fault. To handle the page fault, the hypervisor should recover the page frame by
reclaiming the next LRU-positioned page frame. It is worst choice of the hypervisor because the reclaimed page is the next candidate for reclamation
of the guest OS.
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hypervisor, like that shown in the example. It brings about a
short dwell time of each reclaimed page. In other words, the
shorter the dwell time of pages the hypervisor reclaims and
reallocates, the more the hypervisor has to perform reclama-
tion and recovery operations. It makes the hypervisor per-
form two more successive storage operations to maintain
the merits of one additional page frame during the same
period of time. An increased number of storage accesses
directly degrades the system’s performance.

3.4 Capacity Disparity of Victim VMs

With hypervisor-level paging, there emerges a difference
between the amount of memory that a guest OS knows and
the amount of memory the guest OS actually uses. We
named the difference as capacity disparity. A page implicitly
reclaimed by the hypervisor has to be restored on the han-
dling page fault from the reaccess. The recovery procedure
makes the owner VM blocked until a free page frame is pre-
pared and the content is reloaded from its original location.
A disparity of the page, therefore, represents a potential
overhead of performance degradation.

The more capacity disparity a VM has, the higher the
possibility of performance degradation the VM suffers. If a
VM with high capacity disparity tries to allocate more
memory, it first consumes its own free memory. Then it
tries to reclaim used pages, including already reclaimed
pages by the hypervisor. As we observed in Section 3.3,
those hypervisor-reclaimed pages are highly likely located
around the least valuable position of the memory manage-
ment list. It may initiate recovery procedures within a
short time. If a VM has high capacity disparity, an accu-
mulated number of reclaimed pages generate consecutive
free-page making and swap-in operations, causing perfor-
mance degradation.

4 REFERENCE PATTERN-AWARE INSTANT
MEMORY BALANCING

In this section, we present instant memory balancing archi-
tecture based on reference pattern awareness. We first clar-
ify our design goals and describe the basic designs of the
system. We then describe our new memory balancing
scheme, including a new victim page frame selection pol-
icy, that ensures low balancing delay and low decision
overhead.

4.1 Design Goals

The primary purpose of memory balancing is to enhance the
system performance by utilizing memory efficiently when
some VMs consume lots of memory. To make the balancing
more effective without problems in Section 3, our memory
balancing architecture is based on the following design
goals. First, it should be able to balance system-wide mem-
ory needs and the memory redundancy of each VM
promptly with low overhead. Second, it should have a
lower delay in memory reallocation procedure to maximize
the values of additional memory to the domB. Third, it
should try to minimize the performance penalty from the
wrong selection of reclaimed page frames. The candidates
should be page frames that mostly will not be used.

4.2 Basic Design

To achieve our design goals for effective memory balancing
among VMs, the hypervisor need to decide: 1) When the
reallocation occurs; 2) how many page frames are needed to
move; 3) which page frames are to be sacrificed; and 4) how
to transfer the ownership of the page frames. We primarily
excluded the interventions of the victim guest OS from the
memory balancing procedure. To determine these, we
design six major components in HD2: an estimator, a candi-
date monitor, a pattern manager, a balancer, a reclamation
cache, and a gap reducer. Fig. 6 illustrates the overall archi-
tecture of HD2.

The Estimator assesses which VM needs more memory
compared with each other. Finding a need to balance mem-
ory supplies among the VMs is the first step to reduce perfor-
mance degradation from an imbalanced memory allocation.
We targeted the memory requirements for both dynamic
memory and the page cache for all guest OS, which is not
shown to the hypervisor. To get them, the estimatormonitors
the swap storage usage and tracks the hit ratio change of
their page cache according to the increase in cache size. The
estimator decides the size of additional memory for each VM
based on the collected demand information. The final step is
that the hypervisor uses the differences of estimatedmemory
usage as thememory needs of each VM.

The Candidate Monitor distinguishes page frames that
belong to page caches and then eavesdrops on accesses to
them. In HD2, each guest OS passes on status information
about the pages belonging to its own page cache to the
hypervisor. The information includes which page is inserted
into, evicted from, and reused within the cache. The candi-
date monitor maintains an integrated pool of the informed
page frames. It reduces monitoring overhead by restricting
target memory to page frames in the pool.

In our HD2, we target page frames that belong to the
page cache to avoid several overheads. First, tracking access
to all pages in a guest OS generates prohibitive management
cost. Second, we can reduce additional storage I/O when a
target page frame is reclaimed by the hypervisor. If a
reclaimed page is reaccessed, it is the responsibility of the
hypervisor to recover the page. If the page is clean, there is
no need for the hypervisor to generate extra I/O to save the
data because the original copy is located in the storage. If
dirty, the cold page will most likely be flushed to the storage
when it faces eviction from the page cache.

Fig. 6. Overall architecture and procedure of HD2.
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The Pattern Manager finds access patterns to the candidate
page frames and manages them based on the detected
sequence. To find access patterns of the candidate page
frames, the pattern manager eavesdrops the file access of all
tasks. With the combination of references to the candidates
and its per-task file-level access information, the manager
finds access patterns from the access to multiple page
frames. The page frames involved in a pattern are tied
together as a sequence that has access pattern as an attribute.
The pattern manager classifies sequenced page frames into
three categories: sequential, loop, and unclassified. Manage-
ment details are explained in Section 4.5.

The Balancer changes the memory allocation of all VMs
with hybrid balancing scheme based on the decisions from
the estimator. It marks VMs as beneficiary if and only if the
VM needs more page frames than the predefined threshold.
The balancer reclaims selected page frames managed by the
pattern manager to make free page frames and takes owner-
ship of them. It then transfers the ownership to the domBs
and makes them recognize additional memory by triggering
their balloon drivers. If the balancer consumes most of the
candidates, it uses a ballooning scheme.

The Reclamation Cache is a fixed size LRU-managed mem-
ory cache that cancels out recovery overhead from the
wrong decision, like the Linux swap cache [12]. It manages
a predefined number of page frames where it starts with
free page frames. When a page frame is marked as
reclaimed by the balancer, the page frame is inserted into
the MRU position of the reclamation cache without clearing
data. Instead, an LRU-positioned page frame in the cache is
reclaimed and reallocated to the domB. If a page frame is
reaccessed within the cache, the hypervisor lazily reclaims
another page frame and refills the cache. Consequently,
pending data removal on the about-to-be-reclaimed page
frames for a short time can make the hypervisor reduce the
amount of data recovery from reaccess to the page frame
just reclaimed.

The Capacity Gap Reducer is a module to reduce the capac-
ity disparity of the domVs between the guest OS knows and
it actually uses. It manages a metadata list of the reclaimed
pages for each VM. It triggers inflation of the balloon of the
target domV and then restores the reclaimed pages of the
VMwith the page frames from the inflation.

4.3 Instant Memory Balancing

Memory balancing is a sequential procedure of memory
acquisition from victim VMs and memory supply to benefi-
ciary VMs. To take advantage of previous approaches while
removing drawbacks, our HD2 reclaims target page frames
with hypervisor-level paging and presents them with the
deflation of the ballooning, which is a hybrid method of pre-
vious approaches. The overall procedure of hybrid memory
balancing is illustrated in Fig. 6.

1. The Candidate Monitor in the hypervisor tracks
access to candidate page frames, �1 , and the Pattern
Manager detects reference patterns of page frames
based on filestream information and tracking history.

2. The Estimator determines relative memory demands
based on information from guest OS, �2 , and criteria
described in Section 4.6.

3. On receiving balancing decision, �3 , the Balancer
makes free page frames based on the selection policy
on candidate page frames, �4 . It unmaps selected
page frames from their page table entry (PTE) and
sends them to the reclamation cache. The same num-
ber of page frames in the cache is cleared and
becomes ready for reallocation to the domB. The bal-
ancer subsequently triggers deflation of the balloon
driver, �5 , to make beneficiary guest OS recognize
the supplied free page frames. The balloon in the
domB initially has pinned pages that are not
mapped to the physical page frames. It makes the
guest OS have provisional pages for additional
physical page frames. The hypervisor then maps the
presented physical page frames to the spare pages
so that it can recognize additional memory. The
hypervisor finally deflates the balloon in the domBs
so that the balloon unpins a designated number of
pages and relinquishes their control to guest OS.
The beneficiary guest OS holds power over the
released page frames.

4. The Capacity Gap Reducer is initiated asynchro-
nously whenever the capacity disparity between
the memory size a guest OS knows and the size
the guest OS actually owns exceeds a predefined
threshold.

Basically, hypervisor-level paging makes the reclamation
procedure available even if the victim is not in the running
state. Unlike the ordinary paging mechanism, hypervisor-
controlled paging in HD2 has no swap out operation of data
on the target page frame. The paging in HD2 targets a clean
page of the page cache in the victim guest OS so that the
original copy of the data is located in the permanent storage.
As a result, the hypervisor consumes less time to steal free
page frames.

4.4 Filestream-Aware Reference Pattern Detection

As a preparation to select page frames that have the lon-
gest estimated dwell time, the hypervisor detects reference
patterns of candidate page frames based on filestream-
awareness. We proposed a two-phase reference pattern
detection and page frames association. In the first phase,
the hypervisor distinguishes tasks and its filestreams. It
then detects a filestream-level data access pattern and
associated page frames.

4.4.1 Filestream Distinguishment

A filestream is an access stream to a file by a task through a
file descriptor. The task accesses multiple files by creating
multiple filestreams identified by the file descriptor. To dis-
tinguish each filestream, the hypervisor differentiates each
task by recognizing the changes of the page table used in
[18]. The guest OS invokes a hypercall to notify arguments
of some system calls related to the file operations stored in
the permanent storage. A combination of an identified task
and notified arguments of system calls enable the hypervi-
sor to distinguish each filestream.

4.4.2 Filestream-Aware Sequence Detection

The pattern detector detects the reference patterns from
accessing each filestream and creates sequences with the
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associated page frames. A sequence is an ordered collection
of page frames that chronological references to them form a
pattern. We concentrated on two data reference patterns:
sequential and loop. A reference is categorized as a sequen-
tial reference if it accesses a contiguous position of a file-
stream. Contiguous and non-repeated sequential references
to a filestream create a sequential reference pattern if the
number of references is greater than a predefined threshold.
Associated page frames form a sequence and are considered
sequential type. A reference is categorized as a loop reference
if it is also a sequential reference and is part of an already
detected sequence. Associated page frames change its type
as loop. We classified associated page frames as sequential if
two or more consecutive read system calls access more than
two blocks contiguously. To manage a sequence, six-tuple
information was collected and used to detect data reference
patterns from each distinguished filestream. A tuple con-
tains a key composed of a task descriptor and a file descrip-
tor. Each tuple has the following values: a start offset, an
end offset, a loop period, and the physical address of associ-
ated page frames.

Fig. 7 shows an example of the sequential and loop refer-
ence pattern and a sequence management table showing
gathered information, including associated page frames. In
the figure, the page frames that contain a file with fileID 4
referenced by a task with taskID 3 constitute a sequential
reference because they have an infinite loop period. The
page frames that contain several blocks of files with fileID 4
and fileID 5 referenced by task 1 and task 2 are loop referen-
ces with periods of 35 and 100, respectively. A page frame
that contains data about more than two reference patterns
belongs to the sequence with the last reference. Each entry
in the table represents a sequence.

4.5 Reference Pattern-Aware Victim Page Selection

The pattern detector manages sequences based on their
detected reference pattern. Sequences fall into two catego-
ries: sequential and loop. Page frames that are not included
in any sequence are managed in the unclassified category.

Sequential. A sequential category collects sequences that
consist of page frames that store data blocks which are con-
tiguously accessed. If a page has a sequential reference pat-
tern, it will not be accessed again until the page is evicted
from the page cache. Sequences in the sequential category
are arranged in the most-recently-used (MRU) order. When-
ever a new sequence is created or a sequence is lengthened,
the sequence moves to the MRU position of the category
list. If some part of a sequence has a different access pattern,
the sequence is split into subsequences according to the

pattern. All subsequences then update its own location to
the corresponding category.

Loop. If a sequential sequence is accessed repeatedly, the
sequence is categorized as loop. Because it is accessed
sequentially during the first iteration of the repeated
accesses, its pattern is correctly detected when the second
iteration is initiated. A sequential sequence changes its loca-
tion to the loop category if it is accessed again. In the loop
category, a sequence is a sequential sequence with a refer-
ence period. Sequences in the loop category are arranged in
the LRU order. A sequence moves its location to the MRU
position whenever the sequence is accessed sequentially.

Unclassified. All candidate page frames that are included
in any page cache, but not included in any sequence, are
ordered with the LRU strategy in the unclassified category.
If several page frames form a sequence, they move to the
sequential category.

In any selection the balancer makes, sequential sequences
always come first. The balancer reclaims page frames that
belong to a sequence in the MRU position of the manage-
ment list for sequential sequences. If the number of page
frames required is less than the target sequence has, the bal-
ancer reclaims page frames from the start position of the
sequence. The loop category is the next candidate only after
there are no more sequential sequences to reclaim. Unlike
the sequential sequences, the balancer selects sequences in
the LRU position of the management list for its periodic
access. Selection criteria within a sequence is the same as
sequential sequences. If all sequences are reclaimed, the
page frames in the LRU position of the others categories
become candidates for reclamation.

Note that we used two approaches when reclaiming
sequences. One is to make the balancer reclaim the same
number of page frames as requested. The other is to make
the balancer reclaim the entire sequence if it is necessary to
reclaim a page frame in a sequence.

4.6 Decision of Beneficiary VM and Its Memory
Needs

The estimator shown in Fig. 6 evaluates the need for addi-
tional memory based on two values: 1) dynamic memory
requirement and 2) additional page cache demands. We
estimate them from swap storage usage and ghost cache.

Estimating the dynamic memory requirement of a VM
starts from monitoring the swap storage usage of a time
period like [2]. The estimator then calculates the average
value of all VMs’ swap storage usage collected during the
last period. Dynamic memory requirement is calculated by
the difference between the estimated need and the average
need. The estimator also evaluates additional page cache
demand of a VM with the ghost cache described in Sec-
tion 5.3. The estimator decides additional cache needs N
during the same time period from the index number iN of
the ghost cache where the index has the maximum deriva-
tive of changes to index iNþ1, which exceeds the threshold.
Finally, the total memory demand of a domB is the sum of
estimate for the dynamic memory requirement and for page
cache. The estimator marks a VM as beneficiary if and only
if the VM is estimated to have more memory requirement
than the average. We use 100 ms as the time period and the

Fig. 7. Examples of sequential and loop reference patterns and a
sequence management table.
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average number of all ghost cache hits as the ghost cache
threshold. We also use 32 as a triggering threshold for the
sensitivity of the Balancer.

Note that HD2 makes the hypervisor only monitor rela-
tive needs for memory growth. The memory demands of
VMs selected as the beneficiary determine the number of
page frames to be moved. The owner VMs of the reclaimed
page frames become victims after the balancer’s pattern-
based victim selection.

4.7 Reducing Overhead from Capacity Disparity

Applying hypervisor-controlled paging creates a gap of
memory capacity between that a guest OS knows and that
the VM actually uses. This gap, called capacity disparity,
has potential overheads on reaccess to the reclaimed pages.
On trying to access a reclaimed page, the hypervisor should
recover the page with a free page frame and data in it.
Securing a free page frame may generate another reclama-
tion of a page frame. Restoring data in the page frame is
completed only after a data read from a permanent storage.
This results in additional delay.

We applied two techniques to reduce recovery overhead
from the capacity disparity of victim VMs. For both techni-
ques, the hypervisor maintains per-VM lists, reclaimed_lists,
to track reclaimed pages. First, the capacity gap reducer dis-
tinguishes the source of access to the target page and does
not initiate data recovery if the access is by the page frame
reclamation algorithm in a guest OS trying to reclaim the
page. The second technique is to make the victim guest OS
know its actual memory usage, named reverse-ordered bal-
looning. On deciding to reduce the disparity of a victim
VM, the hypervisor inflates the balloon in the victim guest
OS enough to compensate the disparity. The hypervisor
then restores the reclaimed pages in the reclaimed_list of the
VM. The hypervisor executes this when a VM is not
involved in balancing or in idle state for 10 seconds.

5 IMPLEMENTATION

We have implemented our prototype system for the Xen [7]
4.1.1 hypervisor and Linux 3.9.6 dom0 and guest OS. All
components were implemented in the Xen with some
hypercall invocations in the Linux kernel. In the following
subsections, we describe some implementation issues of our
scheme in detail.

5.1 Monitoring Page Cache Access

Monitoring access to the candidate page frames composed
of all VMs’ page cache is a combination of distinguishing
page caches and access detection to them. To distinguish
page frames that belonged to a page cache, we explicitly
used hypercalls, even though they are available without
any modification of the guest OS [19]. Whenever a page is
inserted into or evicted from a page cache, a hd2_page_ca-
che_op() hypercall is called to inform the hypervisor of a
change in the page’s position. In order to detect memory
access events that are usually transparent to the hypervisor,
we borrow minor page faults from [2], [20], [21]. With minor
page faults, the hypervisor traps target page frame access
intentionally by granting the highest access privilege to the
pages of concern. As access to the page table entry requires

the highest privilege, non-privileged access to the target
page is trapped to the hypervisor. It can make the hypervi-
sor recognize access to the concerned page frames. Conse-
quently, the hypervisor can monitor all access to page
frames used in any page cache of all VMs.

5.2 Page Frame Association with Event Correlation

Filestream-level access pattern is collected information of a
consecutive series of file access events informed by the
guest OS. However, all file information from guest OS has
no physical page frame information because they are not
visible to the guest OS. We applied event correlation to asso-
ciate the detected access patterns with the actually accessed
target page frames in the hypervisor.

The basic idea is that a read system call has a causal rela-
tionship with the following access to page frames in the
page cache in the same process context. A read system call
is a blocking operation that waits for the data to be read into
the specified buffer. Not any operation could progress
in the same process context during the system call. As a
result, the system call is the only source that causes the page
frame access until the call returns, and so does the caller
task identified by the CR3 register. We borrowed the task
identification technique from [18].

Fig. 8 illustrates the detailed procedure of the event cor-
relation scheme. It starts from informing the event of conse-
cutive file access and target information, including a file
descriptor, an offset in the file, and the length of the target
data via an inform_event_op() hypercall. From the page cache
monitoring, access to the page frames in the page cache are
trapped to the hypervisor. With information from two enti-
ties, and on the basis of our idea, the hypervisor associates a
read event with the accessed page frame addresses. By
detecting per-task reference patterns, the hypervisor forms
pattern sequences, which are represented as six-tuple
entries in Fig. 7.

5.3 Ghost Cache with Stack Distance Algorithm

To estimate the memory requirement of page cache for the
storage I/O of a VM, we implemented a profiler and ghost
cache, which were inspired by [19], [22]. It is based on
Mattson’s stack distance algorithm [16], which is widely
used for cache size estimation. The algorithm is based on
the inclusion property of the LRU replacement strategy for
a size-limited cache. That is, the content of any LRU-based
cache with size N is a subset of the contents in a cache with
size larger than N.

Fig. 9 illustrates the concept of the ghost cache. A ghost
cache manages a fixed number of metadata entries with
LRU strategy where each entry is indexed by its distance
from the MRU position. The metadata of the evicted page

Fig. 8. Overall procedure of the event correlation scheme.
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from the page cache is inserted into the MRU position of the
ghost cache. It includes storage location information of
the data in which the evicted page is contained. Entries are
evicted from the LRU position if the cache size exceeds a
predefined capacity. At each position i of the ghost cache,
there is a reference counter, Ci. Every time there is a miss in
the page cache, the hypervisor detects and looks them up
in the ghost cache. If an access touches a block information
in a metadata at the ith position of the ghost cache, the
hypervisor increases the Ci counter and removes the entry
from the cache. If the access ends up being a miss on both
the page cache and the ghost cache, the hypervisor increases
the Ciþ1 counter. The hypervisor considers that the page
cache requires iþ 1 more page frames when the value of
DCiþ1 exceeds a predefined positive threshold CThreshold.

6 PERFORMANCE EVALUATION

In this section, we describe the experimental evaluation of
our prototype implementation. HD2 is implemented on
an HP DL165G7 server with 24 cores (two AMD Opteron
2.0 GHz 12-Core processors) and 32 GB memory. By
default, all guest VMs are initially allocated 512 MB of
memory and configured with 2 GB memory as their high-
est possible memory allocation. HyperDealer2 and Bal-
loon-based balancing are designated by HD2 and BLN,
respectively. Memory usage profiles of the benchmarks
can be found in [23], [24].

6.1 Runtime Overhead

Runtime overhead comes from four possible sources: 1) esti-
mation of additional memory demand with ghost cache and
swap storage usage tracking, 2) the minor page faults for
tracking page frames in the page cache, 3) the detection of
reference patterns, 4) and data reload from permanent stor-
age because of the reaccess to the reclaimed pages.

To evaluate it, we performed experiments with our
scheme turned on but no memory reallocation. Table 1
shows the normalized execution time of several bench-
marks. The result shows that only three of SPEC bench-
marks and three I/O benchmarks suffer from 2 percent of
performance degradation with our scheme. It is because
they access data on page cache more, thus triggering a trap
to the hypervisor and pattern detection. We will discuss the
data reload overhead in Section 6.4 for its dependency on
pattern detection accuracy and page cache characteristics.

6.2 Reclamation Delay

In this subsection we evaluate average one-time memory
reclamation delay, TSchedule þ TRelease of the two balancing
methods to analyze the effect of the victim VM’s state, the

number of victim VMs, the number of VCPUs, and the
workload on the VCPUs.

6.2.1 Effect of the Internal State of The DomVs

To analyze the effect of the target VMs’ state to the part of
reclamation delay, TRelease, we measured the average recla-
mation delay of pages from a VM in different situations. In
this experiment, a victim VM is in an ‘idle’ state when the
reclamation procedure incurs no data flush to the storage
and there are no I/Os disturbing the reclamation operation.
Otherwise, the domV is in a ‘busy’ state. Table 2 shows the
result. When the domV is in an ‘idle’ state, the balloon driver
reclaims clean pages only. Otherwise, the balloon driver in
the domV reclaims dirty pages with a data flush to perma-
nent storage. Excluding the execution time of the balloon,
the average one-time reclamation delay increases slightly as
the number of reclaimed pages increases. With a ‘busy’
domV, every reclamation initiated by the balloon generates
a storage write event. Intensive write I/Os within a short
time cause contention, which makes the reclamation proce-
dure longer. Therefore, the time delay increases rapidly. In
contrast, our scheme shows a small and almost invariant
delay because it sacrifices the same number of clean pages
in the page cache, where the contents on those pages can be
discarded without flush operations.

6.2.2 Effect of the Number of DomVs

The effect of the number of domVs to the reclamation delay
can be shown by measuring the acquisition time of a fixed
number of pages from various number of domVs. Fig. 11
shows the experiment result. Each domV is assigned to
relinquish a smaller number of pages as the number of
domVs increases. With the ballooning method, more domVs
have a more parallelized effect on the reclamation proce-
dure. It reduces the total elapsed time to transfer control of

Fig. 9. A basic concept of the ghost cache to measure page cache mem-
ory requirement. The hypervisor gives i page frames to the VMX if
DCi > CThreshold.

TABLE 1
Normalized Runtime of Benchmarks with Detection Overhead

Benchmarks Time Benchmarks Time

400.perlbench 100.4% 462.libquantum 100.8%
401.bzip2 100.1% 464.h264ref 100.0%
403.gcc 100.0% 471.omnetpp 100.0%
429.mcf 100.0% 473.astar 100.3%
445.gobmk 100.0% Tiobench(seq. read) 100.9%
456.hmmer 100.0% Tiobench(ran. read) 100.2%
458.sjeng 100.0% Dbench 101.7%

TABLE 2
One-Time Reclamation Delay of Pages from a domV

Methods
HD2 : HyperDealer2
BLN : Ballooning

� �
ðmsÞ

Number of Pages

100 1000 10000

HD2 0.1 0.7 6.4

domV w/ idle state 9.4 12.6 40.5

BLN
all target pages are clean pages
domV w/ data flush to storage 53.1 674.9 1601.2
all target pages are dirty pages

The Delay greatly depends on the I/O state of the target domV.
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a designated number of page frames to the hypervisor.
However, overhead from TSchedule countervails the benefit
from the parallelization, thus increasing reclamation time
irrelevant to the workload. If a domV does not handle the
memory balancing request during its scheduled time, the
hypervisor has to wait for the next schedule of the domV.
The more domVs, the longer all domVs complete memory
relinquishments, which leads to an increase in TSchedule.

Unlike the BLN reclamation procedure, HD2 does not
spend timeslices allocated to the domVs. The hypervisor
directly chooses pages to be reclaimed based on own recla-
mation policy. It makes the reclamation procedure indepen-
dent of the number of domVs and their schedulability,
which makes memory balancing more scalable.

6.2.3 Effect of the Number of VCPUs

The next experiment is to analyze the effect of the number of
VCPUs and its state to the reclamation delay. With the idle
state of VCPUs, there are little effects of the number of
VCPUs on the memory reclamation, even more than the
number of PCPUs. Figs. 12a and 12b show the results. It is
because only a VCPU is activated to respond to the memory
request with the ballooning method. The proposed method
performs a reclamation procedure in the hypervisor, which
is independent of the schedule of the domVs. Therefore, the
elapsed time only depends on the number of page frames to
be reallocated on both methods.

However, if domVs with multiple VCPUs are in
VCPU-busy states, the memory reclamation from them
takes longer. Figs. 12c and 12e show the results where
each domV runs the same number of CPU-intensive tasks
as the number of VCPUs each domV has. With balloon-
ing, an increase in the number of VCPUs with a fixed
number of domVs have little effect on the reclamation

procedure, especially if the total number of VCPUs does
not exceed the number of PCPUs in the machine. If there
are more VCPUs than PCPUs in the machine, the delay
increases. From the effect of an increased number of
VCPUs, the hypervisor waits for another VCPU of the tar-
get domV to be scheduled if the scheduled VCPU for the
domV does not handle the reclamation procedure. It
therefore increases the TSchedule. We can see the same
result in Fig. 11, where an increase in the number of
domVs also increases the number of VCPUs. The notice-
able delays appearing with more than 32 busy VCPUs are
mainly due to the total number of VCPUs exceeding the
total number of PCPUs, i.e. 24.

It is obvious that busier VCPUs intensify the competi-
tion among all VCPUs in all VMs for PCPU timeslice allo-
cation. The hypervisor scheduler tries to share time fairly
among the increased number of VCPUs for all VMs. Any
VCPU in a victim VM, therefore, is allocated a smaller
timeslice after a longer waiting time. It generates a longer
TSchedule þ TRelease, despite multiple PCPUs improving
parallel execution of all victim VMs’ ballooning operation.

The situation gets worse if the victim VM performs page
frame reclamation and makes I/O to flush data to storage.
Figs. 12f and 12h shows a remarkable increase of reclama-
tion delay where an I/O performing task co-exists with
CPU-intensive tasks. Flushing dirty pages to the permanent
storage during the reclamation procedure increases TRelease.
Application I/O requests interfere flushing operation of the
guest OS, thus making the delay unpredictable. As a conse-
quence of the longer TSchedule and TRelease, reclamation time
using ballooning technique increases as the number of busy
VCPU for victim VMs increases.

Fig. 11. Elapsed time to reclaim 1,024 pages from domVs with the desig-
nated number of VCPUs to the hypervisor.

Fig. 12. Average elapsed time of one-time page frame reclamation for a beneficiary VM according to the number of VCPUs in victim VMs (domVs).
Proposed Method uses LRU victim selection strategy.

Fig. 10. Detected patterns of selected benchmarks.
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Unlike the BLN, the proposed method shows little var-
iances in delay in spite of storage I/O and busy CPU states
of victims. Figs. 12c and 12h support the analysis with a
small balancing delay. From the properties of the paging,
hypervisor-level paging makes the reclamation procedure
independent of the scheduling of the victim VM and its task
taking charge of the reclamation. It is sufficient for the
hypervisor to handle memory balancing just before each
domB is scheduled. It results in a negligible TSchedule. In
addition, two policies restrict the occurrence of drawbacks
from the hypervisor-level paging. Reclaiming clean pages
avoids generating data flush to the permanent storage. Pat-
tern-based victim selection restricts the reaccess of the
reclaimed page frames. These make TRelease sensitive only
to the number of page frames to reclaim. Consequently, the
hypervisor performs balancing with a small delay, even
with busier VCPUs of the victims.

6.3 Effect of the Memory Reallocation Speed

The primary purpose of memory balancing is to enhance
memory allocation speed by reducing time to make free
memory in a guest OS. To evaluate the effect of memory
reallocation speed on the memory allocation performance,
we measured the elapsed time of memory allocation with
multiple domVs. In the experiment, a domB performs a
memory allocation job while domVs run warmup I/O tasks,
followed by CPU-intensive tasks, in the SPEC CPU2006
benchmark. Each memory allocation trial asks for 32 MB of
free memory allocation and fills random data on it. In an
idle state, each domV does nothing and has enough free
memory. In an busy state, each domV runs an instance of
modified Tiobench [25] benchmark generating read and
write requests equally, and (the number of VCPU-1) instan-
ces of 445.gobmk, which makes CPU busy with a small mem-
ory footprint. The modified Tiobench benchmark generates
read and write requests equally where each type of request
is composed of sequential and random patterns equally.
Each VM starts with 512 MB of main memory and 2 GB of
maximum main memory capacity. In particular, each VM
has 1.5 GB of memory with two victim VM cases to supply
enough memory to reallocate.

Fig. 13 a shows the elapsed time of memory allocations in
domB with idle domVs. Almost all cases show similar per-
formances, regardless of the change in the number of idle
domVs and balancing methods. Because there are little
active tasks in each domV, the VCPUs performing the recla-
mation procedure of each domV are in competition with
each other. It schedules the reclamation procedure to the

PCPU after a small TSchedule. Enough free memory in each
domV makes them respond to the balancing request with a
small TRelease. This results in a similar reclamation delay
despite the varying number of VCPUs and a different
method is applied to the balancing.

In a busy state of the domVs with the BLN, however, an
increased delay from more domVs reduce the effect of addi-
tional memory on the domB. The results of the BLN is
shown in Figs. 13b and 13c. As for the delay, the TScheduleþ
TRelease is longer, while a designated amount of free mem-
ory arrives in domB much later from when it is requested.
This results in little reduction of internal memory reclama-
tion overhead of the domB, which makes the domB lose
chances to reduce overhead that arose from memory thirst.
Even with 32 domVs, the domB acts as if there was no bal-
ancing system.

Compared with the BLN, the proposed method greatly
reduced memory allocation speeds. To distinguish the effect
of pattern-based victim page selection, we compared the
proposed method, denoted as SEQ, with a traditional LRU
selection strategy. The SEQ in Fig. 13 shows the worst case
results as continuous I/O make pages in the page cache
reused fast. Compared to the BLN, memory allocation takes
little time with both LRU and SEQ-based balancing. Irrele-
vance to the state of the domVs and their number depletes
the TSchedule and the TRelease. Based on this, the time gap
widens as the number of domVs increase.

The difference between two methods consists in the posi-
tion where the algorithm selects page frames. Unlike LRU,
SEQ selects from the MRU position among sequences. Both
cases have the same result if there are no new I/Os incur-
ring the reuse of pages at the LRU position of the page
cache, which rarely occurs. A long dwell time from sporadic
I/O adds little delay to the reclamation procedure. Details
of dwell time are explained in Section 6.4. More I/O make
the dwell time of all reclaimed pages shorter. In particular,
the dwell time is extremely shortened under the LRU-based
reclamation policy. A shorter dwell time is the result of a
more frequent occurrence of page frames reuses. This incurs
more reclamation to restore already reclaimed pages. There-
fore, an aggravated iteration of reclamation delays balances
the speed, thus providing less benefit to the domB than
with SEQ policy.

In addition, we can get more accelerated results with the
WHOLE_SEQ policy. WHOLE_SEQ is an aggressive balanc-
ing method that reallocates all page frames in a victim
sequence at a time. Because page frames in a sequence are
highly likely to be access together. By using this scheme, the

Fig. 13. Performance effect of the memory reallocation speed measured by the elapsed time of reclamation for a beneficiary VM according to the
number of victim VMs with four VCPUs/VM.
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hypervisor can supply more memory preemptively to
domBs against memory shortage in the near future. If reac-
cess to the reclaimed page occurs due to wrong pattern
detection, those pages can be recovered with one or two
read operations, which minimize restoration overhead of
the contents. We applied the WHOLE_SEQ policy with 64
pages of maximum single reallocation in Fig. 13. In the
experiment, preemptive memory reallocation is iteratively
performed in response to the sharp increase of memory
needs so that the domB can make provisions for the follow-
ing memory requests. It brings a more stable, but acceler-
ated, memory allocation performance of the domB. This
policy is good to handle a sharp-increasing memory
requirement of guest OSes.

6.4 Effectiveness of Pattern Detection: Dwell Time

Sacrificing sequentially referenced pages prior to sacrificing
unclassified pages affects the performance. We compare the
dwell time of reclaimed pages in the reclaimed state to show
the effectiveness of the pattern detection. Detected reference
patterns of the benchmarks are shown in Fig. 10. The results
are shown in Fig. 14. Like the swap operation of an OS, recla-
mation of the hypervisor is more effective if the hypervisor
could select pages that will not be reaccessed longer. The
purpose of the pattern detection in the reclamation proce-
dure is to classify candidate pages by its reaccess possibility.
Because higher detection accuracy generates less number of
pages with short dwell time, more pages with longer dwell
time indicates better choices of the hypervisor with the pat-
tern detection. In the experiment, each of the three VMs runs
two instances of 445.gobmk, while a VM executes sequential
file reads and another VM runs 401.bzip2. We turned off the
capacity disparity reduction scheme.

The result shows that many pages reclaimed with the
LRU policy in the hypervisor has shorter dwell time than

the page frames by the SEQ policy. Reclamations by the
guest OS triggers recovery of the pages reclaimed recently,
which is caused by the policy mismatch. Some pages
reclaimed with LRU has similar dwell time but it is due to
low reclamation rate of the domVs. The page frames
reclaimed by SEQ, on the contrary, show a longer dwell
time except some pages. Those exceptions are from mass
reallocation of memory, which reclaim pages in sequences
that are located near the LRU position. It shows similar
performance as the LRU policy in the worst case. Those
long dwell time also shows that the detection scheme
works well.

6.5 Impacts on Application Performance

Fig. 15 illustrates two memory load scenarios to analyze
the performance impact of memory balancing methods
on running applications hosted by multiple VMs. The
configuration of the scenarios in Fig. 15 is shown in
Table 3. In the first scenario, each of the four VMs run
two copies of a memory-intensive benchmark at different
times and run two copies of a CPU-intensive benchmark
for the rest of the experiment period. Seven different
memory-intensive benchmarks were run in the second
scenario with 16 VMs. Before starting, the page cache of
each guest OS is warmed up with I/O workloads with a
clean:dirty ratio of 1:1. Each VM starts with a page cache
of approximately 413 MB after the warm-up. HD2 runs
with the SEQ reclamation policy.

We can see remarkable performance enhancements on
memory-intensive tasks while other CPU-intensive tasks
show negligible performance degradation. Table 4 shows
the experiment results. With 403.gcc having dynamically
changing memory requirements on VM #2 with eight VMs
running, we acquire 51 percent of performance improve-
ment compared with the ballooning procedure. With HD2,
reclaiming clean pages in the page cache simply discards

Fig. 14. Dwell time of the reclaimed pages in the reclaimed state in
domVs.

Fig. 15. Memory loads scenario on each VMs.

TABLE 3
Workload Configurations of the Memory Load Scenario

VM# Workloads VM# Workloads

Mem.-intensive CPU-intensive Mem.-intensive CPU-intensive

1 401.bzip2 445.gobmk 9 473.astar 465.tonto
2 403.gcc 445.gobmk 10 450.soplex 445.gobmk
3 400.perlbench 456.hmmer 11 436.cactusADM 444.namd
4 447.dealII 12 482.sphinx3
5 465.tonto 13 435.gromacs
6 482.sphinx3 14 445.gobmk
7 435.gromacs 15 482.sphinx3
8 444.namd 16 456.hmmer

Warming-up workload for each guest OS : clean:dirty=1:1,
equally distributed, sequential reads/writes of 10 pages on average
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data, thus generating no data flush. This results in a shorter
TRelease, which leads to shorter TRealloc.

Results with the LRU policy support the effectiveness
of HD2. With LRU, the recovery procedures degrade the
application performance in spite of the same TSchedule. The
memory demand of the domB triggers its own reclama-
tion operations along with memory reallocation by the
hypervisor. Candidates for reclamation by the hypervisor
are likely to be the candidates for reclamation inside the
guest. This generates memory reclamation and realloca-
tion by the hypervisor followed by a recovery procedure
in the hypervisor. The delay from the repetitive recovery
due to the previously reallocated memory fluctuates and
aggravates the application performance significantly. This
leads to a chained reclamation and recovery process, thus
delaying the memory reallocation procedure. HD2, on the
other hand, generates fewer recovery procedures for real-
located memory due to the long dwell time and the peri-
odic capacity gap reducing operations. Fast memory
reallocation can make the guest OS respond following
memory allocation requests with the received page
frames. This reduces the number of following swap out
operations of the domB, which consequently accelerates
the application performance.

The BLN takes more time to reallocate the same number
of page frames than the HD2. A data flush is required into
permanent storage if the target pages are dirty or if they are
dynamically allocated by tasks, which increases TRelease.
This causes the domB to lose its opportunity to cancel sub-
sequent swap out operations with the donated page frames,
worsening the performance.

A 14 percent performance improvement of 403.gcc is
noted when 16 VMs are ran together. The small perfor-
mance improvements with 16 VMs originate from the long
TSchedule due to there being at least 32 busy VCPUs on the 24
PCPUs. In addition, the relatively small memory demand
induces less frequent memory balancing events. From the
results shown in Fig. 12, balancing with a smaller number
of pages makes a smaller difference in the performance
results between the two methods. While memory-intensive
tasks accelerated, CPU-intensive tasks had little perfor-
mance degradation independent of their running location.

It is from their relatively small memory requirements,
which make them act only as domVs.

7 RELATED WORK

Contemporary studies have presented solutions that
enhance machine-wide performance in the VM-consoli-
dated environment. They focused on an increase of avail-
able memory for each VM to enhance system performance.

In Cellular Disco [3], each cell can borrow memory
from other cells that are rich in free memory. The cell is
defined as a fault containment unit in a cluster composed
of several physical machines, and the authors proposed
resource balancing policy among those cells. Our scheme,
however, is for multiple VMs within a cell with single
physical machine.

Memory hotplugging [26] can change the amount of
memory on demand by installing or removing new physi-
cal DIMMs. With the balloon, it can allocate more memory
than the initial configuration for a VM. However, it gener-
ates the same scheduling-induced delay because the bal-
loon controls reallocation of the memory. Having a fixed
and large size of memory unit can generate additional
swapping and flushing of page cache, thus degrading the
performance.

In Hypervisor Exclusive Cache [27], the hypervisor man-
ages some of the VM’s memory as a second level exclusive
cache and tracks its LRU-basedmiss ratio curve. By changing
the size of each VM’s hypervisor-level cache, achieves the
same effect as changing the VM’s memory allocation. A
newly allocated memory is either inserted into the VM
through a balloon or utilized as an exclusive cache in the
hypervisor. Because the tracking of the curve starts when the
memory size needs to be mediated and the hypervisor
requires some additional memory references in the exclusive
cache, there may be a long lag between the time for a change
and the time for completing the balance.

Transcendent Memory (Tmem) [28] also proposed a
hypervisor-level second-chance page cache for each guest
domain in a physical machine. With Tmem, a hypervisor
collects fallow memory and wasted guest memory and then
uses it as a per-VM private page cache. The authors tried to
balance memory by implicitly mediating the size of a

TABLE 4
Normalized Execution Time of Benchmarks with Consolidated VMs Memory load scenario is depicted in Fig. 15.

(a) Performance with 8 VMs (b) Performance with 16 VMs

VM# Benchmark Methods VM# Benchmark Methods VM# Benchmark Methods

BLN LRU HD2_SEQ BLN LRU HD2_SEQ BLN LRU HD2_SEQ

1 401.bzip2 1 1.63 0.71 1 401.bzip2 1 1.35 0.83 9 473.astar 1 1.05 0.96
445.gobmk 1 1.02 1.00 445.gobmk 1 1.00 1.00 465.tonto 1 1.00 1.00

2 403.gcc 1 1.47 0.49 2 403.gcc 1 1.47 0.86 10 450.soplex 1 1.39 0.89
445.gobmk 1 1.03 0.99 445.gobmk 1 1.00 1.01 445.gobmk 1 1.00 1.00

3 400.perlbench 1 1.60 0.49 3 400.perlbench 1 1.61 0.50 11 436.cactusADM 1 4.42 0.93
456.hmmer 1 1.00 1.00 456.hmmer 1 0.97 1.00 444.namd 1 1.00 1.00

4 447.dealII 1 2.33 0.93 4 447.dealII 1 0.97 0.90 12 482.sphinx3 1 0.98 0.98
5 465.tonto 1 1.01 1.00 5 465.tonto 1 1.00 1.00 13 435.gromacs 1 1.00 1.00
6 482.sphinx3 1 1.01 0.96 6 482.sphinx3 1 0.99 1.01 14 445.gobmk 1 1.00 1.01
7 435.gromacs 1 1.02 1.00 7 435.gromacs 1 1.01 1.00 15 482.sphinx3 1 1.00 1.00
8 444.namd 1 1.00 1.00 8 444.namd 1 0.97 0.98 16 456.hmmer 1 0.97 0.97

(LRU : HyperDealer2 w/ LRU policy, SEQ : HyperDealer2 w/ SEQ policy, BLN : Ballooning).
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private page cache with a global LRU queue. The scheme is
effective for balancing I/O-intensive applications that
require a large size page cache. However, each VM must
maintain a sufficiently large private cache for a correct deci-
sion. It also cannot respond to the needs of memory-inten-
sive but non-I/O-intensive tasks like [27].

Memory Balancer (MEB) and Collaborative Memory
Management (CMM) are highly relevant for our research.
MEB [2] decides the proper memory size of each VM
through working set size estimation. The domVs then
inflate the balloon to release memory, and the domBs sub-
sequently deflate the balloon to make the guest OS control
the reallocated memory. MEB utilizes its own memory
reclaiming policy with regards to the guest OS’s selection
of victim pages. However, the policy also causes a swap out
or data flush of dirty pages to the storage in accordance
with the guest OS’s policy. Furthermore, the balloon’s infla-
tion and subsequent deflation can cause a scheduling-
induced balancing delay. Hence, the ballooning is unsuit-
able for applications with dynamically changing memory
requirements. Feedback-directed ballooning [29] also men-
tioned a similar solution with the sameweak points.

CMM [4] attempts to address the issue of double pag-
ing [15] and the overhead of moving memory by balloon-
ing in the hosted Linux environment of System z. In
CMM, the guest VM gives the hypervisor hints that help
page frames to be selected and reclaimed in a more intel-
ligent way. The hints contain each page frame’s state
about which pages are being used and which pages
are reclaimable with little penalty. However, unlike the
PowerPC, monitoring of all memory access in hardware
without any additional CPU protection privilege, such as
Intel CPUs, significantly degrades performance [20], [21].
Our scheme limits the overhead by monitoring only page
frames of a page cache that belongs to all VMs without
any hardware assistance.

For the VM scheduling-related issue, Govindan et al. [30]
tried to enhance the communication performance degrada-
tion caused by VM scheduling-induced delays in network
communication. We found that a similar delay occurs in the
conventional memory reallocation procedure and proposed
a solution to reduce the delay.

The need for reference pattern detection was addressed
in [22], [31], [32], [33], [34], [35], [36], [37] for victim selection
of the page reclamation in OS. The authors detected and
classified the sequential and loop reference patterns from
instances where the disk cache is accessed and then a victim
page is selected for reclamation on the basis of each
pattern’s marginal gain. Although this paper used a detec-
tion scheme for detecting reference patterns, we focused on
the performance effect of memory balancing among consoli-
dated VMs, especially with regard to the reduction in the
victim VM’s overhead.

[38], [39], [40] talked about memory balancing decisions
among multiple victims. But they used conventional meth-
ods to move memory among VMs and did not consider bal-
ancing drawbacks on a manycore environment. They also
did not cover the memory requirements of the page cache
in a guest OS for I/O performance improvement.

This study is a part of the MN-MATE [5], [41], a resource
management system for manycores and a hybrid main

memory hierarchy of the on-chip DRAM, off-chip DRAM,
and off-chip NVRAM to work as a cloud node. The primary
purpose of the MN-MATE is to enhance system perfor-
mance while saving energy by balancing CPU cores and
various memories among VMs and by managing allocated
resources inside each VM.

8 CONCLUSION

As virtualization technology consolidates more guest OSes
into single hardware units, resource management has
become a key issue. Althoughmemory balancing can reduce
memory contention among virtual machines, slow memory
balancing degrades the effectiveness of additional memory
in the memory-thirsty virtual machines. In this paper, we
provided a full-fledged non-obstructive memory realloca-
tion scheme enhanced with the reference pattern-based
victim selection and hypervisor-level reclamation. We pro-
posed HyperDealer2, which makes balancing operation free
from the involvement of victim VMs and extends the dwell
time of reclaimed pages in the reclaimed state. Conse-
quently, HyperDealer2 significantly accelerated the balanc-
ing operation with a low overhead, thereby increasing the
effect of additional memory on the beneficiary VM. Our
monitoring mechanism incurs less than 2 percent of perfor-
mance degradation. Nevertheless, the experimental results
shows that our proposed scheme reduces the execution time
ofmemory-intensive applications by up to 50 percent.
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