
Contents lists available at ScienceDirect
Information Systems

Information Systems 54 (2015) 28–42
http://d
0306-43

n Corr
E-m

woongb
journal homepage: www.elsevier.com/locate/infosys
Parity Resynchronization using a Block-level Journaling
for Software RAID

Sung Hoon Baek a, Ki-Woong Park b,n

a Department of Computer System Engineering, Jungwon University, Republic of Korea
b Department of Computer Hacking and Information Security, Daejeon University, Republic of Korea
a r t i c l e i n f o

Article history:
Received 7 November 2014
Received in revised form
14 May 2015
Accepted 26 May 2015

Recommended by: F. Carino Jr.

correct parity block after a reboot. It is difficult, however, to find which stripe is partially
Available online 5 June 2015

Keywords:
Secondary storage
Fault tolerance
x.doi.org/10.1016/j.is.2015.05.004
79/& 2015 Elsevier Ltd. All rights reserved.

esponding author. Tel.: þ82 10 9165 1624; fa
ail addresses: shbaek@jwu.ac.kr (S.H. Baek),
ak@dju.kr (K.-W. Park).
a b s t r a c t

Software redundant arrays of independent disks (RAID) suffer from several hours of
resynchronization time after a sudden power-off. Data blocks and a parity block in a stripe
must be updated in a consistent manner. However, a data block may be updated without a
parity update if power goes off. Such a partially modified stripe must be updated with a

updated. The widely used traditional parity resynchronization approach entails a very
long process that scans the entire volume to find and fix partially updated stripes. As a
remedy to this problem, this paper presents a parity resynchronization scheme that
exhibits a small overhead for a wide range of workloads, finishes parity resynchronization
within several minutes, and is transparent to file systems, thanks to a new seamless block-
level journaling. The proposed scheme is integrated into a software RAID driver in a Linux
system. A performance evaluation demonstrates that the proposed scheme shortens the
resynchronization process from 200 min to 30 s with 1% overhead, compared to 51%
overhead for the prior scheme.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Various types of redundant arrays of independent disks
(RAID) [1] have been introduced for large capacity and
high throughput while protecting data against one or more
disk failures. Research topics on RAID include access
method [2,3], reconstruction [4–7], scrubbing [8–10], scal-
ing [11–15], data layout [16–21], erasure code [22–26], and
resynchronization [27–29]. This paper is focused on resyn-
chronization for software RAID systems.

High-end RAID systems utilize uninterruptible power
supply (UPS) or battery-backed RAM to achieve both
x: þ82 42 280 2404.
reliability and performance [30]. However, such power-
fail-safe devices are not used in software RAID systems.

When a write is issued to a RAID-5 array, two or more
disks for data and parity must be updated in a consistent
manner. If a sudden power-off occurs after a data block is
written but before a parity block is updated, the stripe is
left in an inconsistent state. In this case, the system cannot
simply detect which stripe is in an inconsistent state after
the crash.

Finding and fixing inconsistent stripes is called parity
resynchronization. Because inconsistent stripes are not
recoverable if a disk fails, the software RAID suffers from
several hours of a parity resynchronization process that
entails scanning the entire volume to search for incon-
sistent stripes [27]. Scanning the entire volume prolongs
downtime and increases maintenance cost.

The software RAID has a strong possibility to experience
parity resynchronization processes. The software RAID system
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Fig. 1. A scenario for an inconsistent stripe: a data block in disk3 is
updated but Disk1 and Disk2 fail to update their parity block and data
block due to a sudden power-off. The old parity of the stripe is
inconsistent with the updated data of disk3.
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is widely deployed to workstations and home RAID devices. In
a home environment, users may frequently turn off their RAID
box as it makes a harsh noise. Some consumers do not
properly shutdown the box, and thus they experience incon-
venience of a long parity resynchronization process in the
next power-on. In addition, software RAID may be run on an
unreliable computer, without a reliable power source, or with
buggy programs. Consequently, the software RAID will not be
free from parity resynchronization.

As a RAID driver to reduce the expensive resynchroni-
zation time, the multi-device (MD) in the Linux kernel
provides an intent bitmap scheme [28] that sacrifices
ordinary write performance.

An alternate resynchronization approach eliminates the
time-exhaustive resynchronization process with a small
overhead by modifying the journaling scheme of file
systems [29], but it must change the file systems and their
tools such as fsck. This approach cannot serve a block
device. Furthermore, more development costs will be
incurred to apply the concept of the declared mode to
various new file systems.

The proposed scheme of this paper aims at software
RAIDs and provides a fast resynchronization process with a
negligible overhead for ordinary I/Os while not changing
the existing file systems. In addition, it is resistant to
frequent sync and synchronous writes. Therefore, this
technology effectively removes the need for costly
power-fail-safe devices, thereby bringing a breakthrough
to lower the cost of RAID systems.

2. Problem and prior solutions

2.1. Problem

Data blocks and a parity block that comprise a stripe
must be updated in a consistent manner. If a data block is
modified, the corresponding parity block must be updated
at the same time.

On the other hand, the disk platters are not synchro-
nized, and thus rotational latency time for each disk head
to reach the same target sector varies from disk to disk.
Therefore, the time that each disk spends on recording a
block is different even if multiple disks receive the same
write request at the same time.

When the RAID system crashes, the system cannot
avoid an inconsistent stripe where its parity block has no
relationship with its data blocks. If the power is turned off
while the member disks of a RAID-5 array record a stripe
on their magnetic medium, the stripe could be inconsis-
tent because some parts of the stripe may not be written.

Not only RAID-5 but also all RAID levels (1, 6, etc.) that
tolerate a disk failure suffer from inconsistent stripes after
a power failure.

In the example shown in Fig. 1, a data block in disk3 is
updated but the parity and the other data blocks in disk1
and disk2 are not updated due to a sudden power-off. The
old parity of the stripe is inconsistent with the updated
data of disk3.

If a disk fails while the RAID system has an inconsistent
stripe, the RAID software performs a recovery process for
the data blocks of the failed disk [23]. It recovers a wrong
data block for inconsistent stripes because the parity block
of the inconsistent stripe has no relationship with the data
block and the system cannot recognize which stripe is
inconsistent if a disk fails.

When a storage system reboots after a crash, there is no
information on write activities that are pending or com-
pleted at the moment of the crash. Consequently, there is
no indication of where stripe inconsistencies exist. Hence,
during the next booting process after a crash, a long parity
resynchronization process must be performed to find and
fix inconsistent stripes.

2.2. Prior solutions

In terms of performance and cost, various approaches
have been introduced to avoid stripe inconsistency when
power goes off unexpectedly.

2.2.1. Hardware solution
To achieve both reliability and performance, hardware

RAID employs non-volatile memory, which is implemen-
ted by battery-backed memory or an uninterruptible
power supply (UPS). Updated data that are buffered in
non-volatile memory are safely retained regardless of a
crash [30].

After a system reboots after a crash, not-yet-destaged
data blocks in non-volatile memory are destaged to disks
and the corresponding parities are rebuilt. Therefore, the
hardware solution achieves the best performance without
any software overhead.

2.2.2. Full scanning
A widely used approach to find and fix inconsistent

stripes is to read and inspect the entire volume [27]. Fig. 2
shows the time required for full scanning. Full scanning
takes several hours or even days.

If I/Os are requested during full scanning, the storage
system suffers from poor performance with high latency to
serve both scanning and user requests.

2.2.3. Intent bitmap
Clements and Bottomley [28] introduced an intent

bitmap for a short resynchronization process sacrificing
ordinary write performance. An intent bitmap is used to
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keep track of which data blocks are out of sync between
the nonvolatile storage (e.g., RAID) and the volatile buffer.
Multi-device (MD) of the Linux kernel employs the intent
bitmap scheme [28].

A bit in the bitmap corresponds to a segment of the
volume. The segment can be a stripe or a group of blocks.
A bit of the intent bitmap is set to one if the corresponding
segment in the buffer is not yet updated to the disk, and
the bit value is cleared when the corresponding segment is
synchronized with the disk.

The intent bitmap scheme inspects only the stripes that
correspond to the set bits of the intent bitmap during the
resynchronization process. Hence, this scheme can signifi-
cantly shorten the resynchronization time.

Fig. 3 presents the state diagram for each bit of the
bitmap. The bit must be set before updating the corre-
sponding block. A daemon asynchronously clears the bit
after finishing its update.

The intent bitmap boots up the resynchronization
processes, but it comes at the cost of considerable over-
head in a normal process.
0 1

writing

Need to write a block 
/ set the bit

Request for the array
to write the block

Write completion 
/ clear the bit

Fig. 3. The state diagram for each bit of the bitmap in the intent bitmap
scheme: a bit corresponds to a stripe, a block, or a chunk of the entire
volume.

The journal data of a Additional data 
2.2.4. Journaling
The proposed scheme inserts a journaling into a block

level driver to avoid scanning the entire disk after a crash.
Journaling has been proposed in the field of file systems.

The file system must be recovered after a system crash
to bring the file system to a consistent state again by a tool
such as fsck, which takes a long time to scan the entire
disk. The journaling file system [31–34] allocates a dedi-
cated area – the journal – in which it atomically records
the changes in a form of circular queue before it updates
the changes in the main file system. This approach is
known as journaling (also known as write-ahead logging).
The log keeps track of the changes of metadata or data
before committing them to the main file system. In the
event of crashes or power losses, such file systems quickly
recover their consistency by analyzing only that log
[35,32]. The recovery simply involves reading the last
journal and updates changes from this journal to home.

Our scheme utilizes a journaling technique that makes
the parity synchronization process quick and simple.
However, we introduces a dual write cache that enables
journaling at a block level and a new scheme that can
reduce the frequency of journal updates by merging
intent logs.
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Fig. 2. Scanning time: full scanning takes tens of hours.
2.2.5. Ext3 ordered mode
Because of the high cost of writing every data block to

both the journal and the main file system twice, people
have tried a few different things in order to speed up
performance. A simpler form of journaling is sometimes
called ordered journaling (or just metadata journaling),
and it is nearly the same, except that user data is not
written to the journal [35]. In the event of a crash with a
completed transaction that has a commit block, the file
system copies the metadata in the journal to the home. If
the last transaction has no commit block after a crash, the
data and metadata blocks in the journal are discarded.

For example, ext3 ordered mode proceeds as follows:
1.
(1
(2
(3
an
(4
(5
It writes all dirty data blocks to the home, and issues
a flush.
2.
 It appends descriptor block and metadata blocks to the
journal.
3.
 It appends a commit block to the journal with the write
barrier.
4.
 it writes metadata blocks to the home.

2.2.6. Ext3 declared mode
The ext3 declared mode [29] is a variant of the ext3

ordered mode to enhance the parity resynchronization
process. This file system has a special interface with a
software RAID to transfer an intent data from the file
system to the software RAID. It additionally records intents
of outstanding writes (called declare block) in its journal.
The intents written at the file system level are transferred
to the software RAID after a crash to resynchronize parity
blocks.

Fig. 4 shows the journal layout of the ext3 declared
mode. The ext3 declared mode is quite similar to the ext3
journal declare 
block

descriptor 
block meta data commit 

block

) appends declare block to journal with the write barrier.
) writes data blocks to the home, and issues a flush.
) appends a descriptor block and metadata to the journal, 
d issues a flush.
) appends a commit block to the journal.
) write metadata blocks to the home.

journaling filesystem 
(orderd mode)

for declared 
mode

Fig. 4. The journal layout of the ext3 declared mode.
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ordered mode except for that a declared block is written
prior to writing data blocks. The declare block includes the
locations of data blocks.

The ext3 declared mode involves small overhead and
provides fast resynchronization time. However, the RAID
with the ext3 declared mode depends on the file system
and therefore cannot support various other file systems
such as ext4, Btrfs, and xfs. Furthermore, this approach
cannot serve a block device.

2.3. Our contributions

Most systems do not sacrifice the performance of
normal I/Os, and hence they use full scanning resynchro-
nization, which requires several hours or even days. The
full scanning resynchronization severely degrades the
performance of the software RAID after a crash or a
power-failure.

Unlike the ext3 declared mode, our scheme inserts the
journal structure into the block level driver so that file
systems do not need to be changed.

This paper presents a sophisticated scheme that
1.
 includes dual write caches that aggregate the locations of
multiple writes into a single a write-ahead log (called the
intent log in this paper) and enable both buffering and
destaging to be processed simultaneously;
2.
 employs an intent log that describes the locations of
future multiple writes with an additional I/O;
3.
 can reduce the frequency of updating intent logs by a
merging scheme;
4.
 dramatically reduces the resynchronization time with
much less overhead than that of prior works at normal
I/Os; and
5.
 is transparent to file systems.

The proposed scheme is implemented in a software
RAID as a kernel module in Linux. It shows a very small
overhead for randomwrites, sequential writes, a file server
workload, a mail server workload, a TPC-C trace, synchro-
nous writes, and general usage. For example, it has 1%
slowdown for a TPC-C trace whereas an other scheme has
51% slowdown. It reduces the resynchronization time to
30 s from 200 min. The proposed scheme provides a major
breakthrough to solve the major problem of the
software RAID .

3. Dual write caches and merged intent log

This chapter introduces the proposed parity resynchro-
nization scheme, which has a low overhead for both
synchronous and asynchronous writes, and does not
employ any change of file systems, or a power-fail-safe
device.

The proposed scheme consists of a merged intent log
and dual write caches. The dual write caches aggregates
multiple writes into an intent log and process both
buffering and destaging simultaneously. The merged
intent log scheme is optimized to the dual write caches
and significantly mitigates a logging overhead.
The dual write caches utilize a volatile cache but
guarantee file system consistency. The consistency of
volatile write cache is described in Section 3.5.
3.1. Dual write caches

3.1.1. Problems
Our scheme is based on a block-level journaling that

describes the locations of future writes. After a crash, a
system can inspect a bounded number of stripes that are
described by the journal (log) rather than scanning the
entire volume.

A write cache can make the block-level journaling
efficient by aggregating the information of write requests
into a single log. A write cache may aggregate multiple
writes, record a log, and destage the buffered data to disks.

During the destaging state, the write cache must reject
new write requests. If not, newly buffered data after the
last log is recorded may be destaged while the last log
does not describe the information of the new data.

No data must be destaged before being registered in
the last log. Hence, the buffering state and destaging state
must be separated thereby sacrificing performance.
3.1.2. Continuous buffering and destaging
The discrete three steps – buffering, logging after

buffering, and destaging after logging – are inefficient.
However, we propose dual write caches that process both
buffering and destaging simultaneously.

The basic idea is as follows: the system stores multiple
write requests in a write cache, records the intent log in a
nonvolatile storage before stripes in the write cache are
destaged to disks, and destages all data in the write cache
while new write requests are delivered to another write
cache that does not destage its data to disks.

The dual write caches aggregate the intents of future
multiple writes into a single intent log, which lists the
locations of multiple blocks. The log gives hints about
which stripes were being written when the power
went off.

Fig. 5 shows how to process the intent log, which is
produced by two write caches, the buffering write cache
(WCB) and the destaging write cache (WCD).

The process consists of three steps. In Step 1, Stripe D,
Stripe E, and Stripe F are buffered in the buffering write
cache (WCB). Stripe A, Stripe B, and Stripe C in the
destaging write cache (WCD) are destaged to disks. In Step
2, WCB is swapped with WCD if WCB is not empty and WCD
becomes empty by destaging all its buffered data. In Step
3, the locations of Stripe D, Stripe E, and Stripe F are
journaled as an intent log (IL). In the second iteration of
Step 1, Stripe D, Stripe E, and Stripe F in WCD are destaged
to disks while new write requests for Stripe G, Stripe H,
and Stripe I are buffered in WCB. Thus both buffering and
destaging are processed simultaneously.

Data blocks that are requested from the host are
buffered only to WCB. The only way to insert data blocks
to WCD is to swap WCD with WCB. Therefore, no data are
destaged until their location is journaled in the intent log.
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Fig. 5. The dual write caches process both buffering and destaging simultaneously, while no data are destaged until their location is journaled in the intent
log region. (Step 1) All blocks that are requested from the host are buffered to WCB. (Step2) If WCD becomes empty and WCB is not empty, WCB is swapped
with empty WCD. (Step 3) An intent log containing the locations of all stripes that are buffered in the WCD is logged in a designated region. In the second
Step 1, Stripe D, Stripe E, and Stripe F in the WCD are destaged to disks while new requests for Stripe G, Stripe H, and Stripe I are buffered in WCB.

Fig. 6. The structure of an intent log.
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3.1.3. Intent log
An intent log data contains stripe numbers or segment

numbers as shown in Fig. 6. All stripes in WCD are
registered in the intent log before they are destaged to
disks. Therefore, the last intent log can be a superset for
the locations of inconsistent stripes that were being
written at the time of a crash.

The parity resynchronization process can be restricted
to the stripes that are indicated by the indent log, thereby
dramatically reducing the resynchronization time.

The IL region where intent logs are journaled can be in the
disk array or a small nonvolatile memory such as flash
memory. In the implementation of this paper, the IL region
is located at the disk array. Each intent log with an increasing
version is recorded across the member disks in a round-robin
fashion.

A software RAID in Linux, MD, allocates a region for an
intent bitmap in a dedicated file or an internal area of the disk
array. In our experiment, MD uses the disk array to record an
intent bitmap by the option ‘-binternal’.
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3.1.4. The varying sizes of WCD and WCB
Fig. 7 shows the size of WCD and the size of WCB for

each step. Let the first write cache be WC1 and the second
write cache be WC2. The solid line and dotted line indicate
WC1 and WC2, respectively. First, let WC1 be WCB and WC2
be WCD. The size of WCB increases by buffering (Step 1).
WCB is swapped with empty WCD, so that WC1 becomes
WCD and WC2 becomes WCB (Step 2). An intent log is
logged in a designated region (Step 3).

WCB and WCD share the same memory resource. The
size of WCB can increase by buffering while the size of WCD
decreases by destaging because memory that is evicted
from WCD by destaging can be allocated to WCB.

3.1.5. Miscellaneous operations
Cache policy: Stripes in WCD can move to WCB anytime.

If a stripe in WCD hits the cache, it moves to WCB by a
destaging scheme such as the least recently written (LRW)
policy.

Forced cache synchronization: A cache synchronization
enforces an IL update. If a cache synchronization is
requested (in the middle of the third Step 1 in Fig. 7), no
further buffering to WCB is allowed and a new IL should be
recorded for a small amount of data. However, Section 3.3
presents a merged intent log scheme that mitigates the IL
overhead incurred by frequent cache synchronizations.

Invisible IL region: The RAID reserves the first blocks for
the IL region, reports a slightly smaller capacity, and makes
it invisible to the upper layer such as the file system. To
make the region invisible, the logical block address from
the upper layer is translated to a physical block address
that is added by the size of the IL region. Hence, file
systems can dynamically change their size over time
without causing any problems.

3.2. Resynchronization

If the system detects an unclean shutdown in the
booting stage, it performs the resynchronization process.
First, it reads all intent log blocks that are stored across all
member disks and finds the latest one that has the highest
version number. The latest intent log indicates the stripes
that were being updated at the moment of power-off.

For each stripe that is described in the latest intent log,
the system reads data blocks and a parity block, and
investigates whether the parity block is correct for the
data blocks. If it is incorrect, a newly rebuilt parity block is
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updated to the stripe.
The latest intent log contains the stripe numbers for all

stripes of the current WCD, which is a superset of the
stripes that were being written at the moment of the
power-off.

Fig. 6 shows an example of the intent log, which
indicates that some of the stripes are inconsistent (Stripe
3), some of them are consistently updated (Stripe 1), and
some of them are not yet updated (Stripe 4). Stripe 1,
Stripe 3, and Stripe 4 are candidates for inconsistent
stripes and hence they are read and inspected to deter-
mine whether they are inconsistent. Stripe 3 is detected as
inconsistent, and then a new parity block is rebuilt and
recorded back to the disk.

The number of inspected stripes for resynchronization
is limited by the maximum size of the intent log. Hence,
the synchronization process can be completed within an
estimated time.

The intent log requires an additional write access per
hundreds of stripes; however the intent bitmap without
the dual write cache causes two writes to set and clear the
bit for every block in the worst case. The intent log scheme
employs much less overhead than the intent bitmap
scheme.

3.3. Merged intent log

3.3.1. A problem by synchronous writes
In some cases, a forced write barrier or a synchronous

write frequently updates an intent log (IL) block with a
small amount of buffered data before the write cache
becomes full. Frequent updates of the intent log with a
small amount of data degrade the write performance.

The command sync by a user or writing a commit block
in a journaling file system forces a new intent log to be
recorded even though the write cache is not full.

A write with the O_DIRECT option or updating the
superblock of a file system generates a synchronous write,
which must finish recording data to a reliable medium
with a short latency without a write-back policy.

A database transaction is a typical application that
produces frequent synchronous writes. A synchronous
write involves a new IL update, thereby severely degrading
performance.

3.3.2. Solution: skip logging
This paper includes a scheme that significantly reduces

the frequency of IL updates. The main idea of the scheme is
that the current IL for WCD can be exempt from being
logged to a disk if the current IL is a subset of the
previously recorded IL.

If the previous IL is a superset of many subsequent ILs,
it can dramatically reduce the frequency of IL records. This
paper introduces a merged IL that can be a superset of the
future ILs.

Fig. 8 illustrates an example of merged ILs that reduce
IL records. (1) Immediately after swapping WCD and WCB,
the system creates a current IL that includes the positions
of the stripes buffered in WCD. (2) It creates a merged IL by
merging the current IL and the previous merged IL. The
previous merged IL is the merged IL of the previous stage.
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Hence, the merged IL is a union of the past ILs and can be a
superset of the future data.

If the current IL is a subset of the previous merged IL,
we can skip recording the current IL (Case 1, Case 2, and
Case 4). Otherwise, the merged IL is journaled to a disk
(Case 3 and Case 5). Finally, the merged IL is used as the
previous merged IL in the next stage.

Because the capacity of the IL is limited, the union of
the previous merged IL and the current IL may exceed the
limited capacity. We therefore have to decide which
elements should be excluded from the merged IL. Our
scheme adopts the LRU-like policy, which chooses the
least recent stripe as a victim.

The procedure to make the merged IL is as follows:
(Step 1) the current IL is created from WCD. (Step 2) The
merged IL is initialized from the current IL, which informs
the data location of the current WCD. (Step 3) For each
element of the previous merged IL, the element is
appended to the merged IL if the element is not in the
current IL. If the merged IL is full, this iteration stops. (Step
4) If the current IL is not a subset of the previous merged
IL, the merged IL is recorded in a disk. (Step 5) The merged
IL is used as the previous merged IL in the next procedure.

In Case 1 of Fig. 8, the storage system receives a
synchronous write to Stripe 10, which forces the system
to immediately deliver the write data to the disks. If only
Stripe 10 is in the write cache, the current IL includes only
‘10’. The stripe number ‘10’ is in the previous merged IL.
Hence, the system skips recording the IL.

In Case 2, Stripe 41 is buffered to the write cache and a
synchronous write to Stripe 23 is delivered. The system
decides to flush Stripe 41 and Stripe 23 to disks and makes
the current IL with ‘41’ and ‘23’, which are in the previous
merged IL. Hence, the system skips recording the IL.
In Case 3, the current IL includes ‘20’ and ‘30’, which are
not in the previous merged IL. Hence, the system must
record the merged IL. The size of the union of the current
IL and the previous merged IL exceeds the maximum size
of the IL. The system then evicts the least recently used
stripe number ‘15’ from the merged IL.

3.3.3. Properties
Temporal locality: The merged IL includes the locations

of many past writes, and as such it may include future
writes if the writes exhibit temporal locality. Therefore, it
can dramatically reduce the overhead of the scheme.

Reading intent logs: There is no read operation from
disks in normal operations. We maintain a copy of the
previous merged IL in a main memory. Reading intent logs
from disks is required only in the case of an unclean restart
after a crash.

3.4. Pseudo code

Fig. 9 shows the pseudo code of the proposed scheme.
The destaging function, raid_destage() as a thread, evicts
dirty data in WCD to disks (Line 19). If WCD is empty and
WCB is not empty (Line 15), WCD is swapped with WCB
(Line 16) and a new intent log for the newWCD is built and
recorded to disks (Line 17).

The function, raid_write() processes a new write
request that is delivered from the host (Line 25), buffers
it to the dual write caches (Lines 27–35), and carries out
the remaining write operation (Line 36).

When a host delivers a write request to the storage
system, the storage system determines if the requested
block is found in WCD (Line 29), removes it fromWCD (Line
30), and adds it to WCB (Line 35). Otherwise, the system



Fig. 9. The Pseudo code.
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allocates a new strip cache entry for the write request
(Line 33) and adds it to WCB.

The function make_record_il() builds a merged IL and
records it under a condition. The current IL Lc is initialized
with WCD (Lines 41 and 42). The merged IL Lm is initialized
from Lc (Line 44). For each element in the previous IL Lp
(Line 45), the element is appended to Lm (Line 50) if the
element is not in Lc (Line 46) and the size of Lm does not
reach the maximum size (Line 48). Under the condition
that Lc is not a subset of Lp (Line 52), the system journals
Lm to a designated IL region. Finally, Lp is replaced with Lm
for the next processing.

3.5. Consistency in the volatile dual write caches

The proposed dual write caches (WCB and WCD) are a
kind of volatile memory, which may lose data at a power
failure. However, a write barrier can lend the reliability to
the volatile dual write caches. Journaling file systems
(EXT3 [33], EXT4 [36], NTFS [37], and XFS [34]) support
the write barrier [38].

A storage device that employs a volatile write cache
must properly process write barriers for the file system to
maintain its consistency.

The journaled mode of a journaling file system pro-
ceeds as follows:
1.
 It writes a descriptor block, metadata blocks, and data
blocks to a journaling region
2.
 It issues a flush.

3.
 It appends a commit block to a journal with the write

barrier.

4.
 It writes metadata blocks and data blocks to the home.

5.
 It issues a flush.

Journaling file systems guarantee transactions that
have a commit block. If a descriptor block or metadata is
found without a commit block, journaling file systems
abandon the last incomplete transaction and roll back to
the previous complete transaction.

The write barrier guarantees that all buffered blocks of
a transaction are flushed to a magnetic medium before the
transaction records its commit block. In other words, a
transaction with a commit block ensures that all of the
data in the transaction are safely recorded even if the
storage system has a volatile write cache.

Linux employs a write barrier to record a commit block
[39]. The write barrier with an I/O request forces the write
cache to synchronize with disks. The I/O request is then
delivered to a disk immediately following the cache
synchronization. All subsequent requests are blocked until
the I/O request is completed.

Recording a commit block with the write barrier
enables journaling systems to employ a volatile write
cache without inconsistency of the file systems. Hence,
the proposed dual write cache can be implemented with-
out any reliable power source.

3.6. Recovery in a journaling file system

Generally, volatile write caches may cause data losses.
However, a system that follows the technique shown in
Fig. 10 can employs a volatile write cache while retaining
file system consistency. Fig. 10 illustrates the steps of a
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Fig. 10. The steps of a journaling file system to consistently save data
blocks and metadata blocks into a storage system that employs a volatile
write cache.
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journaling file system to consistently save data blocks and
metadata blocks into a storage system that employs a
volatile write cache.

If a crash occurs during Step 1 of Fig. 10, the storage
system will lose the blocks that are destined for a journal.
However, we can discard the blocks because the blocks are
not for the home.

If a crash occurs during Step 2, the file system discovers
an incomplete transaction that has no commit block in the
next restart, and it discards the incomplete journal. If a
crash occurs during Step 3, Step 4, or Step 5, the file system
discover a complete transaction in the next restart and it
copies metadata blocks and data blocks in the journal to
their home. Therefore, the file system guarantees that the
blocks written to their home are not lost.

The ext3 ordered mode is designed not to guarantee
data consistency but it guarantees metadata consistency
and the order between metadata blocks and data blocks.
Even if the ext3 ordered mode is applied to a volatile write
cache, the system can ensure the requirements of the ext3
ordered mode.

3.7. Accumulated intent bitmap: applying the intent bitmap
to the dual write caches

The intent bitmap scheme (discussed in Section 2.2.3)
is implemented in MD (a software RAID in Linux), which
cannot employ the intent log scheme because it does not
support any write cache. However, our new software RAID
with a dual write cache can include both the intent bitmap
and the intent log.
Both the intent log and the intent bitmap can describe
the locations of data. Each bit of the intent bitmap
represents a stripe or a group of blocks while each entry
of the intent log indicates a data address. Hence, the intent
log can be replaced with an intent bitmap in the dual write
cache system.

We can update the changed parts of the intent bitmap
instead of recording an intent log. Thanks to the dual write
cache, a variation of the intent bitmap, the accumulated
intent bitmap scheme, accumulates set bits and updates
the changed bits at once instead of updating a bit at every
write. The task of clearing bits is postponed until the
number of set bits exceeds a predefined number.

The accumulated intent bitmap that is combined in the
dual write cache has the following rules: The accumulated
intent bitmap
1.
 does not clear any bit to minimize the changed parts of
the bitmap until the number of set bits exceeds a
threshold value;
2.
 clears all bits if the number of set bits exceeds the
threshold value;
3.
 sets bits that correspond to the cached stripes in WCB,
and updates only the changed sectors in the bitmap
area before swapping WCD and WCB; and
4.
 thereby, accumulates set bits to reduce the changes of
the bitmap.

However, the accumulated intent bitmap has different
performance issues compared to the merged intent log:
�
 Changed blocks in the intent bitmap are scattered and
produce multiple discontiguous writes in the intent
bitmap area, whereas the intent log requires only a
single contiguous write.
�
 The intent bitmap requires bigger space than the intent
log. The bitmap size of the intent bitmap scheme is
proportional to the storage capacity while the intent
log requires a fixed area size. For a 10TiB storage system
with a 512KiB stripe size, the intent bitmap requires
2.4MiB for each bit to represent a stripe, whereas the
intent log requires 128KiB for the best performance in
an experiment (described in Section 4.8). For the worst
case, the intent bitmap may update the entire bitmap
space, thereby taking longer time. (Even though a
single bit is changed, a sector that can represent tens
of thousands of bits should be updated.)

In the intent bitmap that is implemented in a write-
through cache, bits are frequently set and cleared, whereas
the accumulated intent bitmap that is applied to the dual
write cache aggregates bit changes and updates changed
sectors at once. The accumulated intent bitmap, however,
suffers from discontiguous writes on a much bigger space,
and thereby is slower than the merged intent log.

4. Experimental results

The experiments exclude the declared mode, discussed
in Section 2.2.6 among prior works, because it cannot
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serve a volume drive and requires a dedicated file system.
For a fair comparison, we compare the merged intent log
(IL) scheme with the intent bitmap (IB) because neither
modifies file systems.

In addition, we evaluated the performance improve-
ment of the dual write cache (DWC) when IB is applied to
DWC in comparison with IB in a write-through policy.

4.1. Experimental setup

We implemented the proposed merged IL scheme with
the dual write caches in a RAID driver, LORE, which has
been introduced in several previous articles [40–42]. The
RAID driver which is implemented as a kernel module in
Linux kernel 2.6.35.11 x86_64, similar to Multiple Devices
(MDs) [43], which is another RAID driver in Linux.

The testbed uses a 3.2 GHz i7 processor, 2 GBytes of
main memory, and five 7200 rpm SATA3 2 TB hard disk
drives (ST2000DM001). The five HDDs are configured as a
RAID level 5 array using LORE or MD, which hosts the ext4
file system.

LORE includes DWC, basic IL, merged IL, and accumu-
lated IB. MD employs IB with a write-through (WT) policy.
In all figures of this section, ‘DWC’, ‘DWC þ accum.IB’,
‘DWC þ basic IL’, and ‘DWC þ merged IL’ are evaluated by
LORE . ‘WT’ and ‘WT þ IB’ are evaluated by MD. All graphs
plot the average of six experiments.

4.2. Dual write cache vs. write through (LORE vs. MD)

The proposed merged IL scheme requires the dual write
cache that is implemented in LORE, whereas MD has no
write cache and IL cannot be applied to MD. We imple-
mented the accumulated IB with DWC in LORE, and
evaluated the accumulated IB with DWC and IB with a
write-through policy using MD.

LORE records an intent log or an intent bitmap in the
disk array. In our experiments, MD use the disk array to
record IB by option ‘-binternal’.

LORE and MD shows different performance in various
workloads. However, for synchronous writes, LORE and
MD show similar performance because the write cache has
no beneficial effect on synchronous writes. Fig. 11 com-
pares LORE and MD with synchronous writes.

Both LORE and MD are efficient implementations. Fig. 11
compares the basic performance of LORE and MD. The y-
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Fig. 11. Performance comparison between LORE (DWC) and MD (write-
through).
axis is the relative performance of LORE over MD (the
bandwidth of LORE over the bandwidth of MD). In Fig. 11,
Financial2 is the financial2 trace of SPC [44]. PC1, PC2, PC3,
and PC4 are four difference traces that are retrieved from
personal computers using the XPerf tool. The left bars
(synchronous write) show the relative performance when
we artificially call fsync() for all writes of the traces. The
right bars (async. & sync & flush) show the relative
performance when we replay writes of the traces as they
are (without any artificial flush call, the trace includes
actual flush calls).

The left bars of Fig. 11 are close to 1.0. It means that DWC
(LORE) and WT (MD) have similar performance for synchro-
nous writes that have no effect onwrite caches. The right bars
indicate that DWC shows better performance thanWT for the
mixed I/Os (asynchronous writes þ synchronous writes þ
flushes) because DWC of LORE produces more reconstruct
writes and full stripe writes than the write through policy of
MD.

DWC as a write cache is beneficial to RAID systems. In
addition, DWC improves the performance of IB. The
following evaluations show the performance improvement
of IB by comparing ‘DWC þ accum. IB’ (LORE) with ‘WT þ
IB’ (MD).
4.3. Micro benchmarks

This section evaluates the proposed schemes with
random write and sequential write. First, we test the
performance of random writes on a 500GB storage, as
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shown in Fig. 12. All blocks are flushed out to disks by sync
() at the end of each experiment.

The top graph plots the random write performance as
the amount of data written increases along the x-axis. The
bottom graph shows each relative slowdown.

In the bottom graph of Fig. 12(a), the labels ‘accum. IB’,
‘basic IL’, and ‘merged IL’ are obtained from‘DWC þ accum.
IB’ against ‘DWC’, ‘DWC þ basic IL’ against ‘DWC’, and
‘DWC þ merged IL’ against ‘DWC’, respectively.

The random writes cause the accumulated IB to pro-
duce scattered bit changes and discontiguous writes in the
bitmap, whereas the merged IL always produces a single
log regardless of I/O patterns. For the random writes, the
merged IL shows the best performance (1–6% slowdown)
and the accumulated IB shows the worst performance (3–
16% slowdown).

Fig. 12(b) compares WT and DWC with random writes.
In the bottom graph of Fig. 12(b), the labels ‘WTþ IB/WT’
and ‘DWCþaccum.IB/DWC’ denote the relative degrada-
tions of ‘IB’ and ‘accum. IB’, respectively. The slowdowns of
‘IB’, and ‘accum. IB’ range from 47% to 59% and 4% to 11%,
respectively. WT makes IB frequently update the bitmap,
whereas DWC makes IB accumulate the bit changes,
thereby dramatically reducing the frequency of the bitmap
update.

Fig. 13 shows the sequential write performance on an
ext4 file system as the amount of data written increases
along the x-axis. The page cache is synchronized at the end
of the experiment by a sync() call.
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Fig. 13. Sequential write: the top graph plots sequential write perfor-
mance as the amount of data written is increased along the x-axis. The
bottom graph shows the slowdown of IB and IL. (a) Accumulated IB vs.
basic IL vs. merged IL with DWC and (b) WT vs. DWC.
Fig. 13(a) compares ‘accum. IB’, ‘basic IL’, and ‘merged
IL’ with ‘DWC’. The three schemes show nearly equivalent
performance for the sequential write.

Fig. 13(b) compares WT and DWC with sequential
writes. DWC significantly outperforms WT by 3.2 times
in the best case. The accumulated IB exhibits a much
smaller slowdown (10%) than IB (60% slowdown).

4.4. Macro benchmarks: Filebench

For more realistic workloads, we chose the ‘File server’
workload of Filebench version 1.4.8, which creates,
appends, reads, and deletes files with multiple threads
[45]. Figs. 14 and 15 show the results of Filebench with the
File server workload as the average file size increases along
the x-axis.

4.4.1. Accumulated IB vs. basic IL vs. merged IL
Figs. 14(a) and 15(a) show the performance of ‘accum.

IB’, ‘basic IL’, and ‘merged IL’ that are integrated with DWC.
The basic IL must record the log at every swap of WCB

and WCD, whereas the accumulated IB and the merged IL
have many opportunities to skip updating a bitmap block
or a log block. Therefore, ‘basic IL’ shows the worst
throughput.

The merged IL is better than the accumulated IB from
the standpoint of throughput and latency, as shown in
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Fig. 14. Filebench throughput: the top graph shows the throughput of
Filebench as the size of files served by a file server increases along the x-
axis. The bottom graph shows the relative throughput. (a) Accumulated
IB vs. basic IL vs. merged IL with DWC and (b) WT vs. DWC.
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Figs. 14(a) and 15(a). The accumulated IB produces dis-
contiguous writes on a much bigger space than IL, whereas
the merged IL produces a contiguous write on a relatively
smaller size of the log area.

4.4.2. DWC vs. WT
Figs. 14(b) and 15(b) compare the overhead of IB and

accumulated IB. The label ‘(WTþ IB)/WT’ denotes the
overhead of ‘WTþ IB’ over ‘WT’. The label ‘(DWCþaccum.
IB)/DWC’ is the overhead of ‘DWCþaccum.IB’ over ‘DWC’

We observe that the write through cache with IB has a
significant slowdown (30–40%), but Filebench utilizes the
write cache and enables DWC to aggregate many bit
changes of the bitmap. Accumulated IB assisted by DWC
shows 2–7% overhead in this experiment.

4.5. Macro benchmarks: Postmark

Fig. 16 shows the execution time of the PostMark
benchmark as the number of transactions increases along
the x-axis. PostMark is a benchmark that creates a large
pool of continually changing files and measures the trans-
action rates for a workload approximating a large Internet
electronic mail server [46].

Postmark produces scattered writes over a wide range
of space. Hence, the accumulated IB produces scattered bit
changes and discontiguous writes to update the bitmap. In
Fig. 15. Filebench latency: the top graph shows the latency of Filebench.
The bottom graph shows the relative latency. (a) Accumulated IB vs. basic
IL vs. merged IL with DWC and (b) WT vs. DWC.
this experiment, the basic IL is better than the accumu-
lated IB. The merged IL shows the best performance.

Fig. 16(b) shows that a transactional I/O, Postmark, is
beneficial to DWC against WT. ‘DWCþaccum.IB’ is five to six
times faster than ‘WTþ IB’. The accumulated IB has less
overhead than IB. The slowdown of ‘accum. IB” ranges from
4 to 17% while the slowdown of ‘IB’ ranges from 22 to 27%.
The considerable gap between DWC and WT is due to their
different write policies.
4.6. Miscellaneous benchmarks

Fig. 17 compares the normalized execution time of
building an ext4 file system (mkfs.ext4), unpacking a Linux
kernel source package (unpack), and replaying a TPC-C I/O
trace [47] as compared to ‘WT’, which scans the entire
volume for resynchronization.

Adding the IB scheme to WT incurs 200%, 92%, and 51%
degradation for mkfs.ext4, unpack, and TPC-C, respec-
tively, whereas the accumulated IB scheme exhibits 11%,
3%, and 1% overhead, respectively.

The bottom graph of Fig. 17 shows the relative degradation
of ‘DWCþaccum IB’, ‘DWCþbasic IL’, and ‘DWCþmerged IL’
as compared to ‘DWC’. All three schemes show small over-
heads but the merged IL exhibits the smallest overhead.
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Fig. 16. PostMark benchmark: the top graph shows the execution time of
PostMark as the number of transactions increases along the x-axis. The
bottom graph shows the relative slowdown. (a) Accumulated IB vs. basic
IL vs. merged IL with DWC and (b) WT vs. DWC.
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Table 1 compares the resynchronization time to find
and fix inconsistent stripes after an unclean shutdown
with the entire scan and the IL. The conventional method
requires 200 min to resynchronize the 4TB volume. It is
very inconvenient for consumers to wait for the long
resynchronization to be completed. The proposed scheme,
the merged IL with DWC, shortens the resynchronization
process from 200 min to 30 s in the worst case.

The resynchronization time of the IL scheme is bound to a
limited time that is determined by the write cache size and
the maximum size of the intent log. The resynchronization
time of the IB scheme is comparable to that of the IL scheme.

The resynchronization time of the IB scheme can be bound
to a limited time if the number of set bits is restricted. Both
the IB and IL schemes exhibit a short resynchronization
process and their resynchronization time is tunable according
to their configuration.

4.7. Synchronous writes

Synchronous writes with O_DIRECT or sync() calls
cause frequent IL updates. It is possible to reduce the IL
updates by merging ILs as discussed in Section 3.3. The
merging policy can be immune to performance degrada-
tion by synchronous writes.

Fig. 18 shows a comparison for excessive sync calls. In
this experiment, artificial sync() calls are inserted between
the writes of the SPC Financial1 trace [44]. The axis
indicates the number of writes per sync() call.

For very frequent cache synchronization (one to two of
sync interval), the accumulated IB causes a single or two
bit changes, which may require updating of a single sector,
thereby resulting in the smallest slowdown.

However, for longer sync intervals (4–16), the accumulated
IBmay need two ormore scatteredwrites and is outperformed
by the merged IL. The basic IL records a log at every cache
synchronization and causes severe performance degradation
due to frequent synchronization. The merged IL records a
single or no log, and thus exhibits much less slowdown.
Fig. 17. The figure compares the normalized execution time of building
an ext4 file system (mkfs.ext4), unpacking a kernel source package
(unpack), and replaying a TPC-C I/O trace (TPC-C) as compared to ‘WT’.
4.8. The size of the IL region

This section evaluates the effect of the size of the IL
region. If the IL size becomes larger, the merging efficiency
becomes higher and there are more opportunities to skip
recording ILs but it takes longer time to save a larger IL.

The minimum number of entries of the IL region must
be at least the maximum number of stripes that the write
cache can accommodate. LORE is configured to cache at
most 3236 512KiB stripes with 256MiB memory in the
experiments. The IL consists of a 24B header and 8B entries
to represent stripe numbers. The 32KiB IL region can
contain 4093 entries and is used in default.

Fig. 19(a) shows the results of Filebench with the File
server profile as the size of the IL region increases along
the x-axis. We performed five trials, which show that
64KiB is optimal for the IL region. This means that there
exists a proper size for the IL region.

Fig. 19(b) shows a comparison with synchronous writes
for various sizes of the IL region. In this experiment, the
SPC Financial2 trace [44] is replayed as synchronous
writes. The x-axis indicates the size of the IL region, which
ranges from 32KiB to 512KiB.

The IL size of 128KiB provides the best performance in this
experiment but 64KiB is the best in Filebench. We thus find
that the optimal IL size varies from workload to workload.

5. Conclusion

The proposed scheme targets the software RAID, which
has no power-fail-safe component. The critical problem of
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Fig. 19. Performance for various IL region size. (a) Filebench for various
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S.H. Baek, K.-W. Park / Information Systems 54 (2015) 28–42 41
the software RAID is intolerably long resynchronization
time or expensive write overhead. The solution of scan-
ning the entire volume exhibits good performance in
normal operation but it forces users to wait during several
hours of resynchronization time as a penalty for a careless
shutdown.

We introduced a new seamless block-level journaling
with the dual write cache, which aggregates the intents of
multiple writes into an intent log or bit changes of the
intent bitmap, thereby reducing overhead. We presented
how the dual write cache can be applied to the conven-
tional intent bitmap and evaluated its performance
improvement. In addition, we proposed the basic intent
log and the merged intent log, which are optimized to the
dual write cache.

The merged intent log scheme is the best among the
three proposed schemes. The accumulated intent bitmap
produces scattered bitmap changes, whereas the merged
intent log scheme requires a single contiguous write for a
log, can skip recording a log, and reduces performance
degradation for frequent synchronization.

The merged IL scheme with the dual write cache is
transparent to file systems, has a short resynchronization
time, and exhibits negligible performance degradation.
The proposed scheme provides a breakthrough to solve
the major problem of the software RAID.
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